David Makinson and the Extension of Classical Logic

  • Sven Ove Hansson
  • Peter Gärdenfors
Part of the Outstanding Contributions to Logic book series (OCTR, volume 3)


There are two major ways to deal with the limitations of classical logic. It can be replaced by systems representing alternative accounts of the laws of thought (non-classical logic), or it can be supplemented with non-inferential mechanisms. David Makinson has a leading role as proponent of the latter approach in the form of the inferential-preferential method in which classical logic is combined with representations of preference or choice. This has turned out to be a highly efficient and versatile method. Its applications in non-monotonic logic and belief revision are used as examples.


David Makinson Classical logic Inferential-preferential method Nonmonotonic logic Belief revision Input/output logic 


  1. Alchourrón, C., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50, 510–530.Google Scholar
  2. Alchourrón, C., & Makinson, D. (1985). On the logic of theory change: Safe contraction. Studia Logica, 44, 405–422.Google Scholar
  3. Boole, G. (1854). An investigation of the laws of thought, on which are found the mathematical theories of logic and probability. London: Walton and Maberly.Google Scholar
  4. Brewka, G. (1991). Cumulative default logic: In defense of nonmonotonic inference rules. Artificial Intelligence, 50, 183–205.CrossRefGoogle Scholar
  5. Frege, G. (1879). Begriffsschrift, eine der aritmetischen nachgebildete Formelsprache des reinen Denkens. Halle.Google Scholar
  6. Friedman, H., & Meyer, R. K. (1992). Whither relevant arithmetic? Journal of Symbolic Logic, 57, 824–831Google Scholar
  7. Fuhrmann, A. (1997a). Solid belief. Theoria, 63, 90–104.CrossRefGoogle Scholar
  8. Fuhrmann, A. (1997b). An essay on contraction. Stanford: CSLI.Google Scholar
  9. Gärdenfors, P. (1994). The role of expectations in reasoning. In M. Masuch & L. Polos (Eds.), Knowledge representation and reasoning under uncertainty (pp. 1–16). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  10. Gärdenfors, P., & Makinson, D. (1988). Revisions of knowledge systems using epistemic entrenchment. In M. Y. Vardi (Ed.), Proceedings of the Second Conference on Theoretical Aspects of Reasoning about Knowledge (pp. 83–95). Los Altos: Morgan Kaufmann.Google Scholar
  11. Gärdenfors, P., & Makinson, D. (1994). Nonmonotonic inference based on expectations. Artificial Intelligence, 65, 197–245.CrossRefGoogle Scholar
  12. Gödel, K. (1986). Collected works. In S. Feferman et al. (Eds.), I: Publications 1929–1936. Oxford: Oxford University Press.Google Scholar
  13. Grove, A. (1988). Two modellings for theory change. Journal of Philosophical Logic, 17, 157–170.CrossRefGoogle Scholar
  14. Hansson, S. O. (2008). Specified meet contraction. Erkenntnis, 69, 31–54.CrossRefGoogle Scholar
  15. Hansson, S. O. (2013). Blockage contraction. Journal of Philosophical Logic, 42(2), 415–442.Google Scholar
  16. Hansson, S. O., & David M. (1997). Applying Normative Rules with Restraint, pp. 313–332. In M. L. Dalla Chiara et al. (Eds.), The Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995. Vol. 1, Logic and Scientific Methods. Boston, Mass.: Kluwer.Google Scholar
  17. Hodges, W. (2009). Traditional logic, modern logic and natural language. Journal of Philosophical Logic, 38, 589–606.CrossRefGoogle Scholar
  18. Humberstone, L., & Makinson, D. (2011). Intuitionistic logic and elementary rules. Mind, 120(1035–1051), 2011.Google Scholar
  19. Kraus, S., Lehmann, D., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44, 167–207.CrossRefGoogle Scholar
  20. Lewis, D. (1973). Counterfactuals. Oxford: Blackwell.Google Scholar
  21. Makinson, D. (2005). Bridges from classical to nonmonotonic logic. London: King’s College.Google Scholar
  22. Makinson, D., & Gärdenfors, P. (1990). Relations between the logic of theory change and nonmonotonic logic. In A. Fuhrmann & M. Morreau (Eds.), The logic of theory change (pp. 185–205). Berlin: Springer-Verlag.Google Scholar
  23. Makinson, D., & van der Torre, L. (2000). Input/output logics. Journal of Philosophical Logic, 29, 383–408.Google Scholar
  24. Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13(81–132), 1980.Google Scholar
  25. Rott, H. (2001). Change, choice and inference: A study of belief revision and nonmonotonic reasoning. Oxford: Clarendon.Google Scholar
  26. Shoham, Y. (1988). Reasoning about change. Cambridge: Cambridge University Press.Google Scholar
  27. Van Benthem, J. (2008). Logic and reasoning: do the facts matter. Studia Logica, 88, 67–84.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Royal Institute of TechnologyStockholmSweden
  2. 2.Lund University Cognitive ScienceLundSweden

Personalised recommendations