Advertisement

Non-Monotonic Logic: Preferential Versus Algebraic Semantics

  • Karl Schlechta
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 3)

Abstract

Preferential logic can be seen as the result of manipulation with an abstract notion of size. This intermediate level between relation-based semantics and proof theory is free from the details of the latter two. It gives an unobstructed view of the central mechanism of preferential logic, and opens ways to generalizations and modifications.

Keywords

Non-monotonic logic Preferential semantics Algebraic semantics Defaults 

Notes

Acknowledgments

The author would like to thank David Makinson for very valuable advice, and two anonymous referees who helped to make the present article clearer and more readable.

References

  1. Ben-David, S., & Ben-Eliyahu, R. (1994). A modal logic for subjective default reasoning. In S. Abramsky (Ed.), Proceedings LICS-94 (pp. 477–486), July 1994, Paris, France: IEEE Computer Science Press.Google Scholar
  2. Chopra, S., & Parikh, R. (2000). Relevance sensitive belief structures. Annals of Mathematics and Artificial Intelligence, 28(1–4), 259–285.CrossRefGoogle Scholar
  3. Friedman, N., & Halpern, J. (1995). Plausibility Measures and Default Reasoning. IBM Almaden Research Center Tech. Rept..Google Scholar
  4. Freund, M. (1993). Injective models and disjunctive relations. Journal of Logic and Computation, 3(3), 231–247.CrossRefGoogle Scholar
  5. Gabbay, D., & Schlechta, K. (2009a). Roadmap for preferential logics. Journal of Applied Nonclassical Logic 19/1, 43–95 (see also hal-00311941, arXiv 0808.3073).Google Scholar
  6. Gabbay, D., & Schlechta, K. (2009b). Logical tools for handling change in agent-based systems. Berlin: Springer.Google Scholar
  7. Gabbay, D., & Schlechta, K. (2009c). Independence and abstract multiplication. In preparation.Google Scholar
  8. Gabbay, D., & Schlechta, K. (2011). Conditionals and modularity in general logics. Heidelberg, August: Springer. ISBN 978-3-642-19067-4, preliminary version in arxiv.org.CrossRefGoogle Scholar
  9. Gabbay, D. M. (2004). Reactive Kripke semantics and arc accessibility. In W. Carnielli, F. M. Dionesio, & P. Mateus, (Eds.), Proceedings CombLog04, July 28–30 (pp. 7–20). Centre of Logic and Computation, University of Lisbon.Google Scholar
  10. Gabbay, D. M. (2008). Reactive Kripke models and contrary to duty obligations, DEON-2008, Deontic Logic in Computer Science, July 15–18, 2008, Luxembourg. In R. V. D. Meyden, & L. van der Torre, (Eds.), LNAI 5076, pp. 155–173. Berlin: Springer.Google Scholar
  11. Gabbay, D. M. (1989). Theoretical foundations for non-monotonic reasoning in expert systems. In K. R. Apt (Ed.), Logics and Models of Concurrent Systems(pp. 439–457). Berlin: Springer.Google Scholar
  12. Gabbay, D. M. (1991). Theoretical foundations for non-monotonic reasoning part 2: Structured non-monotonic theories, in SCAI, pp. 19–39.Google Scholar
  13. Kraus, S., Lehmann, D., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44(1–2), 167–207.Google Scholar
  14. Lehmann, D., & Magidor, M. (1992). What does a conditional knowledge base entail?. Artificial Intelligence 55(1), 1–60.Google Scholar
  15. Makinson, D. (2011). Conditional probability in the light of qualitative belief change. Journal of Philosophical Logic, 40, 121–153.CrossRefGoogle Scholar
  16. Makinson, D. (1994). General patterns in nonmonotonic reasoning. In D. Gabbay, C. Hogger, & Robinson, (Eds.), Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. III: Nonmonotonic and Uncertain reasoning, (pp. 35–110). Oxford University Press.Google Scholar
  17. Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13(1–2), 81–132.CrossRefGoogle Scholar
  18. Schlechta, K. (2004). Coherent systems. Amsterdam: Elsevier.Google Scholar
  19. Schlechta, K. (1990). Semantics for defeasible inheritance. In L. G. Aiello (Ed.), Proceedings ECAI 90, Stockholm, Sweden, 1990, (pp. 594–597). Berlin: Springer.Google Scholar
  20. Schlechta, K. (1992). Some results on classical preferential models. Journal of Logic and Computation, 2(6), 675–686.CrossRefGoogle Scholar
  21. Schlechta, K. (1995). Defaults as generalized quantifiers. Journal of Logic and Computation, 5(4), 473–494.CrossRefGoogle Scholar
  22. Schlechta, K. (1996). Completeness and incompleteness for plausibility logic. Journal of Logic, Language and Information, 5(2), 177–192.CrossRefGoogle Scholar
  23. Schlechta, K. (1997). Nonmonotonic logics—basic concepts, results, and techniques. Springer Lecture Notes series, LNAI, 1187, 243.Google Scholar
  24. van Fraasen, B. (1976). Representation of conditional probabilities. Journal of Philosophical Logic 5, 417–430.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.CNRS, LIF UMR 7279MarseilleFrance

Personalised recommendations