Overview of Material and Energy Flows in Water Infrastructures in Context of Urban Metabolism

  • Eve Menger-Krug
  • Jutta Niederste-Hollenberg
  • Thomas Hillenbrand
Conference paper


Urban water and wastewater infrastructures (UWIS) are an essential part of every city. They manage large flow streams of water, organic substances and nutrients from urban areas. Management of flow streams has a considerable energy demand, while there are large opportunities for energetic reuse of wastewater resources, which are not yet sufficiently exploited. Energetic reuse of wastewater resources can contribute to more sustainable urban energy systems. UWIS are also hot spots for emission of anthropogenic pollutants to the environment. On the way to a sustainable metabolism of cities, restructuring energy systems and reducing emission of anthropogenic pollutants are two important challenges. Both involve UWIS. This paper analyses material and energy flows in UWIS in Germany and explores their contribution to urban metabolism. We conclude by highlighting potential improvements by new technologies.


Flow Stream Anthropogenic Pollutant Sludge Dewatering Substance Flow Analysis Persistent Pollutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agis H (2001) Detailuntersuchung von 21 Anlagen: Energieoptimierung von Kläranlagen. (Detail analysis of energy demand of 21 WWTPs in Austria). Bundesministerium für Land- u. Forstwirtschaft, Umwelt u. Wasserwirtschaft (Environmental Ministry Austria) Accessed on 2012-09–02
  2. 2.
    Ahrens L, Shoeib M, Harner T, Lee SC, Guo R, Reiner EJ.Wastewater treatment plant and landfills as sources of polyfluoroalkyl compounds to the atmosphere. Environ Sci Technol. 2011 Oct 1; 45(19):8098-105. Epub 2011 Apr 5.Google Scholar
  3. 3.
    ATT et al. (eds.) (2011) Profile of the German Water Sector. Association of Drinking Water from Reservoirs (ATT), German Association of Energy and Water Industries (BDEW), German Alliance of Water Management Associations (DBVW), German Technical and Scientific Association for Gas and Water (DVGW), German Association for Water, Wastewater and Waste (DWA), German Association of Local Utilities (VKU), Accessed on 2012-09–02
  4. 4.
    Behrendt H, Bach M, Opitz D, Pagenkopf WG, Scholz G, Wendland F (2003) Internationale Harmonisierung der Quantifizierung von Nährstoffeinträgen aus diffusen und punktuellen Quellen in die Oberflächengewässer Deutschlands. UBA-Texte Nr. 82/2003. Umweltbundesamt, DessauGoogle Scholar
  5. 5.
    Bengtsson M, Lundin M, Molander S (1997) Life cycle assessment of wastewa-ter systems-case studies of conventional treatment, urine sorting and liquid composting in three Swedish municipalities. Report 1997: 9, Technical Environmental Planning, Chalmers University of Technology, Göteborg, Sweden, 1997Google Scholar
  6. 6.
    Bischofsberger W, Dichtl N, Rosenwinkel KH, Seyfried CF, Böhnke B (2005) Anaerobtechnik. Springer Verlag, Berlin, ISBN 978-3-540-06850-06851Google Scholar
  7. 7.
    Destatis (2008) Energieverbrauch der privaten Haushalte 1995 bis 2006. (Energy consumption of private households) Wiesbaden: Statistisches Bundesamt. (Federal Statistical Office) = publicationFile. Accessed on 2012-09–02
  8. 8.
    Destatis (2012) Düngemittelversorgung (Fertilizer supply), Fachserie 4 Reihe 8.2- Wirtschaftsjahr, 2010/2011 Statistisches Bundesamt (Federal Statistical Office), J2040820117004.pdf?__blob=publicationFile. (accessed on 2012-09–02)
  9. 9.
    Dockhorn T (2008) Über die Relevanz der Nährstoffe Stickstoff und Phosphat im Abwasser-eine Bilanz für Deutschland (On the relevance of the nutrients nitrogen and phosphate in wastewater-A mass balance for Germany). Müll und Abfall 2008 9, pp. 444–449Google Scholar
  10. 10.
    DWA (ed.) (2007) Schlammbehandlung, -verwertung und -beseitigung (Management of sewage sludge: treatment, reuse and disposal). WasserWirtschafts-Kurse M/4. Oktober 2007 in Kassel, German Association for Water, Wastewater and Waste, ISBN: 978-3-940173-33Google Scholar
  11. 11.
    DWA (ed.) (2011) Leistungsvergleich kommunaler Kläranlagen (Benchmarking of municipal WTPs) (German Association for Water, Wastewater and Waste)Google Scholar
  12. 12.
    Ekama GA (2009) Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model. Water Res 2009 May; 43(8):2101–2120Google Scholar
  13. 13.
    Gray SR, Becker NSC (2002) Contaminant flows in urban residential water systems. Urban Water 4:331Google Scholar
  14. 14.
    Haberkern B MW, Schneider U (2008) Steigerung der Energieeffizienz auf kommunalen Kläranlagen. (Improvement of energy efficiency at wastewater treatment plants), German Environmental Agency, ISSN 1862–4804Google Scholar
  15. 15.
    Hansen J, Wu K, Kolisch G, Hobus I, Schirmer G (2007) Ökoeffizienz in der Wasserwirtschaft-Steigerung der Energieeffizienz von Abwasseranlagen. Ministerium für Umwelt, Forsten und Verbraucherschutz Rheinland-Pfalz, MainzGoogle Scholar
  16. 16.
    Heidrich ES CTP, Dolfing J (2011) Determination of the Internal Chemical Energy of Wastewater, Environ. Sci Technol 2011, 45(2):827–832. DOI: 10.1021/es103058wGoogle Scholar
  17. 17.
    Henze M GW, Mino T, MCM vanL (2000) Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Techni-cal Report No.9, IWA Publishing, LondonGoogle Scholar
  18. 18.
    Hong J HJ, Otaki M, Jolliet O (2008) Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan Waste Management 29 (2009) 696–703 doi:10.1016/j.wasman.2008.03.026Google Scholar
  19. 19.
    Houillon G, Jolliet O (2005) Life cycle assessment of processes for the treatment of wastewater urban sludge: energy and global warming analysis. Journal of Cleaner Production 13:287–299Google Scholar
  20. 20.
    Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol 2002, 36(6):1202–1211Google Scholar
  21. 21.
    Lal R (2004) Carbon emissions from farm operations. Environ Int 30(2004):981–990Google Scholar
  22. 22.
    Lazarova V CK-H, P C (eds.) (2012) Water-Energy Interactions in Water Reuse. IWA Publishing, ISBN: 9781843395416Google Scholar
  23. 23.
    Lingsten A LM, Hellström D, Balmer P (2008) Description of the current energy use in Sweden (in Swedish). Swedish Water and Wastewater Association SWWA, & link=a & pdf=Rapport_2011-04.pdf (accessed on 2012-09–02)
  24. 24.
    Lundquist TJ WIC, Quinn NWT, Benemann JR (2012) A Realistic Technology and Engineering Assesment of Algae Biofuel Production. California Polytechnic State University: San Luis Obispo, 2010; p 178.
  25. 25.
    Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 2002, 15 pp. 377-390; DOI:10.1023/A:1020238520948Google Scholar
  26. 26.
    Manara P, Zabaniotou A (2012) Towards sewage sludge based biofuels via thermochemical conversion. Renewable and Sustainable Energy Reviews, 2012, vol. 16, issue 5, pages 2566–2582Google Scholar
  27. 27.
    Maurer M SP, Larsen TA (2003) Nutrients in urine: energetic aspects of removal and recovery. Water Science and Technology, Vol 48, No. 1, S. 37-46 (IWA Publishing)Google Scholar
  28. 28.
    Menger-Krug E Niederste-HollenbergJ, Hillenbrand T (2012a) Extended Energy Balance of the Urban Water Chain in Germany. Submitted to Ecological Engineering September 4th 2012Google Scholar
  29. 29.
    Menger-Krug E Niederste-HollenbergJ, Hillenbrand T, Hiessl H (2012b) Integration of Microalgae Systems at Municipal Wastewater Treatment Plants: Implications for Energy and Emission Balances. Environmental Sciences and Technology, Publication Date (Web): October 10, 2012; DOI: 10.1021/es301967yGoogle Scholar
  30. 30.
    Müller EA SF, Stodtmeister W, Kobel B (2009) Heizen und Kühlen mit Abwasser-Ratgeber für Bauträger und Kommunen-Energierückgewinnung aus häuslichem und kommunalem Abwasser, Osnabrück: Deutsche Bundesstiftung UmweltGoogle Scholar
  31. 31.
    MUNLV (2001) Abfälle aus Kläranlagen in Nordrhein-Westfalen. Bericht zur Umwelt. (Sludge from wastewater treatment in Northrhine-Westfalia, Germany). Ministerium für Umwelt und Naturschutz. Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen. (Ministry for the Environment Northrhine-Westfalia, Germany) Bereich Abfall, Band 5, Düsseldorf, Mai 2001Google Scholar
  32. 32.
    Munoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 2006, 40 pp. 2799-2815,; DOI:10.1016/j.watres.2006.06.011Google Scholar
  33. 33.
    Norra S (2009) Environ Sci Pollut Res Int 16(5):539-45 (2009)Google Scholar
  34. 34.
    Olsson G (ed.) (2012) Water and Energy: Threats and Opportunities. IWA Publishing, ISBN: 9781780400266Google Scholar
  35. 35.
    Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Advances in Applied Microbiology 1960, 11 pp. 223-242, DOI:10.1016/S0065-2164(08)70127-8Google Scholar
  36. 36.
    Oswald WJ GO, Lynch L (1953) Algae Symbiosis in Oxidation Ponds. Growth Characteristics of Chlorella pyrenoidosa Cultured in Sewage, 1953, reprinted in Sewage and Industrial Wastes 25:1Google Scholar
  37. 37.
    Park JBK, Craggs RJ (2010) Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Science and Technology 2010 61, pp. 633-639 DOI:10.1016/j.biortech.2010.06.158Google Scholar
  38. 38.
    Park JBK, Craggs RJ (2011) Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Water Science & Technology 2011, 63 (10), pp. 2403–2410 DOI: 10.2166/wst.2011.200Google Scholar
  39. 39.
    Park JBK, Craggs RJ (2011) Nutrient removal in wastewater treatment high rate algal poinds with carbon dioxide addition. Water Science & Technology 2011, 63 (8), pp. 1758–1764 DOI: 10.2166/wst.2011.114Google Scholar
  40. 40.
    Rosso D, Stenstrom MK (2008) The carbon-sequestration potential of municipal wastewater treatment, Chemosphere 2008, Volume 70, Issue 8, doi:10.1016/j.chemosphere.2007.08.057Google Scholar
  41. 41.
    Schmidt et al. (2011) Erstellung der Anwendungsbilanz 2008 für den Sektor Private Haushalte. Endbericht Februar 2011. Forschungsprojekt der Arbeitsgemeinschaft Energiebilanzen, Berlin. Rheinisch-Westfälisches Institut für Wirtschaftsforschung. & filename=RWI_Einzelbericht_Anwendungsbilanz_Haushalte.pdf & mimetype=application/pdf
  42. 42.
    Shizas I, Bagley DM (2004) Experimental determination of energy content of unknown organics in municipal wastewater streams. In: Journal of Energy Engineering-Asce, 130 (2), S. 45–53Google Scholar
  43. 43.
    Stillwell AS HDC, Webber ME (2010) Energy Recovery from Wastewater Treatment Plants in the United States: A Case Study of the Energy-Water Nexus. Sustainability 2010, 2(4), 945–962; doi: 10.3390/su2040945Google Scholar
  44. 44.
    Sturm BSM, Lamer SL (2011) An energy evalua-tion of coupling nutrient removal from wastewa-ter with algal biomass production. Applied En-ergy 2011, 88 (10), pp. 3499–3506. DOI: 10.1016/j.apenergy.2010.12.056Google Scholar
  45. 45.
    Svardal andK (2011) Energy requirements for wastewater treatment. Water Sci Technol 64(6):1355–1361Google Scholar
  46. 46.
    U. S. Department of Energy (2010) National Algal Biofuels Technology Roadmap. (05-2010)
  47. 47.
    UBA (ed.) (2012) Klärschlammentsorgung in der Bundesrepublik Deutschland (sewage sludge disposal in Germany). Umweltbundesamt (Federal Environmental Agency), (accessed on 2012-09-02)
  48. 48.
    Wijffels RH, Barbosa MJ (2010) An Outlook on Microalgal Biofuels. Science 13 August 2010 329 no(5993):796–799. DOI: 10.1126/science.1189003Google Scholar
  49. 49.
    Wolman A (1965) The metabolism of cities. Sci Am 213(3):178–193Google Scholar
  50. 50.
    Zimmerman JB MJR, Smith J (2008) Global stressors on water quality and quantity. Environ Sci Technol 2008, 42(12):4247–4254Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Eve Menger-Krug
    • 1
  • Jutta Niederste-Hollenberg
    • 1
  • Thomas Hillenbrand
    • 1
  1. 1.Fraunhofer-Institut für System- und Innovationsforschung ISIKarlsruheDeutschland

Personalised recommendations