Skip to main content

The Categorical Imperative: Category Theory in Cognitive and Brain Science

  • Chapter
  • First Online:
Book cover A New Foundation for Representation in Cognitive and Brain Science

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 7))

Abstract

In this book is conjectured that category theory could provide the necessary concepts to bridge the gap between the different levels of brain activity: from microscopic neuronal activity, to macroscopic aspects, like for example, emotions or abstract thoughts, which are still imprecisely defined in the psychological literature. Traditionally, mathematical formalisms in cognitive science have been confined to toy model world descriptions (Boden M (1972) What computers can’t do: the limits of artificial intelligence. Harper & Row, New York; Boden M (2006) Mind as machine. Oxford University Press, New York). In the absence of a theory written in mathematical terms, the separation between the different disciplines that form the cognitive sciences, will be progressively more acute and an understanding between them unattainable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the category determined by one poset is not the same than the category of posets Pos

References

  1. Eliot TS (2001) Four quartets: quartet no. 2: east coker. Faber and Faber, London

    Google Scholar 

  2. Jeannerod M (1999) A dichotomous visual brain? Psyche 5. Retrieved October 19, 2013, from www.theassc.org/files/assc/2443.pdf

  3. Sokal A, Bricmont J (1999) Fashionable nonsense: postmodern intellectuals’ abuse of science, 1st edn. Picador, New York

    Google Scholar 

  4. Thompson DW (1992) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  5. Kendrew J (1961) The three-dimensional structure of a protein molecule. Sci Am 205:96–110

    PubMed  CAS  Google Scholar 

  6. Cull P (2007) The mathematical biophysics of nicolas rashevsky. Biosystems 88(3):178–184. BIOCOMP 2005: selected papers presented at the international conference – diffusion processes in neurobiology and subcellular biology, BIOCOMP2006: diffusion processes in neurobiology and subcellular biology

    Google Scholar 

  7. Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J, Korbel JO, Emanuelsson O, Zhang ZD, Weissman S, Snyder M (2007) What is a gene, post-ENCODE? history and updated definition. Genome Res 17(6):669–681. PMID: 17567988

    PubMed  CAS  Google Scholar 

  8. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1–340

    PubMed  CAS  Google Scholar 

  9. Schrödinger E (1944) What is life? Mind and matter. Cambridge University Press, Cambridge

    Google Scholar 

  10. Barr M, Wells C (1997) This is biology: the science of the living world. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  11. Wikipedia () Action potential. http://en.wikipedia.org/wiki/Action_potential

  12. Golubitsky M (2006) Symmetry and neuroscience. Bulletin of the AMS. American Mathematical Society (January 14)

    Google Scholar 

  13. Eilenberg S (Aug 2013) Page Version ID: 566981902

    Google Scholar 

  14. Mac Lane S (Aug 2013) Page Version ID: 550989403

    Google Scholar 

  15. Grothendieck A (Aug 2013) Page Version ID: 566771460

    Google Scholar 

  16. Lawvere W (Aug 2013) Page Version ID: 548025672

    Google Scholar 

  17. Healy J, Caudell T (2006) Ontologies and worlds in category theory: implications for neural systems. Axiomathes 16:165–214

    Google Scholar 

  18. Neuman Y, Nave O (2008) On the semio-mathematical nature of codes. Biosemiotics 1:99–111

    Google Scholar 

  19. Edelman G, Tononi G (2001) Consciousness: how matter becomes Imagination. Penguin, London

    Google Scholar 

  20. (2013) One and Three Chairs. June 2013. Page Version ID: 559080504

    Google Scholar 

  21. Ruth Lawson Otago Polytechnic (2007) Anatomy and physiology of animals relation btw sensory, relay & motor neurons. http://commons.wikimedia.org/wiki/File:Anatomy_and_physiology_of_animals_Relation_btw_sensory,_relay_%26_motor_neurons.jpg

  22. Hubel DH, Wiesel TN (1977) Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond Ser B. Containing papers of a Biological character Royal Society (Great Britain) 198(1130):1–59. PMID: 20635

    CAS  Google Scholar 

  23. Fuhs M, Touretzky D (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci 26:4266–76

    PubMed  CAS  Google Scholar 

  24. Taube J (2009) Head direction cells. Scholarpedia 4(12):1787

    Google Scholar 

  25. Mazzocchi F (2008) Complexity in biology. Exceeding the limits of reductionism and determinism using complexity theory. EMBO Rep 9(1):10–14. PMID: 18174892, PMCID: PMC2246621

    Google Scholar 

  26. Gómez-Ramirez J, Sanz R (2013) On the limitations of standard statistical modeling in biological systems: a full Bayesian approach for biology. Prog Biophys Mol Biol 113(1):80–91

    PubMed  Google Scholar 

  27. Freeman WJ, Kozma R (2010) Freeman’s mass action. Scholarpedia 5(1):8040

    Google Scholar 

  28. Carnap R (1967) The logical structure of the world. Pseudoproblems in philosophy. University of California Press, Berkeley

    Google Scholar 

  29. Kitano H (2002) Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr Genet 41(1):1–10. PMID: 12073094

    PubMed  CAS  Google Scholar 

  30. Strange K (2005) The end of naive reductionism: rise of systems biology or renaissance of physiology? Am J Physiology Cell Physiol 288(5):C968–C974

    CAS  Google Scholar 

  31. Jacrot B (2006) Physique et biologie. Edp Sciences, Les Ulis

    Google Scholar 

  32. Taylor JG (1999) Towards the networks of the brain: from brain imaging to consciousness. Neural Netw 12(7–8):943–959. PMID: 12662638

    PubMed  Google Scholar 

  33. Bower JM (2005) Looking for Newton: realistic modeling in modern biology. In: Bower JM, Beeman D (eds) Special issue on realistic neural modeling - Wam-Bamm ’05 tutorials. Brains, minds and media, vol 1, bmm217

    Google Scholar 

  34. Noble D (2010) Biophysics and systems biology. Philos Trans R Soc A 368(1914):1125–1139

    CAS  Google Scholar 

  35. Brenner S (1999) Theoretical biology in the third millennium. Philos Trans R Soc Lond B 7:1963–1965

    Google Scholar 

  36. Smolin L (2003) The self-organization of space and time. Philos Trans Ser A Math Phys Eng Sci 361(1807):1081–8

    Google Scholar 

  37. Knight J (2002) Bridging the culture gap. Nature 419:244–246

    PubMed  CAS  Google Scholar 

  38. Kuhn T (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  39. Kuhn T (2000) The road since structure: philosophical essays: 1970-1993. University of Chicago Press, Chicago

    Google Scholar 

  40. Gatenby RA, Maini PK (2003) Mathematical oncology: cancer summed up. Nature 421(6921):321. PMID: 12540881

    PubMed  CAS  Google Scholar 

  41. Polger T (2004) Natural minds. MIT, Cambridge

    Google Scholar 

  42. Bechtel W, Mundale J (1999) Multiple realizability revisited: linking cognitive and neural states. Philos Sci 66:175–207

    Google Scholar 

  43. Buzsaki G (2006) Rhythms of the brain. Oxford University Press, Oxford/New York

    Google Scholar 

  44. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations, 1st edn. Wiley, New York

    Google Scholar 

  45. Whishaw I, Vanderwolf C (1973) Hippocampal EEG and behavior: change in amplitude and frequency of RSA (theta rhythm) associated with spontaneous and learned movement patterns in rats and cats. Behav Biol 8(4):461–484

    PubMed  CAS  Google Scholar 

  46. Pare D, Llinas R (1995) Conscious and pre-conscious processes as seen from the standpoint of sleep-waking cycle neurophysiology. Neuropsycholgia 33(9):1155–1168

    CAS  Google Scholar 

  47. Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, New York

    Google Scholar 

  48. Nunez P (2000) Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav Brain Sci 23(3):371–98

    PubMed  CAS  Google Scholar 

  49. Chalmers D (1995) Facing up to the problem of consciousness. J Conscious Stud 2(3):200–219

    Google Scholar 

  50. Fell J (2004) Identifying neural correlates of consciousness: the state space approach. Conscious Cogn 13(4):709–729

    PubMed  Google Scholar 

  51. Feldman J (2009) Ecological expected utility and the mythical neural code. Cogn Neurodyn 4(1):25–35

    PubMed  Google Scholar 

  52. Gómez-Ramirez J (2012) Comments on aur’s “from neuroelectrodynamics to thinking machines”. Cogn Comput 4(4):563–565

    Google Scholar 

  53. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Cornell Aeronaut Lab Psychol Rev 65(6):386–408

    CAS  Google Scholar 

  54. Hodgkin A, Huxley A (1982) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Google Scholar 

  55. Rall W (2009) Rall model. Scholarpedia 4(4):1369

    Google Scholar 

  56. De Schutter E (2008) Why are computational neuroscience and systems biology so separate? PLoS Comput Biol 4(5):e1000078

    PubMed  Google Scholar 

  57. Solinas S, Maex R, De Schutter E (2006) Dendritic amplification of inhibitory postsynaptic potentials in a model Purkinje cell. Eur J Neurosci 23(4):1207–1218

    PubMed  Google Scholar 

  58. Niebur E (2008) Neuronal cable theory. Scholarpedia 3(5):2674

    Google Scholar 

  59. Rall W (2011) Core conductor theory and cable properties of neurons. In: Comprehensive physiology. Wiley

    Google Scholar 

  60. Segev I, London M (2000) Untangling dendrites with quantitative models. Science 290(5492):744–750

    PubMed  CAS  Google Scholar 

  61. Segev I (2006) What do dendrites and their synapses tell the neuron? J Neurophysiol 95(3):1295–1297

    PubMed  Google Scholar 

  62. Gerstner W, Kistler W (2002) Spiking neuron models. Single neurons, populations, plasticity. Cambridge University Press, Cambridge/New York

    Google Scholar 

  63. Bressloff P (2008) A Green’s function approach to analysing the effects of random synaptic background activity in a model neural network. J Phys A Math Gen 27(12):4097

    Google Scholar 

  64. Abbott L (1999) Lapique’s introduction of the integrate-and-fire model neuron. Brain Res Bull 50(5-6):303–304

    PubMed  CAS  Google Scholar 

  65. Dayan P, Abbott L (2002) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT, Cambridge MA

    Google Scholar 

  66. Deco G, Jirsa V, Robinson P, Breakspear M, Friston K (2008) The dynamic brain: From spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4(8):23–37

    Google Scholar 

  67. Gerstner W, Naud R (2009) Neuroscience: how good are neuron models? Science 326(5951):379–380

    PubMed  CAS  Google Scholar 

  68. Meunier C, Segev I (2002) Playing the devil’s advocate: is the Hodgkin-Huxley model useful? Trends Neurosci 25(11):558–63

    PubMed  CAS  Google Scholar 

  69. Herz AVM, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314(5796):80–85

    PubMed  CAS  Google Scholar 

  70. Markram H (2006) The blue brain project. Nature Neurosci 7:153–158

    CAS  Google Scholar 

  71. Davie JT, Kole MHP, Letzkus JJ, Rancz EA, Spruston N, Stuart GJ, HÃusser M (2006) Dendritic patch-clamp recording. Nat Protoc 1(3):1235–1247

    Google Scholar 

  72. von der Malsburg C, Phillips WA, Singer W (eds) (2010) Dynamic coordination in the brain: from neurons to mind. MIT, Cambridge

    Google Scholar 

  73. McCulloch W, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Google Scholar 

  74. Searle J (1980) Minds, brains and programs. Behav Brain Sci 3(3):417–424

    Google Scholar 

  75. Harnad S (1990) The symbol grounding problem. Physica D 42(10):335–346

    Google Scholar 

  76. Cohen PR (2006) If not turing’s test, then what? AI Mag 26(4):335–346

    Google Scholar 

  77. Hoffman W (1998) Are neural networks a good model for cognition? Psycoloquy 9(12). Retrieved from http://www.cogsci.ecs.soton.ac.uk/cgi/psyc/newpsy?9.12

  78. Fodor J, Pylyshyn Z (1983) Connectionism and cognitive architecture: a critical analysis. Cognition 28:3–71

    Google Scholar 

  79. Aizawa K (1995) The role of systematicity argument in classicism and connectionism. In: Ó Nuallaáin S, Mc Kevitt P, Mac Aogáin E (eds) Two sciences of mind: readings in cognitive science and consciousness. John Benjamims B.V, Amsterdam/Philadelphia

    Google Scholar 

  80. Eliasmith C (2007) Attractor network. Scholarpedia 2(10):1380

    Google Scholar 

  81. Izhikevich E (2006) Dynamical systems in neuroscience the geometry of excitability and bursting. MIT, Cambridge

    Google Scholar 

  82. Zhang D, Raichle ME (2010) Disease and the brain’s dark energy. Nat Rev Neurol 6(1):15–28

    PubMed  Google Scholar 

  83. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541. PMID: 8524021

    PubMed  CAS  Google Scholar 

  84. Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853. PMID: 16945915

    PubMed  CAS  Google Scholar 

  85. Fox M, Raichle M (2007) Spontaneous fluctuation in brain activity observed with functional magnetic resonance imaging. Nat Neurosci Rev 8:700–711

    CAS  Google Scholar 

  86. West G, Brown J, Enquist B (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    PubMed  CAS  Google Scholar 

  87. Castellano C, Fortunato S, Loreto V (2009) Statistical physics of social dynamics. Rev Mod Phys 81:591–646

    Google Scholar 

  88. Willems JC (1972) Dissipative dynamical systems part i: General theory. Arch Ration Mech Anal 45(5):321–351

    Google Scholar 

  89. David O, Friston K (2003) A neural mass model for MEG/EEG coupling and neuronal dynamics. NeuroImage 20:102–109

    Google Scholar 

  90. Haskell E, Nykamp DQ, Tranchina D (2001) A population density method for large-scale modeling of neuronal networks with realistic synaptic kinetics. Neurocomputing 38-40:627–632

    Google Scholar 

  91. Breakspear M, Stam C (2005) Dynamics of a neural system with a multiscale architecture. Philos Trans R Soc B (360):1051–1074

    Google Scholar 

  92. Freeman W (1975) Mass action in the nervous system. Academic, New York

    Google Scholar 

  93. Freeman W, Schneider W (1982) Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology 19(1):44–56

    PubMed  CAS  Google Scholar 

  94. Strogatz S, Stewart I (1993) Coupled oscillators and biological synchronization. Sci Am 12(1993):102–109

    Google Scholar 

  95. Frank T, Daffertshofer A, Peper C, Beek P, Haken H (2000) Towards a comprehensive theory of brain activity: coupled oscillator systems under external forces. Physica D 14:62–86

    Google Scholar 

  96. Hoppensteadt F, Izhikevich E (1997) Weakly connected neural networks. Springer, New York

    Google Scholar 

  97. Collins J, Stewart I (1999) Coupled nonlinear oscillators and the symmetries of animal gaits. J Nonlinear Sci 349:349–392

    Google Scholar 

  98. Golubitsky M, Stewart I, Buono PL, Collins J (1999) Symmetry in locomotor central pattern generators and animal gaits. Nature 401:693–695

    PubMed  CAS  Google Scholar 

  99. Buono P, Golubitsky M (2001) Models of central pattern generators for quadruped locomotion. J Math Biol 42(4):291–326

    PubMed  CAS  Google Scholar 

  100. Stewart I (2004) Network opportunities. Nature 427:601–604

    PubMed  CAS  Google Scholar 

  101. Theunissen F, Roddey J, Stufflebeam S, Clague H, Miller J (1996) Information theoretic analysis of dynamical encoding by four primary sensory interneurons in the cricket cercal system. J Neurophysiol 75:1345–1359

    PubMed  CAS  Google Scholar 

  102. Strogatz H (1994) Nonlinear dynamics and chaos. Addison Wesley, Reading

    Google Scholar 

  103. Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, Cambridge/New York

    Google Scholar 

  104. Manor Y, Rinzel J, Segev I, Yarom Y (1997) Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. J Neurophysiol 77:2736–2752

    PubMed  CAS  Google Scholar 

  105. Steriade M, Domich L, Dakson G, Deschenes M (1987) The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol 57:260–273

    PubMed  CAS  Google Scholar 

  106. Caplan JB, Madsen JR, Schulze-Bonhage A, Aschenbrenner-Scheibe R, Newman EL, Kahana MJ (2003) Human theta oscillations related to sensorimotor integration and spatial learning. J Neurosci 23(11):4726–4736. PMID: 12805312

    PubMed  CAS  Google Scholar 

  107. Garcia Dominguez L, Wennberg RA, Gaetz W, Cheyne D, Snead OC 3rd, Perez Velazquez JL (2005) Enhanced synchrony in epileptiform activity? Local versus distant phase synchronization in generalized seizures. J Neurosci 25(35):8077–8084. PMID: 16135765

    PubMed  Google Scholar 

  108. Giaume C, McCarthy KD (1996) Control of gap-junctional communication in astrocytic networks. Trends Neurosci 19(8):319–325

    PubMed  CAS  Google Scholar 

  109. Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23(5):216–222

    PubMed  CAS  Google Scholar 

  110. Boehlen A, Heinemann U, Erchova I (2010) The range of intrinsic frequencies represented by medial entorhinal cortex stellate cells extends with age. J Neurosci 30(13):4585–9

    PubMed  CAS  Google Scholar 

  111. Winfree AT (2001) The geometry of biological time, 2nd edn. Springer, New York

    Google Scholar 

  112. Acebrón JA, Bonilla LL, Pérez Vicente CJ, Ritort F, Spigler R (2005) The kuramoto model: a simple paradigm for synchronization phenomena. Rev Mod Phys 77(1):137–185

    Google Scholar 

  113. Ermentrout GB, Kopell N (1991) Multiple pulse interactions and averaging in systems of coupled neural oscillators. J Math Biol 29(3):195–217

    Google Scholar 

  114. Velazquez J (2007) Brain research: a perspective from the coupled oscillators field. NeuroQuantology 4(2):155–165

    Google Scholar 

  115. Buzsaki G (2010) Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68(3):362–385

    PubMed  CAS  Google Scholar 

  116. Freeman WJ (2008) A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics. Neural Netw 21(2-3):257–265. PMID: 18249088

    PubMed  Google Scholar 

  117. Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nature Neurosci 7(12):1345–1352

    PubMed  CAS  Google Scholar 

  118. Tsuda I (2001) Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24(05):793–810

    PubMed  CAS  Google Scholar 

  119. Friston KJ (2001) Brain function, nonlinear coupling, and neuronal transients. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 7(5):406–418. PMID: 11597100

    CAS  Google Scholar 

  120. Harrison L, David O, Friston K (2005) Stochastic models of neuronal dynamics. Philos Trans R Soc B Biol Sci 360(1457):1075–1091. PMID: 16087449

    CAS  Google Scholar 

  121. Perez Velazquez J (2005) Brain, behaviour and mathematics: are we using the right approaches? Physica D 212:161–182

    Google Scholar 

  122. Griniasty M, Tsodyks M, Amit D (1999) Conversion of temporal correlations between stimuli to spatial correlations between attractors. In: Abbott LF, Sejnowski TJ (eds) Neural codes and distributed representations. MIT, Cambridge

    Google Scholar 

  123. Cossart R, Aromov D, Yuste R (2003) Attractor dynamics of network up states in the neocortex. Nature 423(5723):283–288

    PubMed  CAS  Google Scholar 

  124. Hebb DO (2002) The organization of behavior: a neuropsychological theory, New edn. Psychology Press, Mahwah

    Google Scholar 

  125. Wills TJ, Lever C, Cacucci F, Burgess N, O’Keefe J (2005) Attractor dynamics in the hippocampal representation of the local environment. Science 308(5723):873–876

    PubMed  CAS  Google Scholar 

  126. Lopes da Silva F et al (2003) Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44(12):72–83

    PubMed  Google Scholar 

  127. Babloyantz A, Destexhe A (1986) Low-dimensional chaos in an instance of epilepsy. Babloyantz 83(12):3513–3517

    CAS  Google Scholar 

  128. Titcombe MS et al (2001) Dynamics of Parkinsonian tremor during deep brain stimulation. Chaos 11:766–773

    PubMed  Google Scholar 

  129. Prinz A, Bucher D, Marder (2000) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345–1352

    Google Scholar 

  130. Gómez-Ramirez J, Sanz R (2012) What the escherichia coli tells neurons about learning. In: Simeonov PL, Smith LS, Ehresmann AC (eds) Integral biomathics. Springer, Berlin/Heidelberg, pp 41–55

    Google Scholar 

  131. Mizumori SJY (2008) Hippocampal place fields: relevance to learning and memory, 1st edn. Oxford University Press, New York

    Google Scholar 

  132. Mac Cormac E, Stamenov M (1996) Fractals of brain, fractals of mind: in search of a symmetry bond. John Benjamins B.V., Amsterdam/Philadelphia

    Google Scholar 

  133. Nunn C (2008) From neurons to notions: brains, mind and meaning. Floris Books, Edinburgh

    Google Scholar 

  134. Haken H (1983) Synergetics: an introduction. Springer, Berlin

    Google Scholar 

  135. Haken H (2007) Synergetics. Scholarpedia 2(1):1400

    Google Scholar 

  136. Haken H (2006) Synergetics of brain function. Int J Psychophysiol 60(2):110–124

    PubMed  Google Scholar 

  137. Haken H, Peper C, Beek P, Daffertshofer A (1996) A model for phase transitions in human hand movements during multifrequency tapping. Physica D Nonlinear Phenom 90(1–2): 179–196

    Google Scholar 

  138. Frank T, Daffertshofer A, Peper C, Beek P, Haken H (2000) Towards a comprehensive theory of brain activity: coupled oscillator systems under external forces. Physica D Nonlinear Phenom 144(1–2):62–86

    Google Scholar 

  139. Czaplicka A, Holyst JA, Sloot PMA (2013) Noise enhances information transfer in hierarchical networks. Sci Rep 3:1223

    PubMed  CAS  Google Scholar 

  140. Pellionisz A, Llinás R (1985) Tensor network theory of the metaorganization of functional geometries in the CNS. Neuroscience 16:245–273

    PubMed  CAS  Google Scholar 

  141. Makarenko V, Llinás R (1998) Experimentally determined chaotic phase synchronization in a neuronal system. Proc Natl Acad Sci USA 95:15747–15752

    PubMed  CAS  Google Scholar 

  142. Leznik E, Makarenko V, Llinás R (2002) Electrotonically mediated oscillatory patterns in neuronal ensembles: an in vitro voltage-dependent dye imaging study in the inferior olive. J Neurosci 22(7):2804–2815

    PubMed  Google Scholar 

  143. Roy S, Llinás R (2008) Dynamic geometry, brain function modeling, and consciousness. Prog Brain Res 168:133–144

    PubMed  Google Scholar 

  144. Watts D, Strogatz S (1998) Collective dynamics of ‘small-world’ networks. Nature 393:244–442

    Google Scholar 

  145. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827. PMID: 12399590

    PubMed  CAS  Google Scholar 

  146. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    Google Scholar 

  147. Hopfield J (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79:2554–2558

    PubMed  CAS  Google Scholar 

  148. Eliasmith C (2005) A unified approach to building and controlling spiking attractor networks. Neural Comput 17:1276–1314

    PubMed  Google Scholar 

  149. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Google Scholar 

  150. Jaynes ET (1957) Information theory and statistical mechanics. II. Phys Rev 108:171–190

    Google Scholar 

  151. Schneidman E, Berry MJ, Segev R, Bialek W (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(7087):1007–1012. PMID: 16625187, PMCID: PMC1785327

    Google Scholar 

  152. Kaneko K (1992) Simulating spatiotemporal Chaos with coupled map lattices. In: Miyashita PDS, Imada PDM, Takayama PDH (eds) Computational approaches in condensed-matter physics. Springer, Berlin/Heidelberg, pp 260–271

    Google Scholar 

  153. Kaneko K, Tsuda I (2000) Complex systems: chaos and beyond, a constructive approach with applications in life sciences. Springer, Berlin/New York

    Google Scholar 

  154. Erdos P, Renyi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61

    Google Scholar 

  155. Kozma R (2007) Neuropercolation. Scholarpedia 2(8):1360

    Google Scholar 

  156. Beggs JM (2007) Neuronal avalanche. Scholarpedia 2(1):1344

    Google Scholar 

  157. Beggs J, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23(35):11167–11177

    PubMed  CAS  Google Scholar 

  158. Breskin I et al (2006) Percolation in living neural networks. Phys Rev Lett 97(18):188102

    PubMed  Google Scholar 

  159. Lee SY (ed) (2009) Systems biology and biotechnology of escherichia coli, 2009 edn. Springer, Dordrecht/London

    Google Scholar 

  160. Boden M (1972) What computers can’t do: the limits of artificial intelligence. Harper & Row, New York

    Google Scholar 

  161. Boden M (2006) Mind as machine. Oxford University Press, New York

    Google Scholar 

  162. Lichtman JW, Livet J, Sanes JR (2008) A technicolour approach to the connectome. Nat Rev Neurosci 9:417–422

    PubMed  CAS  Google Scholar 

  163. Lehrer J (2009) Neuroscience: making connections. Nature 457:524–527

    PubMed  CAS  Google Scholar 

  164. Gowers T, Barrow-Green, Leader I (2008) The Princeton companion to mathematics. Princeton University Press, Princeton

    Google Scholar 

  165. Eilenberg S, MacLane S (1945) General theory of natural equivalences. Trans Am Math Soc 58(2):231

    Google Scholar 

  166. Barr M, Wells C (1999) Category theory for computing science. CRM Publications, Montreal.

    Google Scholar 

  167. Mac Lane S (1988) Concepts and categories in perspective. In: Duren P, A century of mathematics in America Part 3. American Mathematical Society, Providence 21:353–365

    Google Scholar 

  168. Pierce B (1991) Arrows, structures, and functors: the categorical imperative. MIT, Cambridge MA

    Google Scholar 

  169. Awodey S (2006) Category theory. Oxford University Press, Oxford/New York

    Google Scholar 

  170. Mac Lane S (1986) Mathematics form and function. Springer, New York

    Google Scholar 

  171. Mac Lane S (1998) Categories for the working mathematician. Springer, New York

    Google Scholar 

  172. Lawvere FW, Schanuel SH (1997) Conceptual mathematics: a first introduction to categories [...] [...]. Cambridge University Press, Cambridge

    Google Scholar 

  173. Arbib M, Manes E (1975) Arrows, structures, and functors: the categorical imperative. Academic, New York

    Google Scholar 

  174. Simmons H (2011) An introduction to category theory. Cambridge University Press, Cambridge/New York

    Google Scholar 

  175. Rydeheard DE, Burstall (1988) Computational category theory, 1st edn. Prentice Hall, New York

    Google Scholar 

  176. Borceux F (2008) Handbook of categorical algebra: volume 1, Basic category theory, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  177. Pareigis B (1970) Categories and functors, 1st edn. Academic, New York

    Google Scholar 

  178. Schalk A, Simmons H (2005) Introduction to category theory in for easy movements. www.cs.man.ac.uk/mfg

  179. Van Heijenoort J (1977) From Frege to Gödel: a source book in mathematical logic, 1879–1931. Harvard University Press, Cambridge/London

    Google Scholar 

  180. Macnamara J (1994) The logical foundations of cognition. Oxford University Press, New York

    Google Scholar 

  181. Hoffman W (2012) The dialectics of mind. J Mind Theory 1(1):1–27

    Google Scholar 

  182. Philips S, Wilson W, Hadford G (2009) What do transitive inference and class inclusion have in common? Categorical (co)products and cognitive development. PLoS Comput Biol 5(12):e1000599

    Google Scholar 

  183. Brown R, Porter T (2003) Category theory and higher dimensional algebra: potential descriptive tools in neuroscience. In: Singh N (ed) Proceedings of the international conference on theoretical neurobiology, Delhi, 2003. National Brain Research Centre, conference proceedings, vol 1, pp 80–92

    Google Scholar 

  184. Ehresmann A, Vanbremeersch JP (2007) Memory evolutive systems; hierarchy, emergence, cognition. Elsevier, Amsterdam/Boston/Paris

    Google Scholar 

  185. Zeeman EC (1962) The topology of the brain and visual perception. Prentice-Hall, New York

    Google Scholar 

  186. Spivak DI, Kent RE (2012) Ologs: a categorical framework for knowledge representation. PLoS ONE 7(1):e24274

    PubMed  CAS  Google Scholar 

  187. Fidaeiro JL (2004) Categories for software engineering. Springer, Berlin Heidelberg

    Google Scholar 

  188. Haskell (programming language) (2013). Page Version ID: 551056925. http://en.wikipedia.org/wiki/Haskell_%28programming_language%29

  189. Scala (programming language) (2013). Page Version ID: 551000017. http://en.wikipedia.org/wiki/Scala_%28programming_language%29

  190. Clojure (2013). Page Version ID: 548200920. http://en.wikipedia.org/wiki/Clojure

  191. Kary M (2009) (Math, science,?). Axiomathes 19:321–339

    Google Scholar 

  192. Simeonov PL (2010) Integral biomathics: a post-Newtonian view into the logos of bios. Prog Biophys Mol Biol 102(2-3):85–121. PMID: 20146929

    PubMed  Google Scholar 

  193. Rosen R (2006) Autobiographical reminiscences of rober rosen. Axiomathes 16:1–23

    Google Scholar 

  194. Letelier JC, Soto-Andrade J, Abarzúa FG, Cornish-Bowden A, Cárdenas ML (2006) Organizational invariance and metabolic closure: analysis in terms of (m,r) systems. J Theor Biol 238(4):949–961

    PubMed  Google Scholar 

  195. Arzi-Gonczarowski Z, Lehmann DJ (1998) From environments to representations: a mathematical theory of artificial perceptions. Artif Intell 102:187–247

    Google Scholar 

  196. Rashevsky N (1967) Organismic sets: outline of a general theory of biological and social organisms. Bull Math Biophys 29(1):139–152

    Google Scholar 

  197. Rashevsky N (1968) Organismic sets: II. Some general considerations. Bull Math Biophys 30(1):163–174

    CAS  Google Scholar 

  198. Healy M (2000) Category theory applied to neural modeling and graphical representations. In: Proceedings of IJCNN 2000, Como. IEEE

    Google Scholar 

  199. Neuman YN, Nave O (2008) A mathematical theory of sign-mediated concept formation. Appl Math Comput 201:72–81

    Google Scholar 

  200. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:370–423

    Google Scholar 

  201. Tamarin RH (2002) Principles of genetics. McGraw-Hill, New York

    Google Scholar 

  202. Gomez J, Sanz R (2009) To cognize is to categorize revisited: category theory is where mathematics meets biology. AAAI fall symposium series, Washigton DC (Online)

    Google Scholar 

  203. Rosch E, Mervis CB (1975) Family resemblances: studies in the internal structure of categories. Cogn Psychol 7:573–605

    Google Scholar 

  204. Rosch E (1978) Cognition and categorization. Erlbaum, Hillsdale

    Google Scholar 

  205. Gómez-Ramirez J (2013) Naturalizing epistemology for autonomous systems. In: Talmont-Kaminski K, Milkowski M (eds) Regarding the mind, naturally: naturalist approaches to the sciences of the mental. Cambridge Scholars Publishing, Newcastle upon Tyne, pp 232–247

    Google Scholar 

  206. Philips S, Wilson WH (2010) Categorial compositionality: a category theory explanation for the systematicity of human cognition. PLoS Comput Biol 6(7):14

    Google Scholar 

  207. Dalton TC (2005) Challenging philosophical assumptions about mind. Trends Cogn Sci 9(8):365–366

    Google Scholar 

  208. Steels L (2006) Experiments on the emergence of human communication. Trends Cogn Sci 10(8):347–349

    PubMed  Google Scholar 

  209. Ramus F (2006) Genes, brain, and cognition: a roadmap for the cognitive scientist. Cognition 101(2):247–269

    PubMed  Google Scholar 

  210. Banerjee K, Bloom P (2013) Would Tarzan believe in God? Conditions for the emergence of religious belief. Trends Cogn Sci 17(1):7–8

    PubMed  Google Scholar 

  211. Shiffrin RM (2010) Perspectives on modeling in cognitive science. Top Cogn Sci 2(4):736–750

    Google Scholar 

  212. Koblitz N (1988) A tale of three equations; or the emperors have no clothes. Math Intell 10(1):4–10

    Google Scholar 

  213. Huntington S (1968) Political order in changing societies. Yale University Press, New Haven

    Google Scholar 

  214. Brown J (1999) Philosophy of mathematics: an introduction to the world of proofs and pictures. Routledge, London/New York

    Google Scholar 

  215. Koblitz N (1981) Mathematics as propaganda. In: Steen DLA (ed) Mathematics tomorrow. Springer, New York, pp 111–120

    Google Scholar 

  216. Wille R, Wille U (1993) On the controversy over huntington’s equations: when are such equations meaningful? Math Soc Sci 25(2):173–180

    Google Scholar 

  217. Changeaux JP, Connes A (2000) Matière à pensée. Odile Jacob, Paris

    Google Scholar 

  218. Nagel E (1979) The structure of science: problems in the logic of scientific explanation. Hacket Publishing, Indianapolis

    Google Scholar 

  219. Bunge M (1969) La Investigación Científica. Ariel España, Barcelona

    Google Scholar 

  220. Bunge M (2003) Emergence and convergence: qualitative novelty and the unity of knowledge. University of Toronto Press, Toronto

    Google Scholar 

  221. Bunge M (1979) Some topical problems in biophilosophy. J Soc Biol Syst 2(2):155–172

    Google Scholar 

  222. Ahn AC, Tewari M, Poon CS, Phillips RS (2006) The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Med 3(6):e208

    PubMed  Google Scholar 

  223. Gómez-Ramirez J, Wu J (2012) A new vision for biomedicine: a systems approach. In: 2012 ICME international conference on complex medical engineering (CME), Kobe, pp 479–484

    Google Scholar 

  224. Courant R, Robbins H, Stewart I (eds) (1996) What is mathematics? An elementary approach to ideas and methods. Oxford University Press, New York

    Google Scholar 

  225. Bohm D (2002) The essential David Bohm. Routledge, London

    Google Scholar 

  226. Dehaene E (2007) A few steps toward a science of mental life. Mind Brain Educ 1(1):28–47

    Google Scholar 

  227. Luce R (1995) Four tensions concerning mathematical modeling in psychology. Annu Rev Psychol 46:1–26

    PubMed  CAS  Google Scholar 

  228. van Dalen D (1997) How connected is the intuitionistic continuum? J Symb Log 62(4):1147–1150

    Google Scholar 

  229. Fodor J (1983) The modularity of mind. MIT, Cambridge

    Google Scholar 

  230. Shannon CE, Weaver W (1949) The mathematical theory of communication, vol 27. University of Illinois Press, Urbana

    Google Scholar 

  231. Kandel E (2000) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  232. Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) (2006) The Hippocampus book, 1st edn. Oxford University Press, New York

    Google Scholar 

  233. Squire L, Berg D, Bloom FE, Lac Sd, Ghosh A, Spitzer NC (eds) (2012) Fundamental neuroscience, 4th edn. Academic, Oxford

    Google Scholar 

  234. Moore GP, Perkel DH, Segundo JP (1966) Statistical analysis and functional interpretation of neuronal spike data. Annu Rev Physiol 28(1):493–522. PMID: 5323104

    PubMed  CAS  Google Scholar 

  235. Borst A, Theunissen FE (1999) Information theory and neural coding. Nat Neurosci 2(11):947–957

    PubMed  CAS  Google Scholar 

  236. Rolls E (2007) Memory, attention, and decision-making: a unifying computational neuroscience approach, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  237. Wang P (2007) Three fundamental misconceptions of artificial intelligence. J Exp Theor Artif Intell 19(3):249–268

    Google Scholar 

  238. Bays T (2012) Skolem’s paradox. In: Zalta EN (ed) The Stanford encyclopedia of philosophy, winter 2012. http://plato.stanford.edu/archives/win2012/entries/paradox-skolem/

  239. Longo G (1997) Mathematical intelligence, infinity and machines: beyond the godelitis. J Conscious Stud 6:191–214

    Google Scholar 

  240. Dive LL (2003) An epistemic structuralist account of mathematical knowledge. PhD thesis, Department of Philosophy, Faculty of Arts, University of Sydney

    Google Scholar 

  241. Petitot J et al (1999) Naturalizing phenomenology: issues in contemporary phenomenology and cognitive science. Stanford University Press, Stanford

    Google Scholar 

  242. Arbib MA (1972) The metaphorical brain: introduction to cybernetics as artificial intelligence and brain theory, 1st edn. Wiley, New York

    Google Scholar 

  243. Pulvermüller F (1996) How and where are words represented and processed in the brain? In: International workshop on language, brain and verbal behavior: neurobiological aspects of linguistic capacities and language processing, Barcelona. Institut d’Estudis Catalans, pp 63–75

    Google Scholar 

  244. Feldman J (2008) From molecule to metaphor: a neural theory of language, 1st edn. A Bradford Book. The MIT Pess, Cambridge MA

    Google Scholar 

  245. Feldman J, Lakoff G, Bailey D, Narayanan S, Regier T, Stolcke A (1996) L0 – the first five years of an automated language acquisition project. Artif Intell Rev 10(1-2):103–129

    Google Scholar 

  246. Salthe S (2004) The spontaneous origin of new levels in a scalar hierarchy. Entropy 6:327–343

    Google Scholar 

  247. Salthe S (2009) A hierarchical framework for levels of reality: understanding through representation. Axiomathes (19):87–99

    Google Scholar 

  248. Baas N, Emmeche C (1997) On emergence and explanation. Intellectica (25):67–83

    Google Scholar 

  249. Putnam H (1981) Reason, truth and history. Cambridge University Press, Cambridge

    Google Scholar 

  250. Dummett M (2006) Thought and reality. Oxford University Press, New York

    Google Scholar 

  251. Holland J (1999) Emergence: from chaos to order. Basic Books, New York

    Google Scholar 

  252. Chalmers DJ (2007) Consciousness and its place in nature. In: Stich SP, Warfield TA (eds) The Blackwell guide to philosophy of mind. Blackwell, Malden, pp 102–142

    Google Scholar 

  253. Mack G (1996) Gauge theory of things alive: universal dynamics as a tool in parallel computing. Prog Theor Phys Suppl 122:201–212

    Google Scholar 

  254. Thom R (1988) Esquisse d’une sémiophysique. InterEditions, Paris

    Google Scholar 

  255. Mccarthy J, Hayes PJ (1969) Some philosophical problems from the standpoint of artificial intelligence. In: Michie D, Meltzer B (eds) Machine intelligence. Edinburgh University Press, Edinburgh, pp 463–502

    Google Scholar 

  256. Shanahan M (1997) Solving the frame problem: a mathematical investigation of the common sense law of inertia. MIT, Cambridge

    Google Scholar 

  257. Baianu IC et al (2007) Categorical ontology of complex spacetime structures: the emergence of life and human consciousness. Axiomathes (17):223–352

    Google Scholar 

  258. James W (1890) The principles of psychology. Henry Holt, New York

    Google Scholar 

  259. Rosen R (1985) Organisms as causal systems which are not mechanisms: an essay into the nature of complexity’. In: Rosen R (ed) Theoretical biology and complexity. Academic, Orlando, pp 165–203

    Google Scholar 

  260. Ehresmann AC, Vanbremeersch JP (2006) The memory evolutive systems as a model of Rosenâs organisms â (metabolic, replication) systems. Axiomathes 16(1–2):137–154

    Google Scholar 

  261. Pawlowitsch C (2008) Why evolution does not always lead to an optimal signaling system. Games Econ Behav 63:203–226

    Google Scholar 

  262. Wagner A (2007) Robustness and evolvability in living systems. Princeton University Press, Princeton/Woodstock

    Google Scholar 

  263. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397(6715):168–171

    PubMed  CAS  Google Scholar 

  264. Wagner A (2000) Robustness against mutations in genetic networks of yeast. Nat Genet 24(4):355–361. PMID: 10742097

    PubMed  CAS  Google Scholar 

  265. Ay N, Krakauer DC (2007) Geometric robustness theory and biological networks. Theory Biosci (Theorie in den Biowissenschaften) 125:93–121

    Google Scholar 

  266. Tononi O Gand Sporns, Edelman G (1999) Measures of degeneracy and redundancy in biological networks. Proc Natl Acsd Sci 96(6):3257–3262

    CAS  Google Scholar 

  267. Holland JH (1999) Emergence: from chaos to order. Perseus Books, Reading

    Google Scholar 

  268. Zee A (2007) Fearful symmetry: the search for beauty in modern physics. Princeton Science Library, Princeton

    Google Scholar 

  269. Derrida J, Roudinesco E (2004) For what tomorrow: a dialogue. Stanford University Press, Stanford

    Google Scholar 

  270. Livingston E (1999) Cultures of proving. Soc Stud Sci 29(6):867–888

    Google Scholar 

  271. Miller GA (2007) Charge densities of the neutron and proton. Phys Rev Lett 99(11):112001

    PubMed  Google Scholar 

  272. Elasser W (1958) The physical fundation of biology. Pergamon Press, London

    Google Scholar 

  273. Katz M (1986) Templets and complet patterns. Cambridge University Press, Cambridge MA

    Google Scholar 

  274. Arbib MA, Hesse MB (1986) The construction of reality. Cambridge University Press, Cambridge/New York

    Google Scholar 

  275. Corry L (2004) Modern algebra and the rise of mathematical structures, 2nd edn. Birkhauser, Basel/Boston

    Google Scholar 

  276. Shapiro S (1996) Space, number and structure: a tale of two debates. Philos Math 4(3):148–173

    Google Scholar 

  277. Skyttner L (2006) General systems theory: problems, perspectives, practice. World Scientific, Singapore

    Google Scholar 

  278. Alon U (2006) An introduction to systems biology: design principles of biological circuits, 1st edn. Chapman and Hall/CRC, Boca Raton/London

    Google Scholar 

  279. Palsson BO (2006) Systems biology: properties of reconstructed networks, 1st edn. Cambridge University Press, Cambridge/New York

    Google Scholar 

  280. Mac Lane S (2006) Category theory as a framework for an in re interpretation of mathematical structuralism. Cah Topol Geom 21:163–179

    Google Scholar 

  281. Landry E (1998) Category theory: the language of mathematics. Philos Sci 66:14–27

    Google Scholar 

  282. Baez JC (1997) An introduction to n-categories. In: Moggi E, Rosolini G (eds) Category theory and computer science. No. 1290 in lecture notes in computer science. Springer, Berlin/Heidelberg, pp 1–33

    Google Scholar 

  283. Shapiro S (1996) Structure in mathematics and logic: a categorical perspective. Philos Math 4(4):209–237

    Google Scholar 

  284. Dragoi G, Tonegawa S (2011) Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469(7330):397–401

    PubMed  CAS  Google Scholar 

  285. Goodrich R (1988) An agent-based conception of models and scientific representation. Br J Aesthet 28(1):48–58

    Google Scholar 

  286. Swoyer C (1991) Structural representation and surrogative reasoning. Synth 87(3):449–508

    Google Scholar 

  287. Teller P (2001) Twilight of the perfect model. Erkenntnis 55(3):393–415

    Google Scholar 

  288. Suarez M (2003) Scientific representation: against similarity and isomorphism. Int Stud Philos Sci 17(3):225–244

    Google Scholar 

  289. Carver C (2006) When mechanistic models explain. Synthese 153:355–376

    Google Scholar 

  290. Woodward J (2005) Making things happen: a theory of causal explanation. Oxford University Press, New York/Oxford

    Google Scholar 

  291. Giere RN (1990) Explaining science: a cognitive approach. University of Chicago Press, Chicago

    Google Scholar 

  292. Giere RN (1999) Science without laws. University of Chicago Press, Chicago

    Google Scholar 

  293. Giere R (2010) An agent-based conception of models and scientific representation. Synthese 172(2):269–281

    Google Scholar 

  294. Shapiro S (2000) Thinking about mathematics. Oxford University Press, New York

    Google Scholar 

  295. Shapiro S (2005) Oxford handbook of the philosophy of mathematics and logic. Oxford University Press, Oxford/New York

    Google Scholar 

  296. Birkhoff G, Mac Lane S (1946) A survey of modern algebra. Macmillan, New York

    Google Scholar 

  297. Geroch R (1985) Mathematical physics. University of Chicago Press, Chicago

    Google Scholar 

  298. Bonsignorio F (2010) On the stochastic stability and observability of controlled serial kinematic chains. In: Proceedings of the ASME 2010 10th biennial conference on engineering systems design and analysis ESDA2010, Turkey

    Google Scholar 

  299. von Helmholtz H (2005) Treatise on physiological optics. Dover, Mineola

    Google Scholar 

  300. Poincaré H (1952) Science and hypothesis. Dover, New York

    Google Scholar 

  301. Grant G (2007) How the 1906 Nobel Prize in physiology or medicine was shared between Golgi and Cajal. Brain Res Rev 55(2):490–498

    PubMed  CAS  Google Scholar 

  302. Shepard RN, Chipman S (1970) Second-order isomorphism of internal representations: shapes of states. Cogn Psychol 1(1):1–17

    Google Scholar 

  303. Edelman S (1998) Representation is representation of similarities. Behav Brain Sci 21(4):449–467; discussion 467–498. PMID: 10097019

    Google Scholar 

  304. Churchland P (1986) Neurophilosophy toward a unified science of the mind-brain. MIT, Cambridge

    Google Scholar 

  305. Wiltschko W, Wiltschko R (1996) Collective dynamics of ‘small-world’ networks. J Exp Biol 199(1):29–38

    PubMed  Google Scholar 

  306. Gray H, Standring S (2008) Gray’s anatomy: the anatomical basis of clinical practice, 40th edn. Churchill-Livingstone, Elsevier

    Google Scholar 

  307. Yildirim FB, Sarikcioglu L (2007) Marie Jean Pierre Flourens (1794–1867): an extraordinary scientist of his time. J Neurol Neurosurg Psychiatry 78(8):852. 17635978, PMCID: PMC2117745

    Google Scholar 

  308. York GK, Steinberg DA (2011) Hughlings Jackson’s neurological ideas. Brain 134(10):3106–3113. PMID: 21903729

    PubMed  Google Scholar 

  309. Finger S (2001) Origins of neuroscience: a history of explorations into brain function. Oxford University Press, New York

    Google Scholar 

  310. Lashley K, Clark G (1946) The cytoarchitecture of the cerebral cortex of Ateles: a critical examination of the architectoic studies. J Comp Neurol 85:223–305

    PubMed  CAS  Google Scholar 

  311. Wernicke C (1908) The symptom-complex of aphasia. Appleton, New York

    Google Scholar 

  312. Dykes RW, Ruest A (1986) What makes a map in somatosensory cortex? In: Jones EG, Peters A (eds) Sensory-motor areas and aspects of cortical connectivity. No. 5 in cerebral cortex, Springer, Boston, pp 1–29

    Google Scholar 

  313. Smith CUM (2008) Elementary units of cortical activity? The rise and fall of the cortical column. In: 12th annual meeting of the international society for the history of the neurosciences, Los Angeles

    Google Scholar 

  314. Mountcastle V (1997) The columnar organization of the cerebral cortex. Brain 120:701–722

    PubMed  Google Scholar 

  315. Casanova MF (ed) (2005) Neocortical modularity and the cell minicolumn. Nova Biomedical Books, New York

    Google Scholar 

  316. Horton J, Adams D (2005) The cortical column: a structure without a function. Philos Trans R Soc B 360(1456):837–862

    Google Scholar 

  317. Blasdel G, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585

    PubMed  CAS  Google Scholar 

  318. Rakic P (1995) Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc Natl Acad USA Sci 92(11):323–327

    Google Scholar 

  319. Rakic P (2000) Radial unit hypothesis of neocortical expansion. Novartis Found Symp 228:30–42; discussion 42–52. PMID: 10929315

    Google Scholar 

  320. Bressler S, Tognoli E (2006) Operational principles of neurocognitive networks. Int J Psychophysiol 60:139–148

    PubMed  Google Scholar 

  321. Fuster J (2000) The module: crisis of a paradigm (book review, “the new cognitive neurosciences” 2nd edn, M.S. Gazzaniga, editor-in-chief, MIT Press). Neuron (26):51–53

    Google Scholar 

  322. Bechtel W (2001) The compatibility of complex systems and reduction: a case analysis of memory research. Minds Mach 11:83–502

    Google Scholar 

  323. Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2(3):155–168. PMID: 18628911

    PubMed  CAS  Google Scholar 

  324. White J et al (1983) Factors that determine connectivity in the nervous system of Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 48(Pt 2):633–640

    PubMed  Google Scholar 

  325. Smith J, Ellenberger H, Ballanyi K, Richter D, Feldman J (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254(5032):726–729

    PubMed  CAS  Google Scholar 

  326. Horwitz B (2003) The elusive concept of brain connectivity. NeuroImage 19(2):466–470

    PubMed  Google Scholar 

  327. Rodriguez P (2009) Neural decoding of goal locations in spatial navigation in humans with fMRI. Human Brain Mapp 31(3):3391–3397

    Google Scholar 

  328. Sharp D, Awad M, Warren J, Wise R, Vigliocco G, Scott S (2009) The neural response to changing semantic and perceptual complexity during language processing. Human Brain Mapp 31(3):365–377

    Google Scholar 

  329. Summerfield C, Egner T, Mangels J, Hirsch J (2006) Mistaking a house for a face: neural correlates of misperception in healthy humans. Cereb Cortex 16:500–508

    PubMed  Google Scholar 

  330. Marian V, Shildkrot Y, Blumenfeld H, Kaushanskaya M, Faroqi-Shah Y, Hirsch J (1996) Cortical activation during word processing in late bilinguals: similarities and differences as revealed by functional magnetic resonance imaging. J Clin Exp Neuropsychol 29(3):247–265

    Google Scholar 

  331. Friston KJ (2009) Modalities, modes, and models in functional neuroimaging. Science 326(5951):399–403. PMID: 19833961

    PubMed  CAS  Google Scholar 

  332. Friston KJ, Price CJ (2011) Modules and brain mapping. Cogn Neuropsychol 28(3–4): 241–250. PMID: 21416411, PMCID: PMC3335279

    Google Scholar 

  333. Muniz de Rezende A (1975) Le point de départ dans la philosophie de merleau-ponty. Revue Philosophique de Louvain 73(19):451–480

    Google Scholar 

  334. Bakker B (2005) The concept of circular causality should be discarded. Commentary on marc D. Lewis: Bridging emotion theory and neurobiology through dynamic system modeling. Behav Brain Sci 28:195–196

    Google Scholar 

  335. Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3):424–38

    Google Scholar 

  336. Seth AK (2008) Causal networks in simulated neural systems. Cogn Neurodyn 2(1):49–64

    PubMed  Google Scholar 

  337. Fuster JM (2005) Cortex and mind: unifying cognition, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  338. Bressler SL (2007) The formation of global neurocognitive state. In: Perlovsky LI, Kozma R (eds) Neurodynamics of cognition and consciousness, understanding complex systems. Springer, Berlin/Heidelberg, pp 61–72

    Google Scholar 

  339. Freeman W (2000) Neurodynamics: an exploration in mesoscopic brain dynamics, 1st edn. Springer, London/New York

    Google Scholar 

  340. Goebel R, Linden DE, Lanfermann H, Zanella FE, Singer W (1998) Functional imaging of mirror and inverse reading reveals separate coactivated networks for oculomotion and spatial transformations. Neuroreport 9(4):713–719. PMID: 9559944

    PubMed  CAS  Google Scholar 

  341. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22(7):1326–1333. PMID: 11498421

    PubMed  CAS  Google Scholar 

  342. Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13(1):5–14. PMID: 8417010

    PubMed  CAS  Google Scholar 

  343. Comon P (1994) Independent component analysis, a new concept? Signal Process 36(3):287–314

    Google Scholar 

  344. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159. PMID: 7584893

    PubMed  CAS  Google Scholar 

  345. Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4-5):411–430. PMID: 10946390

    PubMed  CAS  Google Scholar 

  346. Stone JV (2002) Independent component analysis: an introduction. Trends Cogn Sci 6(2):59–64

    PubMed  Google Scholar 

  347. McKeown MJ, Hansen LK, Sejnowsk TJ (2003) Independent component analysis of functional MRI: what is signal and what is noise? Curr Opin Neurobiol 13(5):620–629. PMID: 14630228

    PubMed  CAS  Google Scholar 

  348. van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DEJ (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Human Brain Mapp 22(3):165–178. PMID: 15195284

    Google Scholar 

  349. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond Ser B Biol Sci 360(1457):1001–1013. PMID: 16087444

    Google Scholar 

  350. Friston KJ (1998) Modes or models: a critique on independent component analysis for fMRI. Trends Cogn Sci 2(10):373–375

    PubMed  CAS  Google Scholar 

  351. He Y, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23(4):341–350. PMID: 20581686

    PubMed  Google Scholar 

  352. Erdös P, Rényi A (1960) On the evolution of random graphs. In: Publ Math Inst Hung Acad Sci 5:17–61

    Google Scholar 

  353. Schöner G, Kelso JA (1988) Dynamic pattern generation in behavioral and neural systems. Science (New York, NY) 239(4847):1513–1520. PMID: 3281253

    Google Scholar 

  354. Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior [...] [...]. MIT, Cambridge

    Google Scholar 

  355. Kelso JAS (2012) Multistability and metastability: understanding dynamic coordination in the brain. Philos Trans R Soc B Biol Sci 367(1591):906–918. PMID: 22371613, PMCID: PMC3282307

    Google Scholar 

  356. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(6761 Suppl):C47–C52. PMID: 10591225

    PubMed  CAS  Google Scholar 

  357. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555. PMID: 12202830

    PubMed  CAS  Google Scholar 

  358. Humphries M, Gurney K, Prescott T (2006) The brainstem reticular formation is a small-world, not scale-free, network. Proc R Soc B Biol Sci 273(1585):503–511. PMID: 16615219, PMCID: PMC1560205

    Google Scholar 

  359. Vaessen MJ, Hofman PAM, Tijssen HN, Aldenkamp AP, Jansen JFA, Backes WH (2010) The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures. NeuroImage 51(3):1106–1116. PMID: 20226864

    PubMed  CAS  Google Scholar 

  360. Honey CJ, Thivierge JP, Sporns O (2010) Can structure predict function in the human brain? NeuroImage 52(3):766–776. PMID: 20116438

    PubMed  Google Scholar 

  361. Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci 91(11):5033–5037

    PubMed  CAS  Google Scholar 

  362. Sporns O, Tononi G, Edelman GM (1991) Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. Proc Natl Acad Sci USA 88(1):129–133. PMID: 1986358

    PubMed  CAS  Google Scholar 

  363. Srinivasan R, Russell DP, Edelman GM, Tononi G (1999) Increased synchronization of neuromagnetic responses during conscious perception. J Neurosci 19(13):5435–5448. PMID: 10377353

    PubMed  CAS  Google Scholar 

  364. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239

    PubMed  CAS  Google Scholar 

  365. Ermentrout B (1998) Neural networks as spatio-temporal pattern-forming systems. Rep Prog Phys 61(4):353

    Google Scholar 

  366. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72. PMID: 16399673

    PubMed  CAS  Google Scholar 

  367. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342. PMID: 15635061

    PubMed  Google Scholar 

  368. Salvador R, Anguera M, Gomar JJ, Bullmore ET, Pomarol-Clotet E (2010) Conditional mutual information maps as descriptors of net connectivity levels in the brain. Front Neuroinform 4:115

    PubMed  Google Scholar 

  369. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    PubMed  Google Scholar 

  370. Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703

    Google Scholar 

  371. Stumpf MPH, Porter MA (2012) Critical truths about power laws. Science 335(6069):665–666. PMID: 22323807

    PubMed  CAS  Google Scholar 

  372. Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, Cambridge/New York

    Google Scholar 

  373. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701

    PubMed  CAS  Google Scholar 

  374. Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7(7):e1000157

    PubMed  Google Scholar 

  375. Travers J, Milgram S (1969) An experimental study of the small world problem. Sociometry 32(4):425

    Google Scholar 

  376. Albert R, Jeong H, Barabási AL (1999) Internet: diameter of the world-wide web. Nature 401(6749):130–131

    CAS  Google Scholar 

  377. Schmitt JE, Lenroot RK, Wallace GL, Ordaz S, Taylor KN, Kabani N, Greenstein D, Lerch JP, Kendler KS, Neale MC, Giedd JN (2008) Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cereb Cortex (New York, NY: 1991) 18(8):1737–1747. PMID: 18234689

    CAS  Google Scholar 

  378. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex (New York, NY: 1991) 17(10):2407–2419. PMID: 17204824

    Google Scholar 

  379. Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442

    PubMed  CAS  Google Scholar 

  380. Kleinberg JM (2000) Navigation in a small world. Nature 406(6798):845–845

    PubMed  CAS  Google Scholar 

  381. Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2(2): 145–162. PMID: 15319512

    PubMed  Google Scholar 

  382. Yu S, Huang D, Singer W, Nikolic D (2008) A small world of neuronal synchrony. Cereb Cortex (New York, NY: 1991) 18(12):2891–2901. PMID: 18400792

    Google Scholar 

  383. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523

    PubMed  Google Scholar 

  384. Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4(6):e1000100. PMID: 18584043, PMCID: PMC2435273

    Google Scholar 

  385. Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T (2008) Disrupted small-world networks in schizophrenia. Brain J Neurol 131(Pt 4):945–961. PMID: 18299296

    Google Scholar 

  386. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, Luo C, Lu G, Chen H (2010) Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS ONE 5(1):e8525

    PubMed  Google Scholar 

  387. Costa LF, Rodrigues F, Travieso G, Boas V (2006) Characterization of complex networks: a survey of measurements. Adv Phys 56(1):167–242

    Google Scholar 

  388. Costa LF, Silva FN (2006) Hierarchical characterization of complex networks. J Stat Phys 125(4):841–872

    Google Scholar 

  389. Whitacre J, Bender A (2010) Degeneracy: a design principle for achieving robustness and evolvability. J Theor Biol 263(1):143–153. PMID: 19925810

    PubMed  Google Scholar 

  390. Stevens AA, Tappon SC, Garg A, Fair DA (2012) Functional brain network modularity captures inter- and intra-individual variation in working memory capacity. PLoS ONE 7(1):e30468

    PubMed  CAS  Google Scholar 

  391. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349

    PubMed  CAS  Google Scholar 

  392. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198. PMID: 19190637

    PubMed  CAS  Google Scholar 

  393. Vaessen MJ, Hofman PAM, Tijssen HN, Aldenkamp AP, Jansen JFA, Backes WH (2010) The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures. NeuroImage 51(3):1106–1116. PMID: 20226864

    PubMed  CAS  Google Scholar 

  394. Deuker L, Bullmore ET, Smith M, Christensen S, Nathan PJ, Rockstroh B, Bassett DS (2009) Reproducibility of graph metrics of human brain functional networks. NeuroImage 47(4):1460–1468. PMID: 19463959

    PubMed  Google Scholar 

  395. Hayasaka S, Laurienti PJ (2010) Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. NeuroImage 50(2):499–508. PMID: 20026219

    PubMed  Google Scholar 

  396. Kaiser M, Martin R, Andras P, Young MP (2007) Simulation of robustness against lesions of cortical networks. Eur J Neurosci 25(10):3185–3192.

    PubMed  Google Scholar 

  397. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62(1):42–52. PMID: 19376066

    PubMed  CAS  Google Scholar 

  398. Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS, Rombouts SARB, Maris E, Barkhof F, Scheltens P, Stam CJ (2010) Loss of ‘small-world’ networks in Alzheimer’s disease: graph analysis of FMRI resting-state functional connectivity. PloS One 5(11):e13788. PMID: 21072180

    PubMed  Google Scholar 

  399. Sporns O, Kötter R (2004) Motifs in brain networks. PLoS Biol 2(11):e369

    PubMed  Google Scholar 

  400. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    PubMed  CAS  Google Scholar 

  401. Cook SA (1971) The complexity of theorem-proving procedures. In: Proceedings of the third annual ACM symposium on theory of computing, STOC’71, Shaker Heights. ACM, New York, pp 151–158

    Google Scholar 

  402. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    PubMed  Google Scholar 

  403. Artzy-Randrup Y, Fleishman SJ, Ben-Tal N, Stone L (2004) Comment on network motifs: simple building blocks of complex networks and superfamilies of evolved and designed networks. Science 305(5687):1107–1107. PMID: 15326338

    PubMed  CAS  Google Scholar 

  404. Ingram PJ, Stumpf MP, Stark J (2006) Network motifs: structure does not determine function. BMC Genomics 7(1):108. PMID: 16677373

    PubMed  Google Scholar 

  405. Knabe JF, Nehaniv CL, Schilstra MJ (2008) Do motifs reflect evolved function?–no convergent evolution of genetic regulatory network subgraph topologies. Bio Syst 94(1-2):68–74. PMID: 18611431

    Google Scholar 

  406. Hell P, Nesetril J (2004) Graphs and homomorphisms. Oxford University Press, Oxford/New York

    Google Scholar 

  407. Widom B, Rowlinson JS (1970) New model for the study of Liquid-Vapor phase transitions. J Chem Phys 52(4):1670–1684

    CAS  Google Scholar 

  408. Dyer M, Greenhill C (1999) The complexity of counting graph homomorphisms. In: 11th ACM/SIAM symposium on discrete algorithms. Press, San Francisco, pp 246–255

    Google Scholar 

  409. Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276

    PubMed  CAS  Google Scholar 

  410. Newman MEJ (2000) Models of the small world. J Stat Phys 101(3-4):819–841

    Google Scholar 

  411. Ehresmann A (1997) Colimits in free categories. Diagrammes 37:3–12

    Google Scholar 

  412. Mahalanobis PC (1936) On the generalised distance in statistics. Proc Natl Inst Sci India 2(1):49–55. Retrieved 2012-05-03

    Google Scholar 

  413. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826. PMID: 12060727

    PubMed  CAS  Google Scholar 

  414. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582. PMID: 16723398

    PubMed  CAS  Google Scholar 

  415. Onnela JP, Saramäki J, Kertész J, Kaski K (2005) Intensity and coherence of motifs in weighted complex networks. Phys Rev E Stat Nonlinear Soft Matter Phys 71(6 Pt 2):065103. PMID: 16089800

    Google Scholar 

  416. Song C, Havlin S, Makse HA (2005) Self-similarity of complex networks. Nature 433(7024):392–395

    PubMed  CAS  Google Scholar 

  417. Kant I, Weigelt M, Müller FM (2007) Critique of pure reason. Penguin, London/New York

    Google Scholar 

  418. Polger T (1949) Philosophy of mathematics and natural science. Princeton University Press, Princeton

    Google Scholar 

  419. Hull CL (1952) A behaviour system: an introduction to behavior theory concerning the individual organism. Yale University Press, New Haven

    Google Scholar 

  420. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, New York

    Google Scholar 

  421. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175. PMID: 5124915

    Google Scholar 

  422. Milford MJ (2008) Robot navigation from nature. Springer, Berlin

    Google Scholar 

  423. Redish A (2001) The hippocampal debate: are we asking the right questions? Behav Brain Res 127(935):81–98

    PubMed  CAS  Google Scholar 

  424. Tolman E (1948) Cognitive maps in rats and men. Psychol Rev 55(4):189–208

    PubMed  CAS  Google Scholar 

  425. Muller R, Kubie J, Ranck J (1987) Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J Neurosci 7:1935–1950

    PubMed  CAS  Google Scholar 

  426. Fyhn M, Molden S, Witter M, Moser E, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264

    PubMed  CAS  Google Scholar 

  427. Hafting T, Fyhn M, Molden S, Moser MB, Moser E (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    PubMed  CAS  Google Scholar 

  428. Moser E, Kropff E, Moser M (2008) Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci 31:69–89

    PubMed  CAS  Google Scholar 

  429. Solstad T, Moser E, Einevoll G (2006) From grid cells to place cells: a mathematical model. Hippocampus 16:1026–1031

    PubMed  Google Scholar 

  430. Zilli E, Yoshida M, Tahvildari B, Giocomo L, Hasselmo M (2009) Evaluation of the oscillatory interference model of grid cell firing through analysis and measured period variance of some biological oscillator. PLoS Comput Biol 5(11):e1000573

    PubMed  Google Scholar 

  431. Ranck J (1984) Head-direction cells in the deep cell layers of dorsal presubiculum in freely moving rats. Soc Neurosci Abstr 10:599

    Google Scholar 

  432. Taube JS (1995) Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J Neurosci 15(1):70–86. PMID: 7823153

    PubMed  CAS  Google Scholar 

  433. Mizumori SJ, Williams JD (1993) Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats. J Neurosci 13(9):4015–4028. PMID: 8366357

    PubMed  CAS  Google Scholar 

  434. Wiener SI (1993) Spatial and behavioral correlates of striatal neurons in rats performing a self-initiated navigation task. J Neurosci 13(9):3802–3817. PMID: 8366346

    PubMed  CAS  Google Scholar 

  435. O’Keefe J (1991) An allocentric spatial model for the hippocampal cognitive map. Hippocampus 1(3):230–235. PMID: 1669295

    PubMed  Google Scholar 

  436. McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW, Knierim JJ, Kudrimoti H, Qin Y, Skaggs WE, Suster M, Weaver KL (1996) Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J Exp Biol 199(Pt 1):173–185. PMID: 8576689

    PubMed  CAS  Google Scholar 

  437. Eichenbaum H (2002) The cognitive neuroscience of memory: an introduction. Oxford University Press, Oxford/New York

    Google Scholar 

  438. Adámek J, Gumm HP, Trnková V (2009) Presentation of set functors: a coalgebraic perspective. J Log Comput, 20(5), 991–1015

    Google Scholar 

  439. Touretzky D, Redish A (1996) Theory of rodent navigation based on interacting representations of space. Hippocampus 6(3):247–270

    PubMed  CAS  Google Scholar 

  440. Burgess N, Recce M, O’Keefe J (1994) A model of hippocampal function. Neural Netw 7:1065–1081

    Google Scholar 

  441. Arleo A, Gerstner W (2000) Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity. Biol Cybern 83:287–299

    PubMed  CAS  Google Scholar 

  442. Jung M, Wiener S, McNaughton B (1994) Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci 14:7347–56

    PubMed  CAS  Google Scholar 

  443. Kjelstrup K et al (2007) Very large place fields at the ventral pole of the hippocampal CA3 area. Soc Neurosci Abstr 33(93):1

    Google Scholar 

  444. Wilson RA, Keil FC (eds) (1999) The MIT encyclopedia of the cognitive sciences. MIT, Cambridge

    Google Scholar 

  445. Scoville W, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    PubMed  CAS  Google Scholar 

  446. Jones EG, Mendell LM (1999) Assessing the decade of the brain. Science (New York, NY) 284(5415):739. PMID: 10336393

    Google Scholar 

  447. Raichle ME (2010) Two views of brain function. Trends Cogn Sci 14(4):180–190. PMID: 20206576

    PubMed  Google Scholar 

  448. Cohen MA, Grossberg S (1987) Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. In: Grossberg S (ed) Advances in psychology, vol 42. North-Holland, Amsterdam, pp 288–308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gómez-Ramirez, J. (2014). The Categorical Imperative: Category Theory in Cognitive and Brain Science. In: A New Foundation for Representation in Cognitive and Brain Science. Springer Series in Cognitive and Neural Systems, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7738-5_3

Download citation

Publish with us

Policies and ethics