Senescence Escape in Melanoma: Role of Spleen Tyrosine Kinase SYK

  • Marcel Deckert
  • Sophie Tartare-DeckertEmail author
Part of the Tumor Dormancy and Cellular Quiescence and Senescence book series (DOQU, volume 2)


Tissue homeostasis is maintained by appropriate innate cellular responses to various oncogenic or genotoxic stresses. Flaws in pathways controlling these responses can cause cancer. Cellular senescence is a critical tumor suppressor mechanism and a well-recognized failsafe program against melanoma progression. Melanoma is a lethal skin cancer of increasing incidence that is linked to solar ultraviolet (UV) radiation and oncogenic events such as activating mutations in BRAF. Understanding why senescence fails to constraint malignant transformation of epidermal melanocytes is a key question in melanoma biology. Spleen tyrosine kinase (Syk) is a multifunction protein tyrosine kinase critical for immune and hematopoietic signaling that has been implicated in tumor suppression of several carcinomas and skin melanomas. Our recent report indicated that Syk exerts its melanoma suppressive function by inducing p53-dependent premature senescence and stress-activated c-Jun N-terminal kinases (JNKs) activation. We proposed that epigenetic inactivation of Syk that is generally observed in primary and metastatic melanoma cells may contribute to senescence escape and tumorigenicity. In this chapter, we discuss this new aspect of Syk function in melanomagenesis with a focus on cellular circuits controlling BRAFV600E-induced senescence. We also examine the potential implication of Syk in p53-mediated UVB stress signaling in melanocytes.


c-Jun N-terminal kinases (JNK) activation Environmental stress Genetic disruption of p53 pathway Immunoreceptor tyrosine-based activation motifs (ITAMs) KIT, ERBB4 and CDK4 genes MDM2 activity and PTEN expression Melanocyte transformation Pathogenesis of melanoma Secreted protein acidic and rich in cysteine (SPARC) Syk in melanomagenesis 



This work was supported by INSERM and research grants from the ARC foundation.


  1. Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, Myers EE, Huang B, Jackson DG, Ferrari VA, Tybulewicz V, Lowell CA, Lepore JJ, Koretzky GA, Kahn ML (2003) Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 299:247–251PubMedCrossRefGoogle Scholar
  2. Bailet O, Fenouille N, Abbe P, Robert G, Rocchi S, Gonthier N, Denoyelle C, Ticchioni M, Ortonne JP, Ballotti R, Deckert M, Tartare-Deckert S (2009) Spleen tyrosine kinase functions as a tumor suppressor in melanoma cells by inducing senescence-like growth arrest. Cancer Res 69:2748–2756PubMedCrossRefGoogle Scholar
  3. Baudot AD, Jeandel PY, Mouska X, Maurer U, Tartare-Deckert S, Raynaud SD, Cassuto JP, Ticchioni M, Deckert M (2009) The tyrosine kinase Syk regulates the survival of chronic lymphocytic leukemia B cells through PKCdelta and proteasome-dependent regulation of Mcl-1 expression. Oncogene 28:3261–3273PubMedCrossRefGoogle Scholar
  4. Bedogni B, Powell MB (2009) Hypoxia, melanocytes and melanoma – survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Res 22:166–174PubMedCrossRefGoogle Scholar
  5. Chen L, Monti S, Juszczynski P, Daley J, Chen W, Witzig TE, Habermann TM, Kutok JL, Shipp MA (2008) SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood 111:2230–2237PubMedCrossRefGoogle Scholar
  6. Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS, Kogan SC, Lowe SW (2011) Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev 25:2125–2136PubMedCrossRefGoogle Scholar
  7. Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57PubMedCrossRefGoogle Scholar
  8. Coopman PJ, Mueller SC (2006) The Syk tyrosine kinase: a new negative regulator in tumor growth and progression. Cancer Lett 241:159–173PubMedCrossRefGoogle Scholar
  9. Coopman PJ, Do MT, Barth M, Bowden ET, Hayes AJ, Basyuk E, Blancato JK, Vezza PR, McLeskey SW, Mangeat PH, Mueller SC (2000) The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 406:742–747PubMedCrossRefGoogle Scholar
  10. de Keizer PL, Packer LM, Szypowska AA, Riedl-Polderman PE, van den Broek NJ, de Bruin A, Dansen TB, Marais R, Brenkman AB, Burgering BM (2010) Activation of forkhead box O transcription factors by oncogenic BRAF promotes p21cip1-dependent senescence. Cancer Res 70:8526–8536PubMedCrossRefGoogle Scholar
  11. Delmas V, Beermann F, Martinozzi S, Carreira S, Ackermann J, Kumasaka M, Denat L, Goodall J, Luciani F, Viros A, Demirkan N, Bastian BC, Goding CR, Larue L (2007) Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev 21:2923–2935PubMedCrossRefGoogle Scholar
  12. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V, Larue L, Pritchard C, Marais R (2009) Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15:294–303PubMedCrossRefGoogle Scholar
  13. Fenouille N, Puissant A, Tichet M, Zimniak G, Abbe P, Mallavialle A, Rocchi S, Ortonne JP, Deckert M, Ballotti R, Tartare-Deckert S (2011a) SPARC functions as an anti-stress factor by inactivating p53 through Akt-mediated MDM2 phosphorylation to promote melanoma cell survival. Oncogene 30:4887–4900PubMedCrossRefGoogle Scholar
  14. Fenouille N, Robert G, Tichet M, Puissant A, Dufies M, Rocchi S, Ortonne JP, Deckert M, Ballotti R, Tartare-Deckert S (2011b) The p53/p21(Cip1/Waf1) pathway mediates the effects of SPARC on melanoma cell cycle progression. Pigment Cell Melanoma Res 24:219–232PubMedCrossRefGoogle Scholar
  15. Finney BA, Schweighoffer E, Navarro-Nunez L, Benezech C, Barone F, Hughes CE, Langan SA, Lowe KL, Pollitt AY, Mourao-Sa D, Sheardown S, Nash GB, Smithers N, Reis e Sousa C, Tybulewicz VL, Watson SP (2012) CLEC-2 and Syk in the megakaryocytic/platelet lineage are essential for development. Blood 119:1747–1756PubMedCrossRefGoogle Scholar
  16. Flaherty KT, Hodi FS, Fisher DE (2012) From genes to drugs: targeted strategies for melanoma. Nat Rev Cancer 12:349–361PubMedCrossRefGoogle Scholar
  17. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A, Schaefer-Cutillo J, De Vos S, Sinha R, Leonard JP, Cripe LD, Gregory SA, Sterba MP, Lowe AM, Levy R, Shipp MA (2009) Inhibition of Syk with fostamatinib disodium has significant clinical activity in non Hodgkin’s lymphoma and chronic lymphocytic leukemia. Blood 115:2578–2585PubMedCrossRefGoogle Scholar
  18. Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M, Villar S, Zwolinska A, Haupt S, de Lange J, Yip D, Goydos J, Haigh JJ, Haupt Y, Larue L, Jochemsen A, Shi H, Moriceau G, Lo RS, Ghanem G, Shackleton M, Bernal F, Marine JC (2012) MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 18:1239–1247PubMedCrossRefGoogle Scholar
  19. Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA, Marais R, Wynford-Thomas D, Bennett DC (2006) Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95:496–505PubMedCrossRefGoogle Scholar
  20. Haferkamp S, Scurr LL, Becker TM, Frausto M, Kefford RF, Rizos H (2009) Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors. J Invest Dermatol 129:1983–1991PubMedCrossRefGoogle Scholar
  21. Hoeller C, Thallinger C, Pratscher B, Bister MD, Schicher N, Loewe R, Heere-Ress E, Roka F, Sexl V, Pehamberger H (2005) The non-receptor-associated tyrosine kinase Syk is a regulator of metastatic behavior in human melanoma cells. J Invest Dermatol 124:1293–1299PubMedCrossRefGoogle Scholar
  22. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479PubMedCrossRefGoogle Scholar
  23. Larive RM, Urbach S, Poncet J, Jouin P, Mascre G, Sahuquet A, Mangeat PH, Coopman PJ, Bettache N (2009) Phosphoproteomic analysis of Syk kinase signaling in human cancer cells reveals its role in cell-cell adhesion. Oncogene 28:2337–2347PubMedCrossRefGoogle Scholar
  24. Miller AJ, Mihm MC Jr (2006) Melanoma. N Engl J Med 355:51–65PubMedCrossRefGoogle Scholar
  25. Mocsai A, Ruland J, Tybulewicz VL (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 10:387–402PubMedCrossRefGoogle Scholar
  26. Muthusamy V, Duraisamy S, Bradbury CM, Hobbs C, Curley DP, Nelson B, Bosenberg M (2006) Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res 66:11187–11193PubMedCrossRefGoogle Scholar
  27. Robert G, Gaggioli C, Bailet O, Chavey C, Abbe P, Aberdam E, Sabatie E, Cano A, Garcia de Herreros A, Ballotti R, Tartare-Deckert S (2006) SPARC represses E-cadherin and induces mesenchymal transition during melanoma development. Cancer Res 66:7516–7523PubMedCrossRefGoogle Scholar
  28. Schramek D, Kotsinas A, Meixner A, Wada T, Elling U, Pospisilik JA, Neely GG, Zwick RH, Sigl V, Forni G, Serrano M, Gorgoulis VG, Penninger JM (2011) The stress kinase MKK7 couples oncogenic stress to p53 stability and tumor suppression. Nat Genet 43:212–219PubMedCrossRefGoogle Scholar
  29. Scurr LL, Pupo GM, Becker TM, Lai K, Schrama D, Haferkamp S, Irvine M, Scolyer RA, Mann GJ, Becker JC, Kefford RF, Rizos H (2010) IGFBP7 is not required for B-RAF-induced melanocyte senescence. Cell 141:717–727PubMedCrossRefGoogle Scholar
  30. Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22:3138–3151PubMedCrossRefGoogle Scholar
  31. Sung YM, Xu X, Sun J, Mueller D, Sentissi K, Johnson P, Urbach E, Seillier-Moiseiwitsch F, Johnson MD, Mueller SC (2009) Tumor suppressor function of Syk in human MCF10A in vitro and normal mouse mammary epithelium in vivo. PLoS One 4:e7445PubMedCrossRefGoogle Scholar
  32. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283PubMedCrossRefGoogle Scholar
  33. Vredeveld LC, Possik PA, Smit MA, Meissl K, Michaloglou C, Horlings HM, Ajouaou A, Kortman PC, Dankort D, McMahon M, Mooi WJ, Peeper DS (2012) Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 26:1055–1069PubMedCrossRefGoogle Scholar
  34. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132:363–374PubMedCrossRefGoogle Scholar
  35. Weinblatt ME, Kavanaugh A, Genovese MC, Musser TK, Grossbard EB, Magilavy DB (2010) An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N Engl J Med 363:1303–1312PubMedCrossRefGoogle Scholar
  36. Zhang X, Shrikhande U, Alicie BM, Zhou Q, Geahlen RL (2009) Role of the protein tyrosine kinase Syk in regulating cell-cell adhesion and motility in breast cancer cells. Mol Cancer Res 7:634–644PubMedCrossRefGoogle Scholar
  37. Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, Ulyanov A, Wu G, Wilson M, Wang J, Brennan R, Rusch M, Manning AL, Ma J, Easton J, Shurtleff S, Mullighan C, Pounds S, Mukatira S, Gupta P, Neale G, Zhao D, Lu C, Fulton RS, Fulton LL, Hong X, Dooling DJ, Ochoa K, Naeve C, Dyson NJ, Mardis ER, Bahrami A, Ellison D, Wilson RK, Downing JR, Dyer MA (2012) A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481:329–334PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.C3M, Team Microenvironment, Signaling and CancerINSERM, U1065NiceFrance

Personalised recommendations