Skip to main content

Loss of Cdh1 Triggers Premature Senescence in Part via Activation of Both the RB/E2F1 and the CLASPIN/CHK1/P53 Tumor Suppressor Pathways

  • Chapter
  • First Online:
  • 1452 Accesses

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 2))

Abstract

Senescence is recently characterized as one of the evolutionarily conserved protective mechanisms against tumor development. Several upstream factors including oxidative stress, DNA damage and overexpression of certain oncoproteins have been shown to induce premature senescence. Interestingly, it has been discovered that instead of promoting tumorigenesis, loss of certain tumor suppressors such as TSC2, PTEN and NF1 induce premature senescence under certain conditions, presumably by activating the downstream oncoproteins mTORC1/S6k, Akt and Ras, respectively. Interestingly, it has been observed by multiple groups that acute loss of Cdh1 also leads to premature senescence in several cellular settings including mouse embryonic fibroblasts and human primary fibroblasts. This is in part due to the fact that Cdh1 loss leads to stabilization of Ets2, which increases p16 expression and causes premature senescence. Moreover, recent studies from our laboratory further suggested that loss of Cdh1 results in the activation of both the Claspin/Chk1/p53 and the Rb/E2F1 pathways, which ultimately leads to premature senescence in primary human fibroblasts but not in transformed cells with defective p53/Rb pathways. Therefore, our studies support the idea that onset of premature senescence serves as a protection mechanism against sporadic tumorigenesis. It also indicates that loss of Cdh1 tumor suppressor is a relatively late event, which only benefits tumorigenesis for late stage tumors with defective Rb and p53 tumor suppressor pathways. More importantly, our results also indicate that Cdh1 could be an anti-cancer target in certain settings, as complete inactivation of Cdh1 in early stage tumors with wild-type p53 and Rb pathways will lead to induction of premature senescence, thereby aiding tumor regression.

These authors contributed equally to this work

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8:149–160

    Article  PubMed  CAS  Google Scholar 

  • Campisi J (1996) Replicative senescence: an old lives’ tale? Cell 84:497–500

    Article  PubMed  CAS  Google Scholar 

  • Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Li W, Kim S, Brodie SG, Deng CX (2003) Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev 17:201–213

    Article  PubMed  CAS  Google Scholar 

  • Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38:1043–1048

    Article  PubMed  CAS  Google Scholar 

  • Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M, Cichowski K (2006) A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10:459–472

    Article  PubMed  CAS  Google Scholar 

  • Dial JM, Petrotchenko EV, Borchers CH (2007) Inhibition of APCCdh1 activity by Cdh1/Acm1/Bmh1 ternary complex formation. J Biol Chem 282:5237–5248

    Article  PubMed  CAS  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  • Doree M, Galas S (1994) The cyclin-dependent protein kinases and the control of cell division. FASEB J 8:1114–1121

    PubMed  CAS  Google Scholar 

  • Frescas D, Pagano M (2008) Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 8:438–449

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Inuzuka H, Korenjak M, Tseng A, Wu T, Wan L, Kirschner M, Dyson N, Wei W (2009a) Cdh1 regulates cell cycle through modulating the claspin/Chk1 and the Rb/E2F1 pathways. Mol Biol Cell 20:3305–3316

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Inuzuka H, Tseng A, Chin RY, Toker A, Wei W (2009b) Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol 11:397–408

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Higuera I, Manchado E, Dubus P, Canamero M, Mendez J, Moreno S, Malumbres M (2008) Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat Cell Biol 10:802–811

    Article  PubMed  Google Scholar 

  • Hsu JY, Reimann JD, Sorensen CS, Lukas J, Jackson PK (2002) E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nat Cell Biol 4:358–366

    Article  PubMed  CAS  Google Scholar 

  • Hwang ES, Yoon G, Kang HT (2009) A comparative analysis of the cell biology of senescence and aging. Cell Mol Life Sci 66:2503–2524

    Article  PubMed  CAS  Google Scholar 

  • Kraft C, Vodermaier HC, Maurer-Stroh S, Eisenhaber F, Peters JM (2005) The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol Cell 18:543–553

    Article  PubMed  CAS  Google Scholar 

  • Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479

    Article  PubMed  CAS  Google Scholar 

  • Li M, Shin YH, Hou L, Huang X, Wei Z, Klann E, Zhang P (2008) The adaptor protein of the anaphase promoting complex Cdh1 is essential in maintaining replicative lifespan and in learning and memory. Nat Cell Biol 10:1083–1089

    Article  PubMed  CAS  Google Scholar 

  • Listovsky T, Oren YS, Yudkovsky Y, Mahbubani HM, Weiss AM, Lebendiker M, Brandeis M (2004) Mammalian Cdh1/Fzr mediates its own degradation. EMBO J 23:1619–1626

    Article  PubMed  CAS  Google Scholar 

  • Lukas C, Sorensen CS, Kramer E, Santoni-Rugiu E, Lindeneg C, Peters JM, Bartek J, Lukas J (1999) Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature 401:815–818

    Article  PubMed  CAS  Google Scholar 

  • Mallette FA, Gaumont-Leclerc MF, Ferbeyre G (2007) The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 21:43–48

    Article  PubMed  CAS  Google Scholar 

  • Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi Y, Sharrocks AD, Peters G, Hara E (2001) Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409:1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  PubMed  CAS  Google Scholar 

  • Shaik S, Liu P, Fukushima H, Wang Z, Wei W (2012) Protein degradation in cell cycle. In: Yixian Zheng (ed) eLS. Wiley, Chichester, pp 1–8

    Google Scholar 

  • Shieh SY, Ahn J, Tamai K, Taya Y, Prives C (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14:289–300

    PubMed  CAS  Google Scholar 

  • Sitte N, Merker K, von Zglinicki T, Grune T (2000) Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radic Biol Med 28:701–708

    Article  PubMed  CAS  Google Scholar 

  • Song MS, Carracedo A, Salmena L, Song SJ, Egia A, Malumbres M, Pandolfi PP (2011) Nuclear PTEN regulates the APC-CDH1 tumor-suppressive complex in a phosphatase-independent manner. Cell 144:187–199

    Article  PubMed  CAS  Google Scholar 

  • Sudo T, Ota Y, Kotani S, Nakao M, Takami Y, Takeda S, Saya H (2001) Activation of Cdh1-dependent APC is required for G1 cell cycle arrest and DNA damage-induced G2 checkpoint in vertebrate cells. EMBO J 20:6499–6508

    Article  PubMed  CAS  Google Scholar 

  • Vodermaier HC (2004) APC/C and SCF: controlling each other and the cell cycle. Curr Biol 14:R787–R796

    Article  PubMed  CAS  Google Scholar 

  • Wan L, Zou W, Gao D, Inuzuka H, Fukushima H, Berg AH, Drapp R, Shaik S, Hu D, Lester C, Eguren M, Malumbres M, Glimcher LH, Wei W (2011) Cdh1 regulates osteoblast function through an APC/C-independent modulation of Smurf1. Mol Cell 44:721–733

    Article  PubMed  CAS  Google Scholar 

  • Wang CX, Fisk BC, Wadehra M, Su H, Braun J (2000) Overexpression of murine fizzy-related (fzr) increases natural killer cell-mediated cell death and suppresses tumor growth. Blood 96:259–263

    PubMed  CAS  Google Scholar 

  • Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG Jr (2004) Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428:194–198

    Article  PubMed  CAS  Google Scholar 

  • Young AP, Schlisio S, Minamishima YA, Zhang Q, Li L, Grisanzio C, Signoretti S, Kaelin WG Jr (2008) VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 10:361–369

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Cicchetti G, Onda H, Koon HB, Asrican K, Bajraszewski N, Vazquez F, Carpenter CL, Kwiatkowski DJ (2003) Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 112:1223–1233

    PubMed  CAS  Google Scholar 

  • Zhou Y, Ching YP, Chun AC, Jin DY (2003) Nuclear localization of the cell cycle regulator CDH1 and its regulation by phosphorylation. J Biol Chem 278:12530–12536

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part from the grants (GM089763 and GM094777) from National Institutes of Health to Wenyi Wei. Shavali Shaik, Pengda Liu and Zhiwei Wang were supported by the institutional NRSA T-32 training grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyi Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shaik, S., Liu, P., Wang, Z., Wei, W. (2014). Loss of Cdh1 Triggers Premature Senescence in Part via Activation of Both the RB/E2F1 and the CLASPIN/CHK1/P53 Tumor Suppressor Pathways. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 2. Tumor Dormancy and Cellular Quiescence and Senescence, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7726-2_20

Download citation

Publish with us

Policies and ethics