Advertisement

The Role of Fibrosis in Tumor Progression and the Dormant to Proliferative Switch

  • Lara H. El Touny
  • Dalit Barkan
  • Jeffrey E. Green
Chapter
Part of the Tumor Dormancy and Cellular Quiescence and Senescence book series (DOQU, volume 2)

Abstract

The extracellular matrix is known to play a pivotal role in normal breast development as well as tumorigenesis and breast cancer progression. Several lines of clinical evidence have associated the presence of fibrotic-like, activated stroma with poor therapeutic response and prognosis in breast cancer patients. Recent evidence suggests that extracellular changes are requisite for the formation of a pre-metastatic niche that provides a permissive environment for disseminated breast cancer cells to survive and proliferate. It is also thought that in the absence of favorable environmental cues at a metastatic site, disseminated tumor cells can be maintained in a dormant, metabolically active state until they encounter or modulate their surroundings into an environment that supports their proliferation. We have shown in vivo that the induction of lung fibrosis via adenoviral instillation of TGFß, which results in collagen-I accumulation, can induce the proliferation of an otherwise dormant breast cancer cell line (D2.0R). We have recapitulated this dormant-to-proliferative switch by collagen-I supplementation in a three dimensional in vitro model of dormancy, suggesting that collagen-I is a major contributor to the overtly proliferative integrin β1-dependent state of the D2.0R cells in fibrotic lungs. This work has highlighted the importance of the integrin β1 pathway and its downstream effectors as principal players in sensing microenvironmental changes by dormant breast cells and activating pro-proliferative pathways resulting in overt metastases.

Keywords

Breast cancer Cancer-associated fibroblast (CAF) Collagen-I and breast cancer dormancy Extracellular matrix (ECM) Fibrosis Hypoxia inducible factor (HIF) Lysyl oxidase (LOX) Proliferative switch Tumor progression and dormancy VEGF receptor 1+ (VEGFR1+

References

  1. Aguirre Ghiso JA (2002) Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene 21:2513–2524PubMedCrossRefGoogle Scholar
  2. Almholt K, Lund LR, Rygaard J, Nielsen BS, Danø K, Rømer J, Johnsen M (2005) Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. Int J Cancer 113:525–532PubMedCrossRefGoogle Scholar
  3. Barcellos-Hoff MH (1998) The potential influence of radiation-induced microenvironments in neoplastic progression. J Mammary Gland Biol Neoplasia 3:165–175PubMedCrossRefGoogle Scholar
  4. Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ, Liu Z-y, Costes SV, Cho EH, Lockett S, Khanna C, Chambers AF, Green JE (2008) Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 68:6241–6250PubMedCrossRefGoogle Scholar
  5. Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS, Webster JD, Hoover S, Simpson RM, Gauldie J, Green JE (2010) Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res 70:5706–5716PubMedCrossRefGoogle Scholar
  6. Boyd NF, Dite GS, Stone J, Gunasekara A, English DR, McCredie MRE, Giles GG, Tritchler D, Chiarelli A, Yaffe MJ, Hopper JL (2002) Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med 347:886–894PubMedCrossRefGoogle Scholar
  7. Colpaert CG, Vermeulen PB, Fox SB, Harris AL, Dirix LY, Van Marck EA (2003) The presence of a fibrotic focus in invasive breast carcinoma correlates with the expression of carbonic anhydrase IX and is a marker of hypoxia and poor prognosis. Breast Cancer Res Treat 81:137–147PubMedCrossRefGoogle Scholar
  8. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930PubMedCrossRefGoogle Scholar
  9. Cukierman E (2004) A visual-quantitative analysis of fibroblastic stromagenesis in breast cancer progression. J Mammary Gland Biol Neoplasia 9:311–324PubMedCrossRefGoogle Scholar
  10. Cuzick J, Warwick J, Pinney E, Duffy SW, Cawthorn S, Howell A, Forbes JF, Waren RML (2011) Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case-control study. J Natl Cancer Inst 103:744–752PubMedCrossRefGoogle Scholar
  11. Egeblad M, Rasch MG, Weaver VM (2010) Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol 22:697–706PubMedCrossRefGoogle Scholar
  12. Elkabets M, Gifford AM, Scheel C, Nilsson B, Reinhardt F, Bray M-A, Carpenter AE, Jirström K, Magnusson K, Ebert BL, Pontén F, Weinberg RA, McAllister SS (2011) Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J Clin Invest 121:784–799PubMedCrossRefGoogle Scholar
  13. Erler JT, Bennewith KL, Nicolau M, Dornhöfer N, Kong C, Le Q-T, Chi J-TA, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226PubMedCrossRefGoogle Scholar
  14. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le Q-T, Giaccia AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44PubMedCrossRefGoogle Scholar
  15. Freund H, Biran S, Laufer N, Eyal Z (1976) Breast cancer arising in surgical scars. J Surg Oncol 8:477–480PubMedCrossRefGoogle Scholar
  16. Hasebe T, Sasaki S, Imoto S, Mukai K, Yokose T, Ochiai A (2002) Prognostic significance of fibrotic focus in invasive ductal carcinoma of the breast: a prospective observational study. Mod Pathol 15:502–516PubMedCrossRefGoogle Scholar
  17. Herrick SE, Sloan P, McGurk M, Freak L, McCollum CN, Ferguson MW (1992) Sequential changes in histologic pattern and extracellular matrix deposition during the healing of chronic venous ulcers. Am J Pathol 141:1085–1095PubMedGoogle Scholar
  18. Kamby C, Sengeløv L (1997) Pattern of dissemination and survival following isolated locoregional recurrence of breast cancer. A prospective study with more than 10 years of follow up. Breast Cancer Res Treat 45:181–192PubMedCrossRefGoogle Scholar
  19. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedCrossRefGoogle Scholar
  20. Kenny PA, Bissell MJ (2003) Tumor reversion: correction of malignant behavior by microenvironmental cues. Int J Cancer 107:688–695PubMedCrossRefGoogle Scholar
  21. Kotb AM, Hierholzer A, Kemler R (2011) Replacement of E-cadherin by N-cadherin in the mammary gland leads to fibrocystic changes and tumor formation. Breast Cancer Res 13:R104PubMedCrossRefGoogle Scholar
  22. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A 101:4966–4971PubMedCrossRefGoogle Scholar
  23. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906PubMedCrossRefGoogle Scholar
  24. Loya A, Guray M, Hennessy BT, Middleton LP, Buchholz TA, Valero V, Sahin AA (2009) Prognostic significance of occult axillary lymph node metastases after chemotherapy-induced pathologic complete response of cytologically proven axillary lymph node metastases from breast cancer. Cancer 11:1605–1612CrossRefGoogle Scholar
  25. Lyons TR, O’Brien J, Borges VF, Conklin MW, Keely PJ, Eliceiri KW, Marusyk A, Tan A-C, Schedin P (2011) Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nat Med 17:1109–1115PubMedCrossRefGoogle Scholar
  26. Ma X-J, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11:R7PubMedCrossRefGoogle Scholar
  27. Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM, Morris VL, Groom AC, Chambers AF (2002) Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62:2162–2168PubMedGoogle Scholar
  28. Paget S (1889) The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 8:98–101Google Scholar
  29. Paszek MJ, Weaver VM (2004) The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 9:325–342PubMedCrossRefGoogle Scholar
  30. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11PubMedCrossRefGoogle Scholar
  31. Sassi M, Jukkola A, Riekki R, Höyhtyä M, Risteli L, Oikarinen A, Risteli J (2001) Type I collagen turnover and cross-linking are increased in irradiated skin of breast cancer patients. Radiother Oncol 58:317–323PubMedCrossRefGoogle Scholar
  32. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29PubMedCrossRefGoogle Scholar
  33. Soikkeli J, Podlasz P, Yin M, Nummela P, Jahkola T, Virolainen S, Krogerus L, von Heikkilä P, Smitten K, Saksela O, Hölttä E (2010) Metastatic outgrowth encompasses COL-I, FN1, and POSTN up-regulation and assembly to fibrillar networks regulating cell adhesion, migration, and growth. Am J Pathol 177:387–403PubMedCrossRefGoogle Scholar
  34. Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP (2012) Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol 7:423–467PubMedCrossRefGoogle Scholar
  35. Troester MA, Lee MH, Carter M, Fan C, Cowan DW, Perez ER, Pirone JR, Perou CM, Jerry DJ, Schneider SS (2009) Activation of host wound responses in breast cancer microenvironment. Clin Cancer Res 15:7020–7028PubMedCrossRefGoogle Scholar
  36. Vågane R, Bruland ØS, Fosså SD, Olsen DR (2008) Radiological and functional assessment of radiation-induced pulmonary damage following breast irradiation. Acta Oncol 47:248–254PubMedCrossRefGoogle Scholar
  37. Wang H, Fu W, Im JH, Zhou Z, Santoro SA, Iyer V, DiPersio CM, Yu Q-C, Quaranta V, Al-Mehdi A, Muschel RJ (2004) Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol 164:935–941PubMedCrossRefGoogle Scholar
  38. Wong CC-L, Zhang H, Gilkes DM, Chen J, Wei H, Chaturvedi P, Hubbi ME, Semenza GL (2012) Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J Mol Med (Berl) 90(7):803–815CrossRefGoogle Scholar
  39. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210PubMedCrossRefGoogle Scholar
  40. Yates CC, Bodnar R, Wells A (2011) Matrix control of scarring. Cell Mol Life Sci 68:1871–1881PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lara H. El Touny
    • 1
  • Dalit Barkan
    • 2
  • Jeffrey E. Green
    • 1
  1. 1.Laboratory of Cancer Biology and GeneticsNational Cancer InstituteBethesdaUSA
  2. 2.Department of Biology, Faculty of SciencesHaifa UniversityHaifaIsrael

Personalised recommendations