Advertisement

Nuclear Protein Pirin Negates the Cellular Senescence Barrier Against Cancer Development

  • Silvia Licciulli
  • Myriam Alcalay
Chapter
Part of the Tumor Dormancy and Cellular Quiescence and Senescence book series (DOQU, volume 2)

Abstract

Pirin (PIR) is a highly conserved protein whose biological role has not yet been fully elucidated. Several studies reported its involvement in cancer progression, proposing a function in apoptosis. We have shown that PIR is primarily expressed in melanocytes and melanoma cells and displays a complex pattern of expression and localization. High levels of PIR protein are found in normal melanocytes whereas low or undetectable levels are present in nevi. Additionally, PIR expression is found in a subset of melanoma cases with increasing levels correlating with tumor progression.

Knock-down experiments performed in melanoma cells with high PIR expression have shown a role for PIR in controlling cellular senescence. In this model, PIR ablation results in impairment of cell proliferation, morphological changes characteristic of cellular senescence and expression of senescence markers. Furthermore, oncogene activation and other senescence stimuli induce PIR downregulation.

Based on our data, we propose here two alternative models to explain PIR expression pattern in nevi and melanoma and its involvement in the control of senescence. We propose that PIR plays a prominent role in negatively controlling senescence in melanocytic cells and that it could represent a novel marker for melanoma progression and a potential therapeutic target.

Keywords

Acute myeloid leukemia (AML) Cancer Gene expression studies Melanoma Molecular pathways Pirin (PIR) protein Prokaryotic orthologs Ras-Raf-MEK-ERK signalling pathway Senescence barrier 

Notes

Acknowledgements

This work was supported by grants from the Italian Association for Cancer Research (Associazione Italiana per la Ricerca sul Cancro, AIRC) and Fondazione Cariplo to M.A.

References

  1. Adams M, Jia Z (2005) Structural and biochemical analysis reveal pirins to possess quercetinase activity. J Biol Chem 280:28675–28682PubMedCrossRefGoogle Scholar
  2. An J, Sun JY, Yuan Q, Tian HY, Qiu WL, Guo W, Zhao FK (2004) Proteomics analysis of differentially expressed metastasis-associated proteins in adenoid cystic carcinoma cell lines of human salivary gland. Oral Oncol 40:400–408PubMedCrossRefGoogle Scholar
  3. Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C, Fauvet F, Puisieux I, Doglioni C, Piccinin S, Maestro R, Voeltzel T, Selmi A, Valsesia-Wittmann S, Caron de Fromentel C, Puisieux A (2008) Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14:79–89PubMedCrossRefGoogle Scholar
  4. Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683PubMedCrossRefGoogle Scholar
  5. Bennett DC (2003) Human melanocyte senescence and melanoma susceptibility genes. Oncogene 22:3063–3069PubMedCrossRefGoogle Scholar
  6. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740PubMedCrossRefGoogle Scholar
  7. Dahl C, Guldberg P (2007) The genome and epigenome of malignant melanoma. APMIS 115:1161–1176PubMedCrossRefGoogle Scholar
  8. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954PubMedCrossRefGoogle Scholar
  9. Dechend R, Hirano F, Lehmann K, Heissmeyer V, Ansieau S, Wulczyn FG, Scheidereit C, Leutz A (1999) The Bcl-3 oncoprotein acts as a bridging factor between NF-kappaB/Rel and nuclear co-regulators. Oncogene 18:3316–3323PubMedCrossRefGoogle Scholar
  10. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V, Larue L, Pritchard C, Marais R (2009) Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15:294–303PubMedCrossRefGoogle Scholar
  11. Gelbman BD, Heguy A, O’Connor TP, Zabner J, Crystal RG (2007) Upregulation of pirin expression by chronic cigarette smoking is associated with bronchial epithelial cell apoptosis. Respir Res 8:10PubMedCrossRefGoogle Scholar
  12. Gewirtz DA, Holt SE, Elmore LW (2008) Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation. Biochem Pharmacol 76:947–957PubMedCrossRefGoogle Scholar
  13. Gray-Schopfer VC, da Rocha Dias S, Marais R (2005) The role of B-RAF in melanoma. Cancer Metastasis Rev 24:165–183PubMedCrossRefGoogle Scholar
  14. Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA, Marais R, Wynford-Thomas D, Bennett DC (2006) Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95:496–505PubMedCrossRefGoogle Scholar
  15. Han Z, Wei W, Dunaway S, Darnowski JW, Calabresi P, Sedivy J, Hendrickson EA, Balan KV, Pantazis P, Wyche JH (2002) Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J Biol Chem 277:17154–17160PubMedCrossRefGoogle Scholar
  16. Hihara Y, Muramatsu M, Nakamura K, Sonoike K (2004) A cyanobacterial gene encoding an ortholog of Pirin is induced under stress Conditions. FEBS Lett 574:101–105PubMedCrossRefGoogle Scholar
  17. Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127:265–275PubMedCrossRefGoogle Scholar
  18. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031PubMedCrossRefGoogle Scholar
  19. Kulju KS, Lehman JM (1995) Increased p53 protein associated with aging in human diploid fibroblasts. Exp Cell Res 217:336–345PubMedCrossRefGoogle Scholar
  20. Licciulli S, Cambiaghi V, Scafetta G, Gruszka AM, Alcalay M (2010a) Pirin downregulation is a feature of AML and leads to impairment of terminal myeloid differentiation. Leukemia 24:429–437PubMedCrossRefGoogle Scholar
  21. Licciulli S, Luise C, Zanardi A, Giorgetti L, Viale G, Lanfrancone L, Carbone R, Alcalay M (2010b) Pirin delocalization in melanoma progression identified by high content immuno-detection based approaches. BMC Cell Biol 11:5PubMedCrossRefGoogle Scholar
  22. Licciulli S, Luise C, Scafetta G, Capra M, Giardina G, Nuciforo P, Bosari S, Viale G, Mazzarol G, Tonelli C, Lanfrancone L, Alcalay M (2011) Pirin inhibits cellular senescence in melanocytic cells. Am J Pathol 178:2397–2406PubMedCrossRefGoogle Scholar
  23. Mathon NF, Lloyd AC (2001) Cell senescence and cancer. Nat Rev Cancer 1:203–213PubMedCrossRefGoogle Scholar
  24. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724PubMedCrossRefGoogle Scholar
  25. Mitomi T, Tsuchiya S, Iijima N, Aso K, Suzuki K, Nishiyama K, Amano T, Takahashi T, Murayama N, Oka H et al (1992) Randomized, controlled study on adjuvant immunochemotherapy with PSK in curatively resected colorectal cancer. The cooperative study group of surgical adjuvant immunochemotherapy for cancer of colon and rectum (Kanagawa). Dis Colon Rectum 35:123–130PubMedCrossRefGoogle Scholar
  26. Miyazaki I, Simizu S, Okumura H, Takagi S, Osada H (2010) A small-molecule inhibitor shows that pirin regulates migration of melanoma cells. Nat Chem Biol 6:667–673PubMedCrossRefGoogle Scholar
  27. Narita M, Lowe SW (2004) Executing cell senescence. Cell Cycle 3:244–246PubMedCrossRefGoogle Scholar
  28. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716PubMedCrossRefGoogle Scholar
  29. Orzaez D, de Jong AJ, Woltering EJ (2001) A tomato homologue of the human protein PIRIN is induced during programmed cell death. Plant Mol Biol 46:459–468PubMedCrossRefGoogle Scholar
  30. Panchal HD, Vranizan K, Lee CY, Ho J, Ngai J, Timiras PS (2008) Early anti-oxidative and anti-proliferative curcumin effects on neuroglioma cells suggest therapeutic targets. Neurochem Res 33:1701–1710PubMedCrossRefGoogle Scholar
  31. Pang H, Bartlam M, Zeng Q, Miyatake H, Hisano T, Miki K, Wong LL, Gao GF, Rao Z (2004) Crystal structure of human pirin: an iron-binding nuclear protein and transcription cofactor. J Biol Chem 279:1491–1498PubMedCrossRefGoogle Scholar
  32. Papp T, Pemsel H, Rollwitz I, Schipper H, Weiss DG, Schiffmann D, Zimmermann R (2003) Mutational analysis of N-ras, p53, CDKN2A (p16(INK4a)), p14(ARF), CDK4, and MC1R genes in human dysplastic melanocytic naevi. J Med Genet 40:E14PubMedCrossRefGoogle Scholar
  33. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, Salem G, Pohida T, Heenan P, Duray P, Kallioniemi O, Hayward NK, Trent JM, Meltzer PS (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20PubMedCrossRefGoogle Scholar
  34. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556PubMedCrossRefGoogle Scholar
  35. Santoro C, Mermod N, Andrews PC, Tjian R (1988) A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs. Nature 334:218–224PubMedCrossRefGoogle Scholar
  36. Sharpless E, Chin L (2003) The INK4a/ARF locus and melanoma. Oncogene 22:3092–3098PubMedCrossRefGoogle Scholar
  37. Soo PC, Horng YT, Lai MJ, Wei JR, Hsieh SC, Chang YL, Tsai YH, Lai HC (2007) Pirin regulates pyruvate catabolism by interacting with the pyruvate dehydrogenase E1 subunit and modulating pyruvate dehydrogenase activity. J Bacteriol 189:109–118PubMedCrossRefGoogle Scholar
  38. Wellbrock C, Karasarides M, Marais R (2004) The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5:875–885PubMedCrossRefGoogle Scholar
  39. Wendler WM, Kremmer E, Forster R, Winnacker EL (1997) Identification of pirin, a novel highly conserved nuclear protein. J Biol Chem 272:8482–8489PubMedCrossRefGoogle Scholar
  40. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660PubMedCrossRefGoogle Scholar
  41. Yoshikawa R, Yanagi H, Hashimoto-Tamaoki T, Morinaga T, Nakano Y, Noda M, Fujiwara Y, Okamura H, Yamamura T (2004) Gene expression in response to anti-tumour intervention by polysaccharide-K (PSK) in colorectal carcinoma cells. Oncol Rep 12:1287–1293PubMedGoogle Scholar
  42. Zeng Q, Li X, Bartlam M, Wang G, Pang H, Rao Z (2003) Purification, crystallization and preliminary X-ray analysis of human pirin. Acta Crystallogr D Biol Crystallogr 59:1496–1498PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Kissil Lab, Department of Cancer BiologyThe Scripps Research InstituteJupiterUSA
  2. 2.Department of Experimental OncologyIstituto Europeo di OncologiaMilanItaly

Personalised recommendations