Advertisement

Improvement in Track and Intensity Prediction of Indian Seas Tropical Cyclones with Vortex Assimilation

  • Sujata Pattanayak
  • U. C. Mohanty
  • S. G. Gopalakrishnan

Abstract

Tropical cyclone is one of the most hazardous weather events over data sparse warm tropical ocean. It is the most deadly weather system that causes destructive winds, heavy rainfall, high storm surges and coastal inundation, usually resulting in serious property damage and loss of life in costal belts of India and hence strong impact on the socio-economic conditions of the countries surrounding the Bay of Bengal, especially India, Bangladesh and Myanmar. The Bay of Bengal contributes about 5% of the global annual total number of tropical storms (Mohanty, 1994). Moreover, the Bay of Bengal storms are exceptionally devastating, especially when they cross the land (De Angelis, 1976). So the Bay of Bengal tropical cyclone disaster is the costliest and deadliest natural hazard in the Indian sub-continent.

Keywords

Tropical Cyclone Global Forecast System Intensity Prediction Advanced Regional Prediction System Severe Cyclonic Storm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black, T.L. (1994). The new NMC mesoscale Eta Model: Description and forecast examples. Weather Forecasting, 9: 265-278.CrossRefGoogle Scholar
  2. De Angelis, D. (1976). World of tropical cyclones – North Indian Ocean. Mar. Weather Log., 20: 191-194. Google Scholar
  3. Dudhia, J. (1993). A non-hydrostatic version of Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121: 1493-1513.CrossRefGoogle Scholar
  4. Gopalakrishnan, S.G., Liu, Q., Marchok, T., Sheinin, D., Surgi, N., Tong, M., Tallapragada, V., Tuleya, R., Yablonsky, R. and Zhang, X. (2011a). Hurricane Weather and Research and Forecasting (HWRF) model: Scientific documentation. NOAA/Development Tech Center. [Available online at http://www.dtcenter.org/ HurrWRF/users/docs/scientific_documents HWRFScientific Documentation_ August2011.pdf]
  5. Gopalakrishnan, S.G., Marks, F.D., Zhang, X., Bao, J.-W., Yeh, K.-S. and Atlas, R. (2011b). The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139: 1762-1784.CrossRefGoogle Scholar
  6. Janjic, Z.I. (1984). Non-linear advection schemes and energy cascade on semi-staggered grids. Mon. Wea. Rev., 112: 1234-1245.Google Scholar
  7. Janjic, Z.I. (2003a). A Non-hydrostatic Model Based on a New Approach. Meteorology and Atmospheric Physics, 82: 271-285.CrossRefGoogle Scholar
  8. Janjic, Z.I. (2003b). The NCEP WRF Core and Further Development of Its Physical Package. 5th International SRNWP Workshop on Non-Hydrostatic Modeling. Bad Orb, Germany, 27-29 October.Google Scholar
  9. Janjic, Z.I., Gerrity Jr., J.P. and Nickovic, S. (2001). An Alternative Approach to Non- hydrostatic Modeling. Monthly Weather Review, 129: 1164-1178.CrossRefGoogle Scholar
  10. Mohanty, U.C. (1994). Tropical cyclones in the Bay of Bengal and deterministic methods for prediction of their trajectories. Sadhana, 19(4): 567-582.CrossRefGoogle Scholar
  11. Osuri, K.K., Mohanty, U.C., Routray, A., Kulkarni, Makarand A. and Mohapatra, M. (2011a). Sensitivity of physical parameterization schemes of WRF model for the simulation of Indian seas tropical cyclones. Natural Hazards. DOI  10.1007/s11069- 011-9862-0.Google Scholar
  12. Pattanayak, S. and Mohanty, U.C. (2008). A comparative study on performance of MM5 and WRF models in simulation of tropical cyclones over Indian seas. Current Science, 95(7): 923-936.Google Scholar
  13. Pattanayak, S., Mohanty, U.C. and Gopalakrishnan, S.G. (2011). Simulation of very severe cyclone Mala over Bay of Bengal with HWRF modeling system. Natural Hazards. DOI  10.1007/s11069-011-9863-z.Google Scholar
  14. Skamaraock, W.C., Klemp, J.B., Jimmy Dudhia, Gill, David O., Barker, Dale M., Wei Wang, Powers, Jordan G. (2005). A description of the Advanced Research WRF Version 2. NCAR Technical Note.Google Scholar
  15. Xue, M., Droegemier, K.K., Vong, V.A., Sapiro, A. and Brewster, K (1995). Regional prediction system—ARPS, version 4.0. User’s guide. University of Oklahoma.Google Scholar
  16. Xue, M., Droegemeier, K.K. and Wong, V. (2000). The Advanced Regional Prediction System (ARPS) – A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Physics, 75: 161-193.Google Scholar
  17. Xue, M., Droegemeier, K.K., Wong, V., Shapiro, A., Brewster, K., Carr, F., Weber, D., Liu, Y. and Wang, D.-H. (2001). The Advanced Regional Prediction System (ARPS) – A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Physics, 76: 134-165.Google Scholar

Copyright information

© Capital Publishing Company 2014

Authors and Affiliations

  • Sujata Pattanayak
    • 1
  • U. C. Mohanty
    • 1
  • S. G. Gopalakrishnan
    • 2
  1. 1.Centre for Atmospheric SciencesIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Hurricane Research DivisionNOAA, AOMLMiamiUSA

Personalised recommendations