Skip to main content

Choline Chloride-Derived ILs for Activation and Conversion of Biomass

  • Chapter
  • First Online:

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 1))

Abstract

The progressive introduction of biomass in chemical processes has dramatically changed the way how we design a catalytic process. Among different strategies, assisted catalysis is expected to play a pivotal role in the future. In this context, ChCl-derived ionic liquids and deep eutectic solvents has recently emerged as promising solvents to assist a conventional catalyst in the selective conversion of biomass. In particular, their ability to disrupt the hydrogen bond network of biopolymers, their ability to stabilize polar chemicals and their low miscibility with common low boiling point solvents open a promising route for the conversion of biomass in a more sustainable way. Beside their low price and low ecological footprint, we wish to demonstrate here that these neoteric solvents have processing advantages that no other solvent can provide in the field of biomass.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As an example see pioneer work of [7].

  2. 2.

    As an example see pioneer work of Richard et al. [10].

  3. 3.

    Lindman et al. [11] and references cited therein.

  4. 4.

    As a recent selected example see [13].

Abbreviations

BMIM:

1-butyl 3-methyl imidazolium

ChCl:

Choline chloride

DMSO:

Dimethylsulfoxide

HMF:

5-hydroxymethylfurfural

IL:

Ionic liquid

References

  1. Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schfer HF. Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed. 2011;50(17):3854–71.

    Article  Google Scholar 

  2. Jérôme F, Barrault J. Selective conversion of glycerol into functional monomers via catalytic processes. In: Mathers RT, Meir MAR, editors. Green polymerization methods. Weinheim: Wiley; 2009.

    Google Scholar 

  3. Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem Rev. 2007;107(6):2411–502.

    Article  Google Scholar 

  4. Van de Vyver S, Peng L, Geboers J, Schepers H, De Clippel F, Gommes CJ, Goderis B, Jacobs PA, Sels BS. Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem. 2010;12:1560–3.

    Article  Google Scholar 

  5. Serrano-Ruiz JC, Dumesic JA. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci. 2011;4:83–99.

    Article  Google Scholar 

  6. Pinkert A, Marsh KN, Pang S. Reflections on the solubility of cellulose. Ind Eng Chem Res. 2010;49:11121–30.

    Article  Google Scholar 

  7. Richard Swatloski P, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellulose with ionic liquids. J Am Chem Soc. 2002;124:4974–5.

    Article  Google Scholar 

  8. Walden P. Über die Molekulargrösse und elektrische Leitfähigkeit einiger gesehmolzenen Salze. Bull Acad Impér Sci St Petersburg. 1914;1800:405–22.

    Google Scholar 

  9. Graenacher C. Cellulose dissolution. US Patent 1943176; 1934.

    Google Scholar 

  10. Tadesse H, Luque R. Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci. 2011;4:3913–29.

    Article  Google Scholar 

  11. Lindman B, Karlström G, Stigsson L. On the mechanism of dissolution of cellulose. J Mol Liq. 2010;156:76–81.

    Article  Google Scholar 

  12. Mikkola J, Kirilin A, Tuuf J, Pranovich A, Holmbom B, Kustov LM, Murzin DY, Salmi T. Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chem. 2007;9:1229–37.

    Article  Google Scholar 

  13. Gupta KM, Hu Z, Jiang J. Molecular insight into cellulose regeneration from a cellulose/ionic liquid mixture: effects of water concentration and temperature. RSC Adv. 2013;3:4425–33.

    Article  Google Scholar 

  14. Francisco M, Van Den Bruinhorst A, Kroon MC. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem. 2012;14:2153–7.

    Article  Google Scholar 

  15. Hu S, Jiang T, Zhang Z, Zhu A, Han B, Song J, Xie Y, Li W. Functional ionic liquid from biorenewable materials: synthesis and application as a catalyst in direct aldol reaction. Tetrahedron Lett. 2007;48:5613–17.

    Article  Google Scholar 

  16. Moriel P, Garcia-Suarz EJ, Martinez M, Garcia AB, Montes-Moran MA, Calvino-Casilda V, Banares MA. Synthesis, characterization and catalytic activity of ionic liquids based on bioresources. Tetrahedron Lett. 2010;51:4877.

    Article  Google Scholar 

  17. Garcia H, Ferreira R, Petkovic M, Ferguson JL, Leitao MC, Nimal Gunaratne HQ, Seddon KR, Nebelo LPN, Pereira CS. Dissolution of cork biopolymers in biocompatible ionic liquids. Green Chem. 2010;12:367–9.

    Article  Google Scholar 

  18. Zhang Q, Benoit M, De Oliveira Vigier K, Barrault J, Jérôme F. Green and inexpensive choline-derived solvents for cellulose decrystallization. Chem Eur J. 2012;18(4):1043–6.

    Article  Google Scholar 

  19. Liu QP, Hou X-D, Li N, Zong M-H. Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pre-treatment of biomass. Green Chem. 2012;14:304–7.

    Article  Google Scholar 

  20. Hou X-D, Smith TJ, Li N, Zong MH. Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng. 2012;109(10):2484–93.

    Article  Google Scholar 

  21. Ohira K, Abe Y, Kawatsura M, Suzuki K, Mizuno M, Amano Y, Itoh T. Design of cellulose dissolving ionic liquids inspired by nature. ChemSusChem. 2012;5:388–91.

    Article  Google Scholar 

  22. Zhang Q, De Oliveira Vigier K, Royer S, Jérôme F. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev. 2012;41:7108–46.

    Article  Google Scholar 

  23. Yu Y, Lu X, Zhou Q, Dong K, Yao H, Zhang S. Biodegradable naphthenic acid ionic liquids: synthesis, characterization, and quantitative structure–biodegradation relationship. Chem Eur J. 2008;14:11174–82.

    Article  Google Scholar 

  24. Weaver KD, Kim HJ, Sun J, MacFarlane DR, Elliott GD. Cyto-toxicity and biocompatibility of a family of choline phosphate ionic liquids designed for pharmaceutical applications. Green Chem. 2010;12:507–13.

    Article  Google Scholar 

  25. Ilgen F, Ott D, Kralish D, Reil C, Palmberger A, König B. Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem. 2009;11:1948–54.

    Article  Google Scholar 

  26. Cammarata L, Kazarian SG, Salter PA, Welton T. Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys. 2001;3:5192–200.

    Article  Google Scholar 

  27. Abbott AP, Barron JC, Ryder KS, Wilson D. Eutectic-based ionic liquids with metal-containing anions and cations. Chem Eur J. 2007;13:6495–501.

    Article  Google Scholar 

  28. Hertel MR, Bommarius AS, Realff MJ, Kang Y. Deep eutectic solvent systems and methods. WO 2012145522; 2012.

    Google Scholar 

  29. Lichtenthaler FW. Unsaturated O- and N-heterocycles from carbohydrate feedstocks. Acc Chem Res. 2002;35:728–37.

    Article  Google Scholar 

  30. Moreau C, Belgacem MN, Gandini A. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal. 2004;27:11–30.

    Article  Google Scholar 

  31. Hu S, Zhang Z, Zhou Y, Han B, Fan H, Li W, Song J, Xie Y. Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chem. 2008;10:1280–3.

    Article  Google Scholar 

  32. Hu S, Zhang Z, Zhou Y, Song J, Fan H, Han B. Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chem. 2009;11:873–7.

    Article  Google Scholar 

  33. Zhao H, Holladay JE, Brown H, Zhang ZC. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science. 2007;316:1597–600.

    Article  Google Scholar 

  34. De Oliveira Vigier K, Benguerba A, Barrault J, Jérôme F. Conversion of fructose and inulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media. Green Chem. 2012;14:285–9.

    Article  Google Scholar 

  35. Liu F, Barrault J, De Oliveira Vigier K, Jérôme F. Dehydration of highly concentrated solution of fructose to 5-hydroxymethylfurfural in cheap and sustainable choline chloride/CO2 system. ChemSusChem. 2012;5:1223–6.

    Article  Google Scholar 

  36. Li X, Hou M, Han B, Wang X, Zou L. Solubility of CO2 in a choline chloride + urea eutectic mixture. J Chem Eng Data. 2008;53:548–50.

    Article  Google Scholar 

  37. (a) Ma F, Hanna MA. Biodiesel production: a review. Bioresour Technol. 1999;70:1–15; (b) Canacki M. The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol. 2007;98: 183–90.

    Google Scholar 

  38. (a) Wang WG, Luons DW, Clark NN, Gautan M, Norton PM. Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification. Environ Sci Technol. 2000;34: 933–39; (b) Oh PP, Lau HLN, Chen J, Chong MF, Choo YM. A review on conventional technologies and emerging process intensification (PI) methods for biodiesel production. Renew Sustain Energy Rev. 2012;16:5131–45.

    Google Scholar 

  39. Canacki M, Gerpen JV. Biodiesel production from oils and fats with high free fatty acids. Trans ASAE. 2001;44:1429–36.

    Google Scholar 

  40. Hayyan A, Hashim MA, Mjalli FS, Hayyan M, AlNashef IM. A novel phosphonium-based deep eutectic catalyst for biodiesel production from industrial low grade crude palm oil. Chem Eng Sci. 2013;92:81–8.

    Article  Google Scholar 

  41. Zhao H, Zhang C, Crittle TD. Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil. J Mol Catal. 2013;85–86:243–7.

    Article  Google Scholar 

  42. Hayyan M, Mjalli FS, Hashim MA, Alnashef IM. A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Process Technol. 2010;91:116–20.

    Article  Google Scholar 

  43. Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM. Using deep eutectic solvents based on methyl triphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy Fuels. 2011;25:2671–8.

    Article  Google Scholar 

  44. Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM. Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst separation and purification technology. Sep Purif Technol. 2011;81:216–22.

    Article  Google Scholar 

  45. Krystof M, Perez-sanchez M, Dominguez de Maria P. Lipase-catalyzed (trans)esterification of 5-hydroxymethylfurfural and separation from HMF esters using deep-eutectic solvents. ChemSusChem. 2013. doi:10.1002/cssc.201200931.

    Google Scholar 

  46. Maugeri Z, Leitner W, Dominguez de Maria P. Practical separation of alcohol–ester mixtures using deep-eutectic-solvents. Tetrahedron Lett. 2012;53:6968–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Jérôme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Oliveira Vigier, K., Jérôme, F. (2014). Choline Chloride-Derived ILs for Activation and Conversion of Biomass. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Ionic Liquids. Biofuels and Biorefineries, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7711-8_3

Download citation

Publish with us

Policies and ethics