Skip to main content

Applications and Durability of Direct Methanol Fuel Cells

  • Chapter
  • First Online:
Direct Alcohol Fuel Cells

Abstract

Many companies are making significant efforts in the development of prototypes of DAFC (mainly DMFC) for replace batteries (battery charge and auxiliary power units) in portable devices. Some of the most relevant prototypes are summarized; however, most of these devices are not ready to be commercialized due to the high cost and low power reached. Furthermore, for the massive application of the DAFC technologies is necessary solve some of the drawbacks (as miniaturization, products balance, cost reduction, etc.). The cost of the prototypes is analyzed as well as the degradation of the components that affects the durability of the devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonucci V (1999) Direct methanol fuel cells for mobile applications: a strategy for the future. Fuel Cells Bull 1999(7):6–8

    Article  Google Scholar 

  2. Lipman T, Sperling D (2003) Market concepts, competing technologies and cost challenges for automotive and stationary applications. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells: fundamentals, technology and applications, vol 4, part 13. Wiley, Chichester, England, pp 1318–1328

    Google Scholar 

  3. Dyer CK (2002) Fuel cells for portable applications. J Power Sources 106:31–34

    Article  CAS  Google Scholar 

  4. Aricò AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161

    Article  Google Scholar 

  5. Dillon R, Srinivasan S, Aricò AS, Antonucci V (2004) International activities in DMFC R&D: status of technologies and potential applications. J Power Sources 127:112–126

    Article  CAS  Google Scholar 

  6. Kleiner K (2006) Assault on batteries. Nature 441:1046–1047

    Article  Google Scholar 

  7. Zhao TS, Yang WW, Chen R, Wu QX (2010) Towards operating direct methanol fuel cells with highly concentrated fuel. J Power Sources 195:3451–3462

    Article  CAS  Google Scholar 

  8. Dyer CK (1999) Replacing the battery in portable electronics. Sci Am 281:88–93

    Article  CAS  Google Scholar 

  9. Vielstich W (2003) Electrochemical energy conversion – methanol fuel cell as example. J Braz Chem Soc 14:503–509

    Article  CAS  Google Scholar 

  10. Thomas YRJ, Bruno MM, Corti HR (2012) Characterization of a monolithic mesoporous carbon as diffusion layer for micro fuel cells application. Microp Mesop Mat 155:47–55

    Article  CAS  Google Scholar 

  11. Lu GQ, Wang CY (2004) Electrochemical and flow characterization of a direct methanol fuel cell. J Power Sources 134:33–40

    Article  CAS  Google Scholar 

  12. Lim SW, Kim SW, Kim J, Ahn JE, Han HS, Shul YG (2006) Effect of operation parameters on performance of micro direct methanol fuel cell fabricated on printed circuit board. J Power Sources 161:27–33

    Article  CAS  Google Scholar 

  13. Narayanan SR, Valdez TI (2003) Portable direct methanol fuel cell systems. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells: fundamentals, technology and applications, vol 4. Wiley, Chichester, England, Part 1, pp 1133–1141

    Google Scholar 

  14. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88:981–1007

    Google Scholar 

  15. Chang H, Kim H, Choi YS, Lee W (2009) Critical issues in the commercialization of DMFC and role of membranes. In: Zaidi J, Matsuura T (eds) Polymer membranes for fuel cells. Springer, New York, pp 317–339, Chapter 13

    Google Scholar 

  16. Leach GA (2004) Dangerous goods panel (DGP), International Civil Aviation Organization, meeting of the working group of the whole, Abu Dhabi, 4–8 Oct 2004, Fuel Cell Cartridges

    Google Scholar 

  17. Leach GA (2007) Dangerous goods panel (DGP), international civil aviation organization, twenty first meeting, Montreal, 5–16 Nov 2007, Carriage of fuel cells by passengers

    Google Scholar 

  18. Ho DL, Kopasz JP, Benjamin TG, Podolski WF (2011) The U. S. department of energy efforts in fuel cells for portable power applications. ECS Trans 30:337–343

    Article  Google Scholar 

  19. Kamaruddin MZF, Kamarudin SK, Daud WRW, Masdar MS (2013) An overview of fuel management in direct methanol fuel cells. Renew Sustain Energy Rev 24:557–565

    Article  CAS  Google Scholar 

  20. Xie C, Bostaph J, Pavio J (2004) Development of a 2W direct methanol fuel cell power source. J Power Sources 136:55–65

    Article  CAS  Google Scholar 

  21. http://www.mtimicrofuelcells.com/technology/differentiation.asp. Accessed 15 May 2013

  22. Zhao TS, Chen R, Yang WW, Xu C (2009) Small direct methanol fuel cells with passive supply of reactants. J Power Sources 191:185–202

    Article  CAS  Google Scholar 

  23. Achmad F, Karamudin SK, Daud WRW, Majlan EH (2011) Passive direct methanol fuel cells for portable electronic devices. Appl Energy 88:1681–1689

    Article  Google Scholar 

  24. Kim D, Cho EA, Hong SA, Oh IH, Ha HY (2004) Recent progress in passive direct methanol fuel cells at KIST. J Power Sources 131:172–177

    Article  Google Scholar 

  25. Hahn R, Wagner S, Schmitz A, Reichl H (2004) Development of a planar micro fuel cell with thin film and micro patterning technologies. J Power Sources 131:73–78

    Article  CAS  Google Scholar 

  26. Broussely M, Archdale G (2004) Li-ion batteries and portable power source prospects for the next 5–10 years. J Power Sources 136:386–394

    Article  CAS  Google Scholar 

  27. Goto S (2008) Micro fuel cell system for mobile consumer electronic devices. In: Sony corp. Small fuel cells for commercial and military applications, 9 ed. Knowledge Press, ISBN-10: 1594301360

    Google Scholar 

  28. Zhu GR, Loo KH, Lai YM, Tse CK (2012) Quasi-maximum efficiency point tracking for direct methanol fuel cell in DMFC/supercapacitor hybrid energy system. IEEE Trans Energy Conv 27:561–571

    Article  Google Scholar 

  29. http://www.eetimes.com/electronics-news/4080861/Analysis-Did-Intel-underestimate-netbook-success. Accessed 5 Apr 2012

  30. http://www.edn.com/article/458578_Notebook_PC_shipments_exceeded_desktops_for_first_time_in_Q3_iSuppli_reports.php. Accessed 5 Apr 2012

  31. http://www.smartplanet.com/blog/thinking-tech/occupy-smartphone-top-10-of-mobile-users-occupy-90-of-bandwidth/9751. Accessed 5 Apr 2012

  32. http://www.eweek.com/c/a/Windows/Netbooks-Are-Destroying-the-Laptop-Market-and-Microsoft-Needs-to-Act-Now-863307/. Accessed 5 Apr 2012

  33. http://support.apple.com/kb/TA30635?viewlocale=en_US. Accessed 5 Apr 2012

  34. http://www.gartner.com/it/page.jsp?id=1759714 Gartner. 2010-07-09. Accessed 5 Apr 2012

  35. http://www.scra.org/docs/InsideTheIndustry_May_18_08.pdf. Accessed 5 Apr 2012

  36. http://www.addictware.com.mx/index.php/comunicaciones/1802-creceran-ventas-de-tablets-ipad-rey. Accessed 5 Apr 2012

  37. Yoon SK, Na YS, Joung Y, Park J, Kim Y, Hu L, Song I, Cho H (2009) Direct methanol fuel cell systems for portable applications, fuel cell seminar & exposition 18 Nov 2009, Palm Springs

    Google Scholar 

  38. http://www.wipo.int/patentscope/en/. Accessed 20 Feb 2012

  39. http://www.dexigner.com/news/1932. Accessed 5 May 2012

  40. MTI Micro pushes leadership with its Mobion chip. Fuel Cells Bull 2007(7):1

    Google Scholar 

  41. DoCoMo prototype micro DMFC recharger for cell phone handsets. Fuel Cells Bull 2004(11):8

    Google Scholar 

  42. Fujitsu, DoCoMo triple cell phone charger capacity. Fuel Cells Bull 2005(8):1

    Google Scholar 

  43. Takei F, Cooray NF, Yoshida K, Yoshida H, Ebisu K, Suzuki S, Sawatari N (2005) Development of prototype micro fuel cells for mobile electronics. Fujitsu Sci Tech J 41:191–200

    CAS  Google Scholar 

  44. García G, Florez-Montaño J, Hernandez-Creus A, Pastor E, Planes GA (2011) Methanol electrooxidation at mesoporous Pt and Pt-Ru electrodes: a comparative study with carbon supported materials. J Power Sources 196:2979–2986

    Article  Google Scholar 

  45. Cantane DA, Ambrosio WF, Chatenet M, Lima FHB (2012) Electro-oxidation of ethanol on Pt/C, Rh/C, and Pt/Rh/C-based electrocatalysts investigated by on-line DEMS. J Electroanal Chem 681:56–65

    Article  CAS  Google Scholar 

  46. Wang H, Abruña HD (2011) Electrocatalysis of direct alcohol fuel cells: quantitative DEMS studies. In: Bocarsly A, Mingos DMP (eds) Fuel cells and hydrogen storage, vol 141 of structure and bonding. Springer, Berlin Heidelberg, pp 33–83

    Google Scholar 

  47. Panasonic unveils high-power, durable DMFC. Fuel Cells Bull 2010(1):6–7

    Google Scholar 

  48. Samsung shows smallest fuel cell yet for mobile charger, laptop station. Fuel Cells Bull 2007(2):3

    Google Scholar 

  49. Toshiba launches Dynario power source for mobile devices, but only in Japan. Fuel Cells Bull 2009(12):6

    Google Scholar 

  50. Dicks AL (2012) PEM fuel cells: applications. Compr Renew Energy 4:203–245

    Article  Google Scholar 

  51. Samsung SDI (2009) The introduction of fuel cell. Samsung SDI, Seoul. http://www.samsungsdi.com/generation/fuel-cell-battery.jsp. Accessed 15 Sept 2013

  52. http://www.batterystore.com/Saft/SaftPDF/BA5590.pdf. Accessed 5 Apr 2012

  53. http://www.maifl.com/pdfs/BB2590.pdf. Accessed 5 Apr 2012

  54. Kwon JM, Kim YJ, Cho HJ (2011) High-efficiency active DMFC system for portable applications. IEEE Trans Power Electr 26:2201–2209

    Article  Google Scholar 

  55. McConnell VP (2009) Fuel cells feed power-hungry portable electronics. Fuel Cells Bull 2009(6):12–16

    Article  Google Scholar 

  56. MTI Micro debuts embedded DMFC GPS prototype. Fuel Cells Bull 2008(5):1

    Google Scholar 

  57. Toshiba, Hitachi DMFCs feature in prototype audio players, cell phones. Fuel Cells Bull 2005(11):8

    Google Scholar 

  58. Agnolucci P (2007) Economics and market prospects of portable fuel cells. Int J Hydrogen Energy 32:4319–4328

    Article  CAS  Google Scholar 

  59. Kukkonen C (2008) Creating a global fuel cartridge manufacturing and distribution infrastructure. In: Small fuel cells for commercial and military applications, 9th edn. Knowledge Press, Brookline, MA, Chapter 11, pp 195–232

    Google Scholar 

  60. Song I, Cho H, Choi KH, Chang H (2008) Mobile DMFC: enhancement of stack and system stability. In: Small fuel cells for commercial and military applications, 9th edn. Knowledge Press, Brookline, Chapter 10, pp 179–194

    Google Scholar 

  61. NEC unveils fully integrated fuel cell notebook PC. Fuel Cells Bull 2003(8):1

    Google Scholar 

  62. NEC improves notebook fuel cell. Fuel Cells Bull 2003(11):4

    Google Scholar 

  63. Latest DMFC prototypes from Toshiba, Hitachi. Fuel Cells Bull 2003(12):2

    Google Scholar 

  64. Smith T (2004) NEC to show laptop with built-in fuel cell. http://www.theregister.co.uk/2004/10/19/ nec_notebook_fuel-cell. Accessed 15 Sept 2013

  65. Narayanan SR, Valdez TI (2008) High-energy portable fuel cells power sources. ECS Interface 17:40–45

    Google Scholar 

  66. http://www.efoy-pro.com/sites/default/files/sfc_broschuere_en_online_v2_0.pdf. Accessed 15 Sept 2013

  67. Hitachi (2010) Hitachi to take part in direct methanol joint evaluation in the UK with CPI and Hitachi-High technologies. Hitachi, Tokyo. http://www.hitachi.com/New/cnews/090224.pdf. Accessed 15 Sept 2013

  68. http://www.ird.dk/solutions/DMCF.aspx. Accessed 20 May 2013

  69. Darnell Group Inc. Fuel cells for portable power: markets, manufacture and cost. Revised final report (4) for breakthrough technologies & U.S. Fuel Cell Council Submitted 13 Jan 2003, Corona, California; 2003. Report Number: R4

    Google Scholar 

  70. Jollie D (2004) Fuel cell market survey: portable applications. Fuel Cell Today, London

    Google Scholar 

  71. http://www.yankodesign.com/2009/06/29/take-a-cell-phone-swig/. Accessed 5 Apr 2012

  72. http://www.ecofriend.com/entry/eco-gadgets-bacvac-fuel-cell-powered-vacuum-cleaner-for-cable-free-cleaning/. Accessed 5 Apr 2012

  73. Johnson M (1998) Annual report & accounts 1998. http://www.matthey.com/AR98/JMAR98.pdf

  74. Johnson M (2012) Annual report & accounts 2012. http://www.worldreginfo.com/wdoc.aspx?file=Johnson_Matthey/6/EE245FA6-D12A-4173-828C-E16949960766/231810_rfa_2012_en_gb0004764071.pdf

  75. http://www.fuelcellstore.com/en/pc/viewCategories.asp?idCategory=79. Accessed 27 Oct 2012

  76. http://www.ion-power.com/products.html#membrane. Accessed 27 Oct 2012

  77. Tsuchiya H, Kobayashi O (2004) Mass production cost of PEM fuel cell by learning curve. Int J Hydrogen Energy 29:985–990

    Article  CAS  Google Scholar 

  78. Saizensen NK (2001) Development front of fuel cells. A special issue of Nikkei mechanical. Nikkei Business Publications, Japan

    Google Scholar 

  79. Marcinkoski J, James BD, Kalinoski JA, Podolski W, Benjamin T, Kopasz J (2011) Manufacturing process assumptions used in fuel cell system cost analyses. J Power Sources 196:5282–5292

    Article  CAS  Google Scholar 

  80. James BD, Kalinoski JA (2008) Mass production cost estimation for direct H2 PEM fuel cells systems for automotive applications. DOE Hydrogen program 2008 annual merit review, project ID: FC7, 10 Jun 2008, Arlington. http://www.hydrogen.energy.gov/pdfs/review08/fc_7_james.pdf. Accessed 15 Sept 2013

  81. Wee JH (2007) A feasibility study on direct methanol fuel cells for laptop computers based on a cost comparison with lithium-ion batteries. J Power Sources 173:424–436

    Article  CAS  Google Scholar 

  82. Rashidi R, Dincer I, Naterer GF, Berg P (2009) Performance evaluation of direct methanol fuel cells for portable applications. J Power Sources 187:509–516

    Article  CAS  Google Scholar 

  83. Chalk SG, Miller JF (2006) Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J Power Sources 159:73–80

    Article  CAS  Google Scholar 

  84. Fowler M, Mann RF, Amphlett JC, Peppley BA, Roberge PR (2002) Incorporation of voltage degradation into a generalized steady state electrochemical model for a PEM fuel cell. J Power Sources 106:274–283

    Article  CAS  Google Scholar 

  85. Kim YS, Zelenay P (2009) Direct methanol fuel cell durability. In: Büchi FN, Inaba M, Schmidt TJ (eds) Polymer electrolytes fuel cell durability. Springer, New York, pp 223–240

    Google Scholar 

  86. Borup RL, Inbody MA, Wood DL, Pacheco SD, Guidry DR, Xie J, Tafoya JI, Blom D (2003) Fuel cell reformer and stack durability: gasoline reformate & hydrogen – PEM fuel cell durability, Fuel Cell Seminar, Nov 2003, Miami

    Google Scholar 

  87. Wood DL, Xie J, Pacheco SD, Davey JR, Borup RL, Garzon FH, Atanassov P (2004) Durability issues of the PEMFC GDL and MEA under steady-state and drive-cycle operating conditions. Fuel Cell Seminar, San Antonio

    Google Scholar 

  88. Borup R, Davey J, Wood D, Garzon F, Inbody M (2005) PEM fuel cell durability. DOE hydrogen program, FY2005 progress report, pp 1034–1045

    Google Scholar 

  89. Protsailo L (2006) Development of high temperature membrane and improved cathode catalysts for PEM fuel cells. U. S. DOE Hydrogen Program Review, Arlington

    Book  Google Scholar 

  90. Yan Q, Wu J (2005) Durability studies of PEM fuel cell using specified flow plate, 207th meeting electrochem. Soc.; Quebec City, abstract # 1514

    Google Scholar 

  91. Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J Power Sources 158:1222–1228

    Article  CAS  Google Scholar 

  92. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME (2004) Advanced materials for improved PEMFC performance and life. J Power Sources 131:41–48

    Article  CAS  Google Scholar 

  93. Garzon F, Brosha E, Pivovar B, Rockward T, Springer T, Uribe F, Urdampilleta I, Valerio J (2006) Freedom car fuel contaminants: effect on PEMFCs, Annual DOE Fuel Cell Program Review

    Google Scholar 

  94. Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW (2005) Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim Acta 51:754–763

    Article  CAS  Google Scholar 

  95. Suarez-Alcantara K, Solorza-Feria O (2008) Kinetics and PEMFC performance of RuxMoy Sez nanoparticles as a cathode catalyst. Electrochim Acta 53:4981–4989

    Article  CAS  Google Scholar 

  96. Benitez R, Chaparro AM, Daza L (2005) Electrochemical characterisation of Pt/C suspensions for the reduction of oxygen. J Power Sources 151:2–10

    Article  CAS  Google Scholar 

  97. Franceschini EA, Bruno MM, Viva FA, Williams FJ, Jobbágy M, Corti HR (2012) Mesoporous Pt electrocatalyst for methanol tolerant cathodes of DMFC. Electrochim Acta 71:173–180

    Article  CAS  Google Scholar 

  98. Cho E, Ko J-J, Ha HY, Hong S-A, Lee K-Y, Lim T-W, Oh I-H (2003) Characteristics of the PEMFC repetitively brought to temperatures below 0°C. J Electrochem Soc 150:A1667–A1670

    Article  CAS  Google Scholar 

  99. Cappadonia M, Erning JW, Stimming U (1994) Proton conduction of Nafion-117 membrane between 140 K and room temperature. J Electroanal Chem 376:189–193

    Article  CAS  Google Scholar 

  100. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  CAS  Google Scholar 

  101. Corti HR, Nores Pondal F, Buera MP (2006) Low temperature thermal properties of Nafion 117 membranes in water and methanol–water mixtures. J Power Sources 161:799–805

    Article  CAS  Google Scholar 

  102. Mendil-Jakania H, Davies RJ, Dubard E, Guillermo A, Gebel G (2011) Water crystallization inside fuel cell membranes probed by X-ray scattering. J Membr Sci 369:148–154

    Article  Google Scholar 

  103. Hwang BJ, Joseph J, Zeng YZ, Lin CW, Cheng MY (2011) Analysis of states of water in poly (vinyl alcohol) based DMFC membranes using FTIR and DSC. J Membr Sci 369:88–95

    Article  CAS  Google Scholar 

  104. Nores-Pondal FJ, Buera MP, Corti HR (2010) Thermal properties of phosphoric acid-doped polybenzimidazole membranes in water and methanol–water mixtures. J Power Sources 195:6389–6397

    Article  CAS  Google Scholar 

  105. Krewer U, Park JY, Lee JH, Cho H, Pak C, You DJ, Lee YH (2009) Low and high temperature storage characteristics of membrane electrode assemblies for direct methanol fuel cells. J Power Sources 187:103–111

    Article  CAS  Google Scholar 

  106. Yang L, Sun H, Wang S, Jiang L, Sun G (2012) Reversible and irreversible loss in performance in direct methanol fuel cells during freeze/thaw cycles. J Power Sources 219:193–198

    Article  CAS  Google Scholar 

  107. Wilkinson DP (2002) Improving PEM fuel cells robutness and lifetime with respect to reactant starvation. 202nd meeting of electrochemical society, Salt Lake City. Abstract 113

    Google Scholar 

  108. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP (2004) Aging mechanisms and lifetime, PEFC and DMFC. J Power Sources 127:127–134

    Article  CAS  Google Scholar 

  109. Teranishi K, Kawata K, Tsushima S, Hirai S (2006) Degradation mechanism of PEMFC under open circuit operation. Electrochem Solid-State Lett 9:A475–A477

    Article  CAS  Google Scholar 

  110. LaConti AB, Hamdan M, McDonald RC (2003) Mechanisms of membrane degradation. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells – fundamentals, technology and application, vol 3. Wiley, New York, pp 647–662

    Google Scholar 

  111. LaConti AB, Fragala AR, Boyack JR (1977) Proceeding of the symposium on electrode materials and process for energy ConVersion and storage. In: McIntyre JDE, Srinivasan S, Will FG (eds) The electrochemical society, inc., Princeton

    Google Scholar 

  112. Borup R, Davy J, Wood D, Garzon F, Inbody M, Guidry D (2005) PEM fuel cell durability. DOE hydrogen program review. US DOE hydrogen program 2005 annual merit review and peer evaluation meeting, 23–26 May, Arlinton

    Google Scholar 

  113. Kusoglu A, Karlsson AM, Santare MH, Cleghorn S, Johnson WB (2006) Mechanical response of fuel cell membranes subjected to hydro-thermal loading. J Power Sources 161:987–996

    Article  CAS  Google Scholar 

  114. Siroma Z, Fujiwara N, Ioroi T, Yamazaki S, Yasuda K, Miyasaki Y (2004) Dissolution of Nafion membrane and recast Nafion film in mixtures of methanol and water. J Power Sources 125:41–45

    Article  Google Scholar 

  115. Shin SJ, Balabanovich AI, Kim H, Jeong J, Song J, Kim HT (2009) Deterioration of Nafion 115 membrane in direct methanol fuel cells. J Power Sources 191:312–319

    Article  CAS  Google Scholar 

  116. Patterson T (2002) Fuel cell technology topical conference proceedings. In: Igweand GJ, Mah D (eds) AIChE Spring National Meeting, New York, p 313

    Google Scholar 

  117. Xie J, Wood DL, More KL, Atanassov P, Borup RL (2005) Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions. J Electrochem Soc 152:A1011–A1020

    Article  Google Scholar 

  118. Darling RM, Meyers JP (2003) Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc 150:A1523–A1527

    Article  CAS  Google Scholar 

  119. Paik CH, Saloka GS, Graham GW (2007) Influence of cyclic operation on PEM fuel cell catalyst stability. Electrochem Solid-State Lett 10:B39–B42

    Article  CAS  Google Scholar 

  120. Eickes C, Piela P, Davey J, Zelenay P (2006) Recoverable cathode performance loss in direct methanol fuel cells. J Electrochem Soc 153:A171–A-178

    Article  CAS  Google Scholar 

  121. Azaroul M, Romand B, Freyssinet P, Disnar JR (2001) Solubility of platinum in aqueous solutions at 25 °C and pHs 4–10 under oxidizing conditions. Geochim Cosmochim Acta 65:4453–4466

    Article  Google Scholar 

  122. Chen WM, Sun GQ, Guo JS, Zhao XS, Yan SY, Tian J, Tang SH, Zhou ZH, Xin Q (2006) Test on the degradation of direct methanol fuel cell. Electrochim Acta 51:2391–2399

    Article  CAS  Google Scholar 

  123. Jiang LH, Sun GQ, Wang SL, Wang GX, Xin Q, Zhou ZH, Zhou B (2005) Electrode catalysts behavior during direct ethanol fuel cell life-time test. Electrochem Commun 7:663–668

    Article  CAS  Google Scholar 

  124. Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J Electrochem Soc 151:A2053–A2059

    Article  CAS  Google Scholar 

  125. Gancs L, Hult BN, Hakim N, Mukerjee S (2007) The impact of Ru contamination of a Pt/C electrocatalyst on its oxygen-reducing activity. Electrochem Solid-State Lett 10:B150–B154

    Article  CAS  Google Scholar 

  126. Sarma LS, Chen CH, Wang GR, Hsueh KL, Huang CP, Sheu HS, Liu DG, Lee JF, Hwang BJ (2007) Investigations of direct methanol fuel cells (DMFC) fading mechanisms. J Power Sources 167:358–365

    Article  CAS  Google Scholar 

  127. Hamon C, Purdy G, Kim YS, Pivovar B, Zelenay P (2006) Novel process for improved long-term stability of DMFC membrane-electrode assemblies. Proc ECS P2004–21:352–356

    Google Scholar 

  128. Choi JH, Kim YS, Bashyan R, Zelenay P (2006) Ruthenium crossover in DMFCs operating with different proton conducting membranes. ECS Trans 1:437–445

    CAS  Google Scholar 

  129. Landsman DA, Luczak FJ (2003) Catalyst studies and coating technologies. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells. Fundamentals, technology, and applications, vol 4. Wiley, Chichester, pp 811–831

    Google Scholar 

  130. Wood DL, Grot SA, Fly G (2002) Composite gas distribution structure for fuel cell. US Patent 6,350,539

    Google Scholar 

  131. Hou J, Yu H, Zhang S, Sun S, Wang H, Yi B, Ming P (2006) Analysis of PEMFC freeze degradation at −20°C after gas purging. J Power Sources 162:513–520

    Article  CAS  Google Scholar 

  132. Yan QG, Toghiani H, Lee YW, Liang KW, Causey H (2006) Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components. J Power Sources 160:1242–1250

    Article  CAS  Google Scholar 

  133. Lee C, Merida W (2007) Gas diffusion layer durability under steady-state and freezing conditions. J Power Sources 164:141–153

    Article  CAS  Google Scholar 

  134. Wilde PM, Mandle M, Murata M, Berg N (2004) Structural and physical properties of GDL and GDL/BPP combinations and their influence on PEMFC performance. Fuel Cells 4:180–184

    Article  CAS  Google Scholar 

  135. Lee WK, Ho CH, Van Zee JW, Murthy M (1999) The effects of compression and gas diffusion layers on the performance of a PEM fuel cell. J Power Sources 84:45–51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio R. Corti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Franceschini, E.A., Corti, H.R. (2014). Applications and Durability of Direct Methanol Fuel Cells. In: Corti, H., Gonzalez, E. (eds) Direct Alcohol Fuel Cells. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7708-8_9

Download citation

Publish with us

Policies and ethics