Applications and Durability of Direct Methanol Fuel Cells

  • Esteban A. Franceschini
  • Horacio R. Corti


Many companies are making significant efforts in the development of prototypes of DAFC (mainly DMFC) for replace batteries (battery charge and auxiliary power units) in portable devices. Some of the most relevant prototypes are summarized; however, most of these devices are not ready to be commercialized due to the high cost and low power reached. Furthermore, for the massive application of the DAFC technologies is necessary solve some of the drawbacks (as miniaturization, products balance, cost reduction, etc.). The cost of the prototypes is analyzed as well as the degradation of the components that affects the durability of the devices.


Fuel Cell Mobile Phone Catalyst Layer Direct Methanol Fuel Cell Bipolar Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Antonucci V (1999) Direct methanol fuel cells for mobile applications: a strategy for the future. Fuel Cells Bull 1999(7):6–8CrossRefGoogle Scholar
  2. 2.
    Lipman T, Sperling D (2003) Market concepts, competing technologies and cost challenges for automotive and stationary applications. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells: fundamentals, technology and applications, vol 4, part 13. Wiley, Chichester, England, pp 1318–1328Google Scholar
  3. 3.
    Dyer CK (2002) Fuel cells for portable applications. J Power Sources 106:31–34CrossRefGoogle Scholar
  4. 4.
    Aricò AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161CrossRefGoogle Scholar
  5. 5.
    Dillon R, Srinivasan S, Aricò AS, Antonucci V (2004) International activities in DMFC R&D: status of technologies and potential applications. J Power Sources 127:112–126CrossRefGoogle Scholar
  6. 6.
    Kleiner K (2006) Assault on batteries. Nature 441:1046–1047CrossRefGoogle Scholar
  7. 7.
    Zhao TS, Yang WW, Chen R, Wu QX (2010) Towards operating direct methanol fuel cells with highly concentrated fuel. J Power Sources 195:3451–3462CrossRefGoogle Scholar
  8. 8.
    Dyer CK (1999) Replacing the battery in portable electronics. Sci Am 281:88–93CrossRefGoogle Scholar
  9. 9.
    Vielstich W (2003) Electrochemical energy conversion – methanol fuel cell as example. J Braz Chem Soc 14:503–509CrossRefGoogle Scholar
  10. 10.
    Thomas YRJ, Bruno MM, Corti HR (2012) Characterization of a monolithic mesoporous carbon as diffusion layer for micro fuel cells application. Microp Mesop Mat 155:47–55CrossRefGoogle Scholar
  11. 11.
    Lu GQ, Wang CY (2004) Electrochemical and flow characterization of a direct methanol fuel cell. J Power Sources 134:33–40CrossRefGoogle Scholar
  12. 12.
    Lim SW, Kim SW, Kim J, Ahn JE, Han HS, Shul YG (2006) Effect of operation parameters on performance of micro direct methanol fuel cell fabricated on printed circuit board. J Power Sources 161:27–33CrossRefGoogle Scholar
  13. 13.
    Narayanan SR, Valdez TI (2003) Portable direct methanol fuel cell systems. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells: fundamentals, technology and applications, vol 4. Wiley, Chichester, England, Part 1, pp 1133–1141Google Scholar
  14. 14.
    Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88:981–1007Google Scholar
  15. 15.
    Chang H, Kim H, Choi YS, Lee W (2009) Critical issues in the commercialization of DMFC and role of membranes. In: Zaidi J, Matsuura T (eds) Polymer membranes for fuel cells. Springer, New York, pp 317–339, Chapter 13Google Scholar
  16. 16.
    Leach GA (2004) Dangerous goods panel (DGP), International Civil Aviation Organization, meeting of the working group of the whole, Abu Dhabi, 4–8 Oct 2004, Fuel Cell CartridgesGoogle Scholar
  17. 17.
    Leach GA (2007) Dangerous goods panel (DGP), international civil aviation organization, twenty first meeting, Montreal, 5–16 Nov 2007, Carriage of fuel cells by passengersGoogle Scholar
  18. 18.
    Ho DL, Kopasz JP, Benjamin TG, Podolski WF (2011) The U. S. department of energy efforts in fuel cells for portable power applications. ECS Trans 30:337–343CrossRefGoogle Scholar
  19. 19.
    Kamaruddin MZF, Kamarudin SK, Daud WRW, Masdar MS (2013) An overview of fuel management in direct methanol fuel cells. Renew Sustain Energy Rev 24:557–565CrossRefGoogle Scholar
  20. 20.
    Xie C, Bostaph J, Pavio J (2004) Development of a 2W direct methanol fuel cell power source. J Power Sources 136:55–65CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Zhao TS, Chen R, Yang WW, Xu C (2009) Small direct methanol fuel cells with passive supply of reactants. J Power Sources 191:185–202CrossRefGoogle Scholar
  23. 23.
    Achmad F, Karamudin SK, Daud WRW, Majlan EH (2011) Passive direct methanol fuel cells for portable electronic devices. Appl Energy 88:1681–1689CrossRefGoogle Scholar
  24. 24.
    Kim D, Cho EA, Hong SA, Oh IH, Ha HY (2004) Recent progress in passive direct methanol fuel cells at KIST. J Power Sources 131:172–177CrossRefGoogle Scholar
  25. 25.
    Hahn R, Wagner S, Schmitz A, Reichl H (2004) Development of a planar micro fuel cell with thin film and micro patterning technologies. J Power Sources 131:73–78CrossRefGoogle Scholar
  26. 26.
    Broussely M, Archdale G (2004) Li-ion batteries and portable power source prospects for the next 5–10 years. J Power Sources 136:386–394CrossRefGoogle Scholar
  27. 27.
    Goto S (2008) Micro fuel cell system for mobile consumer electronic devices. In: Sony corp. Small fuel cells for commercial and military applications, 9 ed. Knowledge Press, ISBN-10: 1594301360Google Scholar
  28. 28.
    Zhu GR, Loo KH, Lai YM, Tse CK (2012) Quasi-maximum efficiency point tracking for direct methanol fuel cell in DMFC/supercapacitor hybrid energy system. IEEE Trans Energy Conv 27:561–571CrossRefGoogle Scholar
  29. 29.
  30. 30.
  31. 31.
  32. 32.
  33. 33.
  34. 34. Gartner. 2010-07-09. Accessed 5 Apr 2012
  35. 35.
  36. 36.
  37. 37.
    Yoon SK, Na YS, Joung Y, Park J, Kim Y, Hu L, Song I, Cho H (2009) Direct methanol fuel cell systems for portable applications, fuel cell seminar & exposition 18 Nov 2009, Palm SpringsGoogle Scholar
  38. 38.
  39. 39. Accessed 5 May 2012
  40. 40.
    MTI Micro pushes leadership with its Mobion chip. Fuel Cells Bull 2007(7):1Google Scholar
  41. 41.
    DoCoMo prototype micro DMFC recharger for cell phone handsets. Fuel Cells Bull 2004(11):8Google Scholar
  42. 42.
    Fujitsu, DoCoMo triple cell phone charger capacity. Fuel Cells Bull 2005(8):1Google Scholar
  43. 43.
    Takei F, Cooray NF, Yoshida K, Yoshida H, Ebisu K, Suzuki S, Sawatari N (2005) Development of prototype micro fuel cells for mobile electronics. Fujitsu Sci Tech J 41:191–200Google Scholar
  44. 44.
    García G, Florez-Montaño J, Hernandez-Creus A, Pastor E, Planes GA (2011) Methanol electrooxidation at mesoporous Pt and Pt-Ru electrodes: a comparative study with carbon supported materials. J Power Sources 196:2979–2986CrossRefGoogle Scholar
  45. 45.
    Cantane DA, Ambrosio WF, Chatenet M, Lima FHB (2012) Electro-oxidation of ethanol on Pt/C, Rh/C, and Pt/Rh/C-based electrocatalysts investigated by on-line DEMS. J Electroanal Chem 681:56–65CrossRefGoogle Scholar
  46. 46.
    Wang H, Abruña HD (2011) Electrocatalysis of direct alcohol fuel cells: quantitative DEMS studies. In: Bocarsly A, Mingos DMP (eds) Fuel cells and hydrogen storage, vol 141 of structure and bonding. Springer, Berlin Heidelberg, pp 33–83Google Scholar
  47. 47.
    Panasonic unveils high-power, durable DMFC. Fuel Cells Bull 2010(1):6–7Google Scholar
  48. 48.
    Samsung shows smallest fuel cell yet for mobile charger, laptop station. Fuel Cells Bull 2007(2):3Google Scholar
  49. 49.
    Toshiba launches Dynario power source for mobile devices, but only in Japan. Fuel Cells Bull 2009(12):6Google Scholar
  50. 50.
    Dicks AL (2012) PEM fuel cells: applications. Compr Renew Energy 4:203–245CrossRefGoogle Scholar
  51. 51.
    Samsung SDI (2009) The introduction of fuel cell. Samsung SDI, Seoul. Accessed 15 Sept 2013
  52. 52.
  53. 53.
  54. 54.
    Kwon JM, Kim YJ, Cho HJ (2011) High-efficiency active DMFC system for portable applications. IEEE Trans Power Electr 26:2201–2209CrossRefGoogle Scholar
  55. 55.
    McConnell VP (2009) Fuel cells feed power-hungry portable electronics. Fuel Cells Bull 2009(6):12–16CrossRefGoogle Scholar
  56. 56.
    MTI Micro debuts embedded DMFC GPS prototype. Fuel Cells Bull 2008(5):1Google Scholar
  57. 57.
    Toshiba, Hitachi DMFCs feature in prototype audio players, cell phones. Fuel Cells Bull 2005(11):8Google Scholar
  58. 58.
    Agnolucci P (2007) Economics and market prospects of portable fuel cells. Int J Hydrogen Energy 32:4319–4328CrossRefGoogle Scholar
  59. 59.
    Kukkonen C (2008) Creating a global fuel cartridge manufacturing and distribution infrastructure. In: Small fuel cells for commercial and military applications, 9th edn. Knowledge Press, Brookline, MA, Chapter 11, pp 195–232Google Scholar
  60. 60.
    Song I, Cho H, Choi KH, Chang H (2008) Mobile DMFC: enhancement of stack and system stability. In: Small fuel cells for commercial and military applications, 9th edn. Knowledge Press, Brookline, Chapter 10, pp 179–194Google Scholar
  61. 61.
    NEC unveils fully integrated fuel cell notebook PC. Fuel Cells Bull 2003(8):1Google Scholar
  62. 62.
    NEC improves notebook fuel cell. Fuel Cells Bull 2003(11):4Google Scholar
  63. 63.
    Latest DMFC prototypes from Toshiba, Hitachi. Fuel Cells Bull 2003(12):2Google Scholar
  64. 64.
    Smith T (2004) NEC to show laptop with built-in fuel cell. nec_notebook_fuel-cell. Accessed 15 Sept 2013
  65. 65.
    Narayanan SR, Valdez TI (2008) High-energy portable fuel cells power sources. ECS Interface 17:40–45Google Scholar
  66. 66.
  67. 67.
    Hitachi (2010) Hitachi to take part in direct methanol joint evaluation in the UK with CPI and Hitachi-High technologies. Hitachi, Tokyo. Accessed 15 Sept 2013
  68. 68.
  69. 69.
    Darnell Group Inc. Fuel cells for portable power: markets, manufacture and cost. Revised final report (4) for breakthrough technologies & U.S. Fuel Cell Council Submitted 13 Jan 2003, Corona, California; 2003. Report Number: R4Google Scholar
  70. 70.
    Jollie D (2004) Fuel cell market survey: portable applications. Fuel Cell Today, LondonGoogle Scholar
  71. 71.
  72. 72.
  73. 73.
    Johnson M (1998) Annual report & accounts 1998.
  74. 74.
  75. 75.
  76. 76.
  77. 77.
    Tsuchiya H, Kobayashi O (2004) Mass production cost of PEM fuel cell by learning curve. Int J Hydrogen Energy 29:985–990CrossRefGoogle Scholar
  78. 78.
    Saizensen NK (2001) Development front of fuel cells. A special issue of Nikkei mechanical. Nikkei Business Publications, JapanGoogle Scholar
  79. 79.
    Marcinkoski J, James BD, Kalinoski JA, Podolski W, Benjamin T, Kopasz J (2011) Manufacturing process assumptions used in fuel cell system cost analyses. J Power Sources 196:5282–5292CrossRefGoogle Scholar
  80. 80.
    James BD, Kalinoski JA (2008) Mass production cost estimation for direct H2 PEM fuel cells systems for automotive applications. DOE Hydrogen program 2008 annual merit review, project ID: FC7, 10 Jun 2008, Arlington. Accessed 15 Sept 2013
  81. 81.
    Wee JH (2007) A feasibility study on direct methanol fuel cells for laptop computers based on a cost comparison with lithium-ion batteries. J Power Sources 173:424–436CrossRefGoogle Scholar
  82. 82.
    Rashidi R, Dincer I, Naterer GF, Berg P (2009) Performance evaluation of direct methanol fuel cells for portable applications. J Power Sources 187:509–516CrossRefGoogle Scholar
  83. 83.
    Chalk SG, Miller JF (2006) Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J Power Sources 159:73–80CrossRefGoogle Scholar
  84. 84.
    Fowler M, Mann RF, Amphlett JC, Peppley BA, Roberge PR (2002) Incorporation of voltage degradation into a generalized steady state electrochemical model for a PEM fuel cell. J Power Sources 106:274–283CrossRefGoogle Scholar
  85. 85.
    Kim YS, Zelenay P (2009) Direct methanol fuel cell durability. In: Büchi FN, Inaba M, Schmidt TJ (eds) Polymer electrolytes fuel cell durability. Springer, New York, pp 223–240Google Scholar
  86. 86.
    Borup RL, Inbody MA, Wood DL, Pacheco SD, Guidry DR, Xie J, Tafoya JI, Blom D (2003) Fuel cell reformer and stack durability: gasoline reformate & hydrogen – PEM fuel cell durability, Fuel Cell Seminar, Nov 2003, MiamiGoogle Scholar
  87. 87.
    Wood DL, Xie J, Pacheco SD, Davey JR, Borup RL, Garzon FH, Atanassov P (2004) Durability issues of the PEMFC GDL and MEA under steady-state and drive-cycle operating conditions. Fuel Cell Seminar, San AntonioGoogle Scholar
  88. 88.
    Borup R, Davey J, Wood D, Garzon F, Inbody M (2005) PEM fuel cell durability. DOE hydrogen program, FY2005 progress report, pp 1034–1045Google Scholar
  89. 89.
    Protsailo L (2006) Development of high temperature membrane and improved cathode catalysts for PEM fuel cells. U. S. DOE Hydrogen Program Review, ArlingtonCrossRefGoogle Scholar
  90. 90.
    Yan Q, Wu J (2005) Durability studies of PEM fuel cell using specified flow plate, 207th meeting electrochem. Soc.; Quebec City, abstract # 1514Google Scholar
  91. 91.
    Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J Power Sources 158:1222–1228CrossRefGoogle Scholar
  92. 92.
    Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME (2004) Advanced materials for improved PEMFC performance and life. J Power Sources 131:41–48CrossRefGoogle Scholar
  93. 93.
    Garzon F, Brosha E, Pivovar B, Rockward T, Springer T, Uribe F, Urdampilleta I, Valerio J (2006) Freedom car fuel contaminants: effect on PEMFCs, Annual DOE Fuel Cell Program ReviewGoogle Scholar
  94. 94.
    Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW (2005) Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim Acta 51:754–763CrossRefGoogle Scholar
  95. 95.
    Suarez-Alcantara K, Solorza-Feria O (2008) Kinetics and PEMFC performance of RuxMoy Sez nanoparticles as a cathode catalyst. Electrochim Acta 53:4981–4989CrossRefGoogle Scholar
  96. 96.
    Benitez R, Chaparro AM, Daza L (2005) Electrochemical characterisation of Pt/C suspensions for the reduction of oxygen. J Power Sources 151:2–10CrossRefGoogle Scholar
  97. 97.
    Franceschini EA, Bruno MM, Viva FA, Williams FJ, Jobbágy M, Corti HR (2012) Mesoporous Pt electrocatalyst for methanol tolerant cathodes of DMFC. Electrochim Acta 71:173–180CrossRefGoogle Scholar
  98. 98.
    Cho E, Ko J-J, Ha HY, Hong S-A, Lee K-Y, Lim T-W, Oh I-H (2003) Characteristics of the PEMFC repetitively brought to temperatures below 0°C. J Electrochem Soc 150:A1667–A1670CrossRefGoogle Scholar
  99. 99.
    Cappadonia M, Erning JW, Stimming U (1994) Proton conduction of Nafion-117 membrane between 140 K and room temperature. J Electroanal Chem 376:189–193CrossRefGoogle Scholar
  100. 100.
    Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951CrossRefGoogle Scholar
  101. 101.
    Corti HR, Nores Pondal F, Buera MP (2006) Low temperature thermal properties of Nafion 117 membranes in water and methanol–water mixtures. J Power Sources 161:799–805CrossRefGoogle Scholar
  102. 102.
    Mendil-Jakania H, Davies RJ, Dubard E, Guillermo A, Gebel G (2011) Water crystallization inside fuel cell membranes probed by X-ray scattering. J Membr Sci 369:148–154CrossRefGoogle Scholar
  103. 103.
    Hwang BJ, Joseph J, Zeng YZ, Lin CW, Cheng MY (2011) Analysis of states of water in poly (vinyl alcohol) based DMFC membranes using FTIR and DSC. J Membr Sci 369:88–95CrossRefGoogle Scholar
  104. 104.
    Nores-Pondal FJ, Buera MP, Corti HR (2010) Thermal properties of phosphoric acid-doped polybenzimidazole membranes in water and methanol–water mixtures. J Power Sources 195:6389–6397CrossRefGoogle Scholar
  105. 105.
    Krewer U, Park JY, Lee JH, Cho H, Pak C, You DJ, Lee YH (2009) Low and high temperature storage characteristics of membrane electrode assemblies for direct methanol fuel cells. J Power Sources 187:103–111CrossRefGoogle Scholar
  106. 106.
    Yang L, Sun H, Wang S, Jiang L, Sun G (2012) Reversible and irreversible loss in performance in direct methanol fuel cells during freeze/thaw cycles. J Power Sources 219:193–198CrossRefGoogle Scholar
  107. 107.
    Wilkinson DP (2002) Improving PEM fuel cells robutness and lifetime with respect to reactant starvation. 202nd meeting of electrochemical society, Salt Lake City. Abstract 113Google Scholar
  108. 108.
    Knights SD, Colbow KM, St-Pierre J, Wilkinson DP (2004) Aging mechanisms and lifetime, PEFC and DMFC. J Power Sources 127:127–134CrossRefGoogle Scholar
  109. 109.
    Teranishi K, Kawata K, Tsushima S, Hirai S (2006) Degradation mechanism of PEMFC under open circuit operation. Electrochem Solid-State Lett 9:A475–A477CrossRefGoogle Scholar
  110. 110.
    LaConti AB, Hamdan M, McDonald RC (2003) Mechanisms of membrane degradation. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells – fundamentals, technology and application, vol 3. Wiley, New York, pp 647–662Google Scholar
  111. 111.
    LaConti AB, Fragala AR, Boyack JR (1977) Proceeding of the symposium on electrode materials and process for energy ConVersion and storage. In: McIntyre JDE, Srinivasan S, Will FG (eds) The electrochemical society, inc., PrincetonGoogle Scholar
  112. 112.
    Borup R, Davy J, Wood D, Garzon F, Inbody M, Guidry D (2005) PEM fuel cell durability. DOE hydrogen program review. US DOE hydrogen program 2005 annual merit review and peer evaluation meeting, 23–26 May, ArlintonGoogle Scholar
  113. 113.
    Kusoglu A, Karlsson AM, Santare MH, Cleghorn S, Johnson WB (2006) Mechanical response of fuel cell membranes subjected to hydro-thermal loading. J Power Sources 161:987–996CrossRefGoogle Scholar
  114. 114.
    Siroma Z, Fujiwara N, Ioroi T, Yamazaki S, Yasuda K, Miyasaki Y (2004) Dissolution of Nafion membrane and recast Nafion film in mixtures of methanol and water. J Power Sources 125:41–45CrossRefGoogle Scholar
  115. 115.
    Shin SJ, Balabanovich AI, Kim H, Jeong J, Song J, Kim HT (2009) Deterioration of Nafion 115 membrane in direct methanol fuel cells. J Power Sources 191:312–319CrossRefGoogle Scholar
  116. 116.
    Patterson T (2002) Fuel cell technology topical conference proceedings. In: Igweand GJ, Mah D (eds) AIChE Spring National Meeting, New York, p 313Google Scholar
  117. 117.
    Xie J, Wood DL, More KL, Atanassov P, Borup RL (2005) Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions. J Electrochem Soc 152:A1011–A1020CrossRefGoogle Scholar
  118. 118.
    Darling RM, Meyers JP (2003) Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc 150:A1523–A1527CrossRefGoogle Scholar
  119. 119.
    Paik CH, Saloka GS, Graham GW (2007) Influence of cyclic operation on PEM fuel cell catalyst stability. Electrochem Solid-State Lett 10:B39–B42CrossRefGoogle Scholar
  120. 120.
    Eickes C, Piela P, Davey J, Zelenay P (2006) Recoverable cathode performance loss in direct methanol fuel cells. J Electrochem Soc 153:A171–A-178CrossRefGoogle Scholar
  121. 121.
    Azaroul M, Romand B, Freyssinet P, Disnar JR (2001) Solubility of platinum in aqueous solutions at 25 °C and pHs 4–10 under oxidizing conditions. Geochim Cosmochim Acta 65:4453–4466CrossRefGoogle Scholar
  122. 122.
    Chen WM, Sun GQ, Guo JS, Zhao XS, Yan SY, Tian J, Tang SH, Zhou ZH, Xin Q (2006) Test on the degradation of direct methanol fuel cell. Electrochim Acta 51:2391–2399CrossRefGoogle Scholar
  123. 123.
    Jiang LH, Sun GQ, Wang SL, Wang GX, Xin Q, Zhou ZH, Zhou B (2005) Electrode catalysts behavior during direct ethanol fuel cell life-time test. Electrochem Commun 7:663–668CrossRefGoogle Scholar
  124. 124.
    Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J Electrochem Soc 151:A2053–A2059CrossRefGoogle Scholar
  125. 125.
    Gancs L, Hult BN, Hakim N, Mukerjee S (2007) The impact of Ru contamination of a Pt/C electrocatalyst on its oxygen-reducing activity. Electrochem Solid-State Lett 10:B150–B154CrossRefGoogle Scholar
  126. 126.
    Sarma LS, Chen CH, Wang GR, Hsueh KL, Huang CP, Sheu HS, Liu DG, Lee JF, Hwang BJ (2007) Investigations of direct methanol fuel cells (DMFC) fading mechanisms. J Power Sources 167:358–365CrossRefGoogle Scholar
  127. 127.
    Hamon C, Purdy G, Kim YS, Pivovar B, Zelenay P (2006) Novel process for improved long-term stability of DMFC membrane-electrode assemblies. Proc ECS P2004–21:352–356Google Scholar
  128. 128.
    Choi JH, Kim YS, Bashyan R, Zelenay P (2006) Ruthenium crossover in DMFCs operating with different proton conducting membranes. ECS Trans 1:437–445Google Scholar
  129. 129.
    Landsman DA, Luczak FJ (2003) Catalyst studies and coating technologies. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells. Fundamentals, technology, and applications, vol 4. Wiley, Chichester, pp 811–831Google Scholar
  130. 130.
    Wood DL, Grot SA, Fly G (2002) Composite gas distribution structure for fuel cell. US Patent 6,350,539Google Scholar
  131. 131.
    Hou J, Yu H, Zhang S, Sun S, Wang H, Yi B, Ming P (2006) Analysis of PEMFC freeze degradation at −20°C after gas purging. J Power Sources 162:513–520CrossRefGoogle Scholar
  132. 132.
    Yan QG, Toghiani H, Lee YW, Liang KW, Causey H (2006) Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components. J Power Sources 160:1242–1250CrossRefGoogle Scholar
  133. 133.
    Lee C, Merida W (2007) Gas diffusion layer durability under steady-state and freezing conditions. J Power Sources 164:141–153CrossRefGoogle Scholar
  134. 134.
    Wilde PM, Mandle M, Murata M, Berg N (2004) Structural and physical properties of GDL and GDL/BPP combinations and their influence on PEMFC performance. Fuel Cells 4:180–184CrossRefGoogle Scholar
  135. 135.
    Lee WK, Ho CH, Van Zee JW, Murthy M (1999) The effects of compression and gas diffusion layers on the performance of a PEM fuel cell. J Power Sources 84:45–51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Grupo Celdas de Combustible, Departamento de Física de la Materia CondensadaCentro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA)San Martín, Buenos AiresArgentina
  2. 2.Departamento de Física de la Materia CondensadaCentro Atómico Constituyentes, CNEA, and INQUIMAE (Universidad de Buenos Aires – CONICET)Buenos AiresArgentina

Personalised recommendations