Physical Modeling and Numerical Simulation of Direct Alcohol Fuel Cells

Scales, Mechanisms and Approaches
  • Alejandro A. FrancoEmail author


This chapter focuses on the role of physical theory, atomistic/molecular simulation and computational electrochemistry for fundamental understanding, diagnostics and design of new electrochemical materials and operation conditions for Direct Alcohol Fuel Cells (DAFCs). Development of stable and inexpensive materials and components is among the most important technological challenges that DAFCs nowadays are facing. Deep insight based on physical modeling of the materials behavior and aging will advise how these components with optimal specifications could be made and how they can be integrated into operating devices. Ongoing efforts within the community to understand from physical modeling and numerical simulation electrochemical mechanisms and degradation processes in DAFCs are critically reviewed. The capabilities of such approaches to propose innovative procedures (operation strategies and electrodes formulation) to enhance the DAFCs performance and durability are also illustrated through several examples. Finally, emerging multiscale simulation techniques allowing bridging the gap between processes simulated at different scales as well as major challenges and perspectives for DAFC modeling are presented.


Fuel Cell Methanol Oxidation Methanol Concentration Ethanol Oxidation Polymer Electrolyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Grubb WT (1959) Batteries with solid ion exchange electrolyte I. Secondary cells employing metal electrodes. J Electrochem Soc 106:275–277Google Scholar
  2. 2.
    Kolde JA, Bahar B, Wilson MS, Zawodzinski TA, Gottesfeld S (1995) Proton conducting membrane fuel cells, PV95-23. Electrochemical Society, PenningtonGoogle Scholar
  3. 3.
    Wilson MS, Gottesfeld S (1992) Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J Appl Electrochem 22:1–7Google Scholar
  4. 4.
    Perry ML, Fuller TF (2002) A historical perspective of fuel cell technology in the 20th century. J Electrochem Soc 149:S59–S67Google Scholar
  5. 5.
    Jollie D (2005) Fuel cell market survey: portable applications., 6 Sept 2005
  6. 6.
    Mathias M, Gasteiger HA (2002) Electrochemical society proceedings, vol PV 2002-31. In: Murthy M, Fuller TF, Van Zee JW, Gottesfeld S (eds) Third international symposium on PEM fuel cells, Salt Lake CityGoogle Scholar
  7. 7.
    Wang J, Wasmus S, Savinell RF (1995) Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell. J Electrochem Soc 142:4218–4224Google Scholar
  8. 8.
    An L, Zhao TS, Shen SY, Wu QX, Chen R (2010) Performance of a direct ethylene glycol fuel cell with an anion-exchange membrane. Int J Hydrogen Energy 35:4329–4335Google Scholar
  9. 9.
    Lamy C, Belgsir EM, Léger J-M (2001) Electrocatalytic oxidation of aliphatic alcohols: application to the direct alcohol fuel cell (DAFC). J Appl Electrochem 31:799–809Google Scholar
  10. 10.
    Léger J-M, Rousseau S, Coutanceau C, Hahn F, Lamy C (2005) How bimetallic electrocatalysts does work for reactions involved in fuel cells ?: example of ethanol oxidation and comparison to methanol. Electrochim Acta 50:5118–5125Google Scholar
  11. 11.
    Petry OA, Podlovchenko BI, Frumkin AN, Lal H (1965) The behavior of platinized-platinum and platinum-ruthenium electrodes in methanol solutions. J Electroanal Chem 10:253–269Google Scholar
  12. 12.
    Biegler T, Koch DA (1967) Adsorption and oxidation of methanol on a platinum electrode. J Electrochem Soc 114:904–909Google Scholar
  13. 13.
    Sundmacher K, Schultz T, Zhou S, Scott K, Ginkel M, Gilles ED (2001) Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis. Chem Eng Sci 56:333–341Google Scholar
  14. 14.
    Lu GQ, Wang CY (2004) Electrochemical and flow characterization of a direct methanol fuel cell. J Power Sources 134:33–40Google Scholar
  15. 15.
    Bewer T, Beckmann T, Dohle H, Mergel J, Stolten D (2004) Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution. J Power Sources 125:1–9Google Scholar
  16. 16.
    Yang H, Zhao TS, Ye Q (2005) In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields. J Power Sources 139:79–90Google Scholar
  17. 17.
    Aricò AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161Google Scholar
  18. 18.
    Hamnett A (1997) Mechanism and electrocatalysis in the direct methanol fuel cell. Catal Today 38:445Google Scholar
  19. 19.
    Hoster H, Iwasita T, Baumgärtner H, Vielstich W (2001) Pt–Ru model catalysts for anodic methanol oxidation: Influence of structure and composition on the reactivity. Phys Chem Chem Phys 3:337–346Google Scholar
  20. 20.
    Scott K, Taama WM, Argyropoulos P, Sundmacher K (1999) The impact of mass transport and methanol crossover on the direct methanol fuel cell. J Power Sources 83:204Google Scholar
  21. 21.
    Scott K, Taama WM, Cruickshank J (1997) Performance and modelling of a direct methanol solid polymer electrolyte fuel cell. J Power Sources 65:159–171Google Scholar
  22. 22.
    Tüber K, Pócza D, Hebling C (2003) Visualization of water buildup in the cathode of a transparent PEM fuel cell. J Power Sources 124:403–414Google Scholar
  23. 23.
    Zhao TS, Xu C, Chen R, Yang WW (2009) Mass transport phenomena in direct methanol fuel cells. Prog Energy Combus Sci 35:275–292Google Scholar
  24. 24.
    Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells: fundamentals technology and applications. Advances in electrocatalysis, materials, diagnostics and durability: part 1, volume 5.Google Scholar
  25. 25.
    Wang X, Kumar R, Myers DJ (2006) Effect of voltage on platinum dissolution: relevance to polymer electrolyte fuel cells. Electrochem Solid-State Lett 9:A225–A227Google Scholar
  26. 26.
    Swider-Lyons KE, Teliska ME, Baker WS, Bouwman PJ, Pietron JJ (2006) Leveraging metal-support interactions to improve the activity of PEMFC cathode catalysts. ECS Trans 1(6):97–105Google Scholar
  27. 27.
    Xu H, Kunz R, Fenton JM (2007) Investigation of platinum oxidation in PEM fuel cells at various relative humidities. Electrochem Solid-State Lett 10:B1–B5Google Scholar
  28. 28.
    Yazuda K, Taniguchi A, Akita T, Ioroi T, Siroma Z (2006) Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. Phys Chem Chem Phys 8:746–752Google Scholar
  29. 29.
    Ferreira PJ, Shao-Horn Y (2007) Formation mechanism of Pt single-crystal nanoparticles in proton exchangemembrane fuel cells. Electrochem Solid-State Lett 10:B60–B63Google Scholar
  30. 30.
    Franco AA, Coulon R, Ferreira de Morais R, Cheah S-K, Kachmar A, Gabriel MA (2009) Muli-scale modelin-based prediction of PEM fuel cells MEA durability under automotive operating conditions. ECS Trans 25:65–79Google Scholar
  31. 31.
    Ferreira PJ, la O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt∕C electrocatalysts in proton exchange membrane fuel cells: a mechanistic investigation. J Electrochem Soc 152:A2256–A2271Google Scholar
  32. 32.
    Borup RL, Davey JR, Garzon FH, Wood DL, Inbody MA (2006) PEM fuel cell electrocatalyst durability measurements. J Power Sources 163:76–81Google Scholar
  33. 33.
    Bett JAS, Kinoshita K, Stonehart P (1976) Crystallite growth of platinum dispersed on graphitized carbon black II. Effect of liquid environment. J Catalysis 41:124–133Google Scholar
  34. 34.
    Park JY, Scibioh MA, Kim SK, Kim HJ, Oh IH, Lee TG, Ha HY (2009) Investigations of performance degradation and mitigation strategies in direct methanol fuel cells. Int J Hydrogen Energy 34:2043–2051Google Scholar
  35. 35.
    Franco AA (2007) Transient multi-scale modeling of aging mechanisms in a polymer electrolyte fuel cell: an irreversible thermodynamic approach. ECS Trans 6(10):1–23Google Scholar
  36. 36.
    Ball SC, Hudson S, Theobald B, Thompsett D (2006) Carbon supported Pt and PtCo alloys with improved corrosion resistance for PEMFC. 210th ECS meeting, abstract # 552Google Scholar
  37. 37.
    Ball SC, Hudson SL, Theobald BR, Thompsett D (2007) PtCo, a durable catalyst for automotive PEMFC? ECS Trans 11:1267–1278Google Scholar
  38. 38.
    Ball SC, Hudson SL, Hei Leung J, Russell AE, Thompsett D, Theobald BR (2007) Mechanisms of activity loss in PtCo alloy systems. ECS Trans 11:1247–1257Google Scholar
  39. 39.
    Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247Google Scholar
  40. 40.
    Watanabe M, Tsurumi K, Mizukami K, Nakamura T, Stoneharf P (1994) Activity and stability of ordered and disordered Co/Pt alloys for phosphoric acid fuel cells. J Electrochem Soc 141:2659–2668Google Scholar
  41. 41.
    Antolini E, Salgado JRC, Gonzalez ER (2006) The stability of Pt-M alloy catalysts and its effect on the activity in low temperature fuel cells. J Power Sources 160:957–968Google Scholar
  42. 42.
    Colon-Mercado HR, Popov BN (2006) Stability of platinum based alloy cathode catalysts in PEM fuel cells. J Power Sources 155:253–263Google Scholar
  43. 43.
    Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) Ruthenium crossover in direct metanol fuel cell with Pt-Ru black anode. J Electrochem Soc 151:A2053–A2059Google Scholar
  44. 44.
    Surampudi S, Narayanan SR, Vamos E, Frank H, Halpert G, LaConti A, Kosek J, Prakash GKS, Olah GA (1994) Advances in direct oxidation methanol fuel cells. J Power Sources 47:377–385Google Scholar
  45. 45.
    Brankovic SR, Wang JX, Adzic RR (2001) Pt submonolayers on Ru nanoparticles: a novel low Pt loading, high CO tolrerance fuel cell electrocatalyst. Electrochem Solid State Lett 4:A217–A220Google Scholar
  46. 46.
    Waszczuk P, Solla-Gullon J, Kim HS, Tong YY, Montiel V, Aldaz A, Wieckowski A (2001) Methanol electrooxidation on platinum/ruthenium nanoparticle catalysts. J Catal 203:1–6Google Scholar
  47. 47.
    Strasser P (2008) Combinatorial optimization of ternary Pt alloy catalysts for the electrooxidation of methanol. J Combin Chem 10:216–224Google Scholar
  48. 48.
    Markovic NM, Gasteiger HA, Ross PN, Jiang XD, Villegas I, Weaver MJ (1995) Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces. Electrochim Acta 40:91–98Google Scholar
  49. 49.
    Gancs L, Hakim N, Hult BN, Mukerjee S (2006) Dissolution of Ru from PtRu electrocatalysts and its consequences in DMFCs. ECS Trans 3:607–618Google Scholar
  50. 50.
    Ball SC, Hudson SL, Thompsett D, Theobald B (2007) An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobal alloy catalysts during 1.2 V potentiostatic hold. J Power Sources 171:18–25Google Scholar
  51. 51.
    Teranishi K, Kawata K, Tsushima S, Hirai S (2006) Degradation mechanism of PEMFC under open circuit operation. Electrochem Solid-State Lett 9:A475–A477Google Scholar
  52. 52.
    Perry ML, Patterson TW, Reiser C (2006) Systems strategies to mitigate carbon corrosion in fuel cells durability—fuel starvation and start/stop degradation. ECS Trans 3:783–795Google Scholar
  53. 53.
    Li J, He P, Wang K, Davis M, Ye S (2006) Characterization of catalyst layer structural changes in PEMFC as a function of durability testing. ECS Trans 3:743–751Google Scholar
  54. 54.
    Fujii Y, Tsushima S, Teranishi K, Kawata K, Nanjo T, Hirai S (2006) Degradation investigation of PEMFC by scanning electron microscopy and direct gas mass spectroscopy. ECS Trans 3:735–741Google Scholar
  55. 55.
    Baumgartner WR, Wallnöfer E, Schaffer T, Besenhard JO, Hacker V, Peinecke V, Prenninger P (2006) Electrocatalytic corrosion of carbon support in PEMFC at fuel starvation. ECS Trans 3:811–825Google Scholar
  56. 56.
    Tang H, Qi Z, Ramani M, Elter JF (2006) PEM fuel cell cathode carbón corrosión due to the formation of air/fuel boundary at the anode. J Power Sources 158:1306–1312Google Scholar
  57. 57.
    Fuller TF, Gray G (2006) Carbon corrosion induced by partial hydrogen coverage PEMFC stack and system membrane degradation/reliability. ECS Trans 1:345–353Google Scholar
  58. 58.
    Darling RM, Jayne D (2007) Corrosion of polymer-electrolyte fuel cells caused by water at the fuel inlet. ECS Trans 11:975–980Google Scholar
  59. 59.
    Franco AA, Gerard M (2008) Multiscale model of carbon corrosion in a PEFC: coupling with electrocatalysis and impact on performance degradation. J Electrochem Soc 155:B367–B384Google Scholar
  60. 60.
    Shao YY, Yin GP, Gao YZ, Shi PF (2006) Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. J Electrochem Soc 153:A1093–A1097Google Scholar
  61. 61.
    Coloma F, Sepulveda Escribano A, Rodriguez Reinoso F (1995) Heat-treated carbon-blacks as supports for platinum catalysts. J Catal 154:299–305Google Scholar
  62. 62.
    Schulze M, Christenn C (2005) XPS investigation of the PTFE induced hydrophobic properties of electrodes for low temperature fuel cells. Appl Surf Sci 252:148–153Google Scholar
  63. 63.
    Liu W, Zuckerbrod D (2005) In situ detection of hydrogen peroxide in PEM fuel cells. J Electrochem Soc 152:A1165–A1170Google Scholar
  64. 64.
    Merlo L, Ghielmi A, Cirillo L, Gebert M, Arcella V (2007) Resistance to peroxide degradation of Hyflon® ion membranes. J Power Sources 171:140–147Google Scholar
  65. 65.
    Pozio A, Silva RF, De Francesco M, Giorgi L (2003) Nafion degradation in PEFCs from end plate iron contamination. Electrochim Acta 48:1543–1549Google Scholar
  66. 66.
    Inaba M, Kinumoto T, Kiriake M, Umebayashi R, Tasaka A, Ogumi Z (2006) Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim Acta 51:5746–5753Google Scholar
  67. 67.
    Kadirov MK, Bosnjakovic A, Schlick S (2005) Membrane derived fluorinated radicals detected by electron spin resonance in UV-irradiated nafion and dow ionomers. Effect of counterions and H2O2. J Phys Chem B 109:7664–7670Google Scholar
  68. 68.
    Bosnjakovic A, Schlick S (2004) Nafion perfluorinated membranes treated in Fenton media: radical species detected by ESR spectroscopy. J Phys Chem B 108:4332–4337Google Scholar
  69. 69.
    Aoki M, Uchida H, Watanabe M (2005) Novel evaluation method for degradation rate of polymer electrolytes in fuel cells. Electrochem Commun 7:1434–1438Google Scholar
  70. 70.
    Mittal VO, Kunz HR, Fenton JM (2007) Membrane degradation mechanisms in PEMFCs. J Electrochem Soc 154:B652–B656Google Scholar
  71. 71.
    Madden TH, Atrazhev VV, Sultanov VI, Timokhina EN, Burlatsky SF, Gummalla M (2007) Direct mechanism of OH radicals formation in PEM fuel cells. 211th ECS meeting, Abstract 107Google Scholar
  72. 72.
    Mittal VO, Kunz HR, Fenton JM (2006) Is H2O2 involved in the membrane degradation mechanism in PEMFC? Electrochem Solid-State Lett 9:A299–A302Google Scholar
  73. 73.
    Chen C, Fuller TF (2007) H2O2 formation under fuel cell conditions. ECS Trans 11:1127–1137Google Scholar
  74. 74.
    Shim JY, Tsushima S, Hirai S (2008) Characterization and modeling of gas crossover and its impact on the membrane degradation of PEMFCs. ECS Trans 16:1705–1712Google Scholar
  75. 75.
    Hatanaka T, Takeshita T, Murata H, Hasegawa N, Asano T, Kawasumi M, Morimoto Y (2008) Electrode and membrane durability issues of PEFCs. ECS Trans 16:1961–1965Google Scholar
  76. 76.
    Chung Y, Pak C, Park GS, Jeon WS, Kim JR, Lee Y, Chang H, Seung D (2008) Understanding a degradation mechanism of direct methanol fuel cell using TOF-SIMS and XPS. J Phys Chem C 112:313–318Google Scholar
  77. 77.
    Fang B, Luo J, Njoki PN, Loukrakpam R, Wanjala B, Hong J, Yin J, Hu X, Last J, Zhong CJ (2010) Nano-engineered PtVFe catalysts in proton exchange membrane fuel cells: electrocatalytic performance. Electrochim Acta 55:8230–8236Google Scholar
  78. 78.
    Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson HJ (2004) Origin of the overpotential for oxygen reduction at a fuel cell cathode. J Phys Chem B 108:17886–17892Google Scholar
  79. 79.
    Greeley J, Rossmeisl J, Hellmann A, Norskov JK (2007) Theoretical trends in particle size effects for the oxygen reduction reaction. Z Phys Chem 221:1209–1220Google Scholar
  80. 80.
    Jacob T, Goddard WA (2006) Water formation on Pt and Pt-based alloys: a theoretical description of a catalytic reaction. Chem Phys Chem 7:992–1005Google Scholar
  81. 81.
    Jacob T (2006) The mechanism of forming H2O from H2 and O2 over a Pt catalyst via direct oxygen reduction. Fuel Cells 6:159–181Google Scholar
  82. 82.
    Jacob T, Goddard WA III (2004) Agostic interactions and dissociation in the first layer of water on Pt(111). J Am Chem Soc 126:9360–9368Google Scholar
  83. 83.
    Eichler A, Mittendorfer F, Hafner J (2000) Precursor-mediated adsorption of oxygen on the (111) surfaces of platinum-group metals. Phys Rev B 62:4744–4755Google Scholar
  84. 84.
    Eichler A, Hafner J (1997) Molecular precursors in the dissociative adsorption of O2 on Pt(111). Phys Rev Lett 79:4481–4484Google Scholar
  85. 85.
    Kandoi S, Gokhale AA, Grabow LC, Dumesic JA, Mavrikakis M (2004) Why Au and Cu are more selective than Pt for preferential oxidation of Co at low temperature? Catal Lett 93:93–100Google Scholar
  86. 86.
    Jacob T, Goddard WA III (2004) Adsorption of atomic H and O on the (111) surface of Pt3Ni alloys. J Phys Chem B 108:8311–8323Google Scholar
  87. 87.
    Xu Y, Ruban AV, Mavrikakis M (2004) Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. J Am Chem Soc 126:4717–4725Google Scholar
  88. 88.
    Ma Y, Balbuena PB (2007) OOH dissociation on Pt clusters. Chem Phys Lett 447:289–294Google Scholar
  89. 89.
    Wang Y, Balbuena PB (2005) Potential energy surface profile of the oxygen reduction reaction on a Pt cluster: adsorption and decomposition of OOH and H2O2. J Chem Theory Comput 1:935–943Google Scholar
  90. 90.
    Wang Y, Balbuena PB (2005) Design of oxygen reduction bimetallic catalysts: ab-initio-derived thermodynamic guidelines. J Phys Chem B 109:18902–18906Google Scholar
  91. 91.
    Spendelow JS, Babu PK, Wieckowski A (2005) Electrocatalytic oxidation of carbon monoxide and methanol on platinum surfaces decorated with ruthenium. Curr Opin Solid State Mat Sci 9:37–48Google Scholar
  92. 92.
    Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9:2654–2675Google Scholar
  93. 93.
    Borkowska Z, Tymosiak-Zielinska A, Shul G (2004) Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim Acta 49:1209–1220Google Scholar
  94. 94.
    Parpot P, Bettencourt AP, Carvalho AM, Belgsir EM (2000) Biomass conversion: attempted electrooxidation of lignin for vanillin production. J Appl Electrochem 30:727–731Google Scholar
  95. 95.
    Parpot P, Bettencourt AP, Chamoulaud G, Kokoh KB, Beigsir EM (2004) Electrochemical investigations of the oxidation–reduction of furfural in aqueous medium: application to electrosynthesis. Electrochim Acta 49:397–403Google Scholar
  96. 96.
    Parpot P, Nunes N, Bettencourt AP (2006) Electrocatalytic oxidation of monosaccharides on gold electrode in alkaline medium. Structure-reactivity relationship. J Electroanal Chem 596:65–73Google Scholar
  97. 97.
    Parpot P, Pires SG, Bettencourt AP (2004) Electrocatalytic oxidation of D-galactose in alkaline medium. J Electroanal Chem 566:401–408Google Scholar
  98. 98.
    Parpot P, Santos PRB, Bettencourt AP (2007) Electro-oxidation of d-mannose on platinum, gold and nickel electrodes in aqueous medium. J Electroanal Chem 610:154–162Google Scholar
  99. 99.
    Yan SH, Zhang SC, Lin Y, Liu GR (2011) Electrocatalytic performance of gold nanoparticles supported on activated carbon for methanol oxidation in alkaline solution. J Phys Chem C 115:6986–6993Google Scholar
  100. 100.
    Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:121–229Google Scholar
  101. 101.
    Yu E, Krewer U, Scott K (2010) Principles and materials aspects of direct alkaline fuel cells. Energies 3:1499–1528Google Scholar
  102. 102.
    Tripkovic AV, Popovic KD, Grgur BN, Blizanac B, Ross PN, Markovic NM (2002) Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim Acta 47:3707–3714Google Scholar
  103. 103.
    Colmati F, Tremiliosi G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2009) The role of the steps in the cleavage of the C-C bond during ethanol oxidation on platinum electrodes. Phys Chem Chem Phys 11:9114–9123Google Scholar
  104. 104.
    Lu GQ, Wieckowski A, Wasileski S, Neurock M (2005) Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach. J Phys Chem B 109:11622–11633Google Scholar
  105. 105.
    Hartnig C, Spohr E (2005) The role of water in the initial steps of methanol oxidation on Pt(111). Chem Phys 319:185–191Google Scholar
  106. 106.
    Brankovic SR, Wang JX, Zhu Y, Sabatini R, McBreen J, Adzic RR (2002) Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surfaces. J Electroanal Chem 524:231–241Google Scholar
  107. 107.
    Lai SCS, Kleyn SEF, Rosca V, Koper MTM (2008) Mechanism of the dissociation and electrooxidation of ethanol and acetaldehyde on platinum as studied by SERS. J Phys Chem C 112:19080–19087Google Scholar
  108. 108.
    Lai SCS, Koper MTM (2008) Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes. Faraday Discuss 140:399–416Google Scholar
  109. 109.
    Lai SCS, Kleijn SEF, Ozturk FTZ, Vellinga VCV, Koning J, Rodriguez P, Koper MTM (2010) Catalysis Today 154:92–104Google Scholar
  110. 110.
    Neurock M, Vielstich HA, Yokokawa GH (2009) First principles modeling for the electrooxidation of small molecules. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells. Wiley, HobokenGoogle Scholar
  111. 111.
    Cui G, Song S, Kang Shen P, Kowal A, Bianchini C (2009) First-principles considerations on catalytic activity of Pd toward ethanol oxidation. J Phys Chem C 113:15639–15645Google Scholar
  112. 112.
    Zhang L, Zhang J, Wilkinson DP, Wang H (2006) Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sources 156:171–182Google Scholar
  113. 113.
    Cao D, Wieckowski A, Inukai J, Alonso-Vante N (2006) Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur. J Electrochem Soc 153:A869–A874Google Scholar
  114. 114.
    Trapp V, Christensen P, Hamnett A (1996) New catalysts for oxygen reduction based on transition-metal sulfides. Faraday Trans 92:4311–4319Google Scholar
  115. 115.
    Vayner E, Sidik RA, Anderson AB, Popov BN (2007) Experimental and theoretical study of cobalt selenide as a catalyst for O2 electroreduction. J Phys Chem C 111:10508–10513Google Scholar
  116. 116.
    Alonso-Vante N, Bogdanoff P, Tributsch H (2000) On the origin of the selectivity of oxygen reduction of ruthenium-containing electrocatalysts in methanol-containing electrolyte. J Catal 190:240–246Google Scholar
  117. 117.
    Racz A, Bele P, Cremers C, Stimming U (2007) Ruthenium selenide catalysts for cathodic oxygen reduction in direct methanol fuel cells. J Appl Electrochem 37:1455–1462Google Scholar
  118. 118.
    Le Rhun V, Garnier E, Pronier S, Alonso-Vante N (2000) Electrocatalysis on nanoscale ruthenium-based material manufactured by carbonyl decomposition. Electrochem Commun 2:475–479Google Scholar
  119. 119.
    Lewera A, Inukai J, Zhou WP, Cao D, Duong HT, Alonso-Vante N et al (2007) Chalcogenide oxygen reduction reaction catalysis: X-ray photoelectron spectroscopy with Ru, Ru/Se and Ru/S samples emersed from aqueous media. Electrochim Acta 52:5759–5765Google Scholar
  120. 120.
    Bron M, Bogdanoff P, Fiechter S, Dorbandt I, Hilgendorff M, Schulenburg H et al (2001) Carbon supported catalysts for oxygen reduction in acidic media prepared by thermolysis of Ru3C12. J Electroanal Chem 500:510–517Google Scholar
  121. 121.
    Dassenoy F, Vogel W, Alonso-Vante N (2002) Structural studies and stability of cluster-like RuxSey electrocatalysts. J Phys Chem B 106:12152–12157Google Scholar
  122. 122.
    Zaikovskii VI, Nagabhushana KS, Kriventsov VV, Loponov KN, Cherepanova SV, Kvon RI et al (2006) Synthesis and structural characterization of Se-modified carbon-supported Ru nanoparticles for the oxygen reduction reaction. J Phys Chem B 110:6881–6890Google Scholar
  123. 123.
    Skúlason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jónsson H, Nørskov JK (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys Chem Chem Phys 9:3241–3250Google Scholar
  124. 124.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892Google Scholar
  125. 125.
    Ferrin P, Nilekar AU, Greeley J, Mavrikakis M, Rossmeisl J (2008) Reactivity descriptors for direct methanol fuel cell anode catalysts. Surf Sci 602:3424–3431Google Scholar
  126. 126.
    Tritsaris GA, Greeley J, Rossmeisl J, Norskov JK (2011) Trends in oxygen reduction and methanol activation on transition metal chalcogenides. Electrochim Acta 56:9783–9788Google Scholar
  127. 127.
    Carr R, Parrinello M (1985) Unified approach for molecular dynamics and density functional theory. Phys Rev Lett 55:2471–2474Google Scholar
  128. 128.
    Grob A (2003) Theoretical surface science: a microscopic perspective. Springer, New YorkGoogle Scholar
  129. 129.
    Goddard W III, Merinov B, Van Duin A, Jacob T, Blanco M, Molinero V, Jang SS, Jang YH (2006) Multiparadigm multiscale simulations for fuel cell catalysts and membranes. Mol Simulat 32:251–268Google Scholar
  130. 130.
    Filhol JS, Neurock M (2006) Elucidation of the electrochemical activation of water over Pd by first principles. Angew Chem Int Ed 45:402–406Google Scholar
  131. 131.
    Janik MJ, Neurock M (2007) A first principles analysis of the electro-oxidation of CO over Pt(111). Electrochim Acta 52:5517–5528Google Scholar
  132. 132.
    Janik MJ, Taylor CD, Neurock M (2009) First-principles analysis of the initial electroreduction steps of oxygen over Pt(111). J Electrochem Soc 156:B126–B135Google Scholar
  133. 133.
    Kawakami T, Shigemoto I (2005) Molecular-dynamics studies on the structures of polymer electrolyte membranes and the diffusion mechanism of protons and small molecules. In: Nakahara M, Matubayasi N, Ueno M, Yasuoka K, Watanabe K (eds) Water, steam, and aqueous solutions for electric power. Proceeding of the 14th international conferance properties of water and steam. Maruzen Co., Ltd., Japan, pp 415–420Google Scholar
  134. 134.
    Ureta-Zañartul MS, Berríos C, González T, Fernández F, Báez D, Salazar R, Gutiérrez C (2012) Electrocatalytic oxidation of alcohols at gold electrodes in alkaline media. Int J Electrochem Sci 7:8905–8928Google Scholar
  135. 135.
    Anderson AB, Albu TV (2000) Catalytic effect of platinum on oxygen reduction: an ab initio model including electrode potential dependence. J Electrochem Soc 147:4229–4238Google Scholar
  136. 136.
    Rai V, Aryanpour M, Pitsch H (2008) First principles analysis of oxygen-containing adsorbates formed from the electrochemical discharge of water on Pt(111). J Phys Chem C 112:9760–9768Google Scholar
  137. 137.
    Panchenko A, Koper MTM, Shubina TE, Mitchell SJ, Roduner E (2004) Ab initio calculations of intermediates of oxygen reduction on low-index platinum surfaces. J Electrochem Soc 151:A2016–A2027Google Scholar
  138. 138.
    Vassilev P, Koper MTM (2007) Electrochemical reduction of oxygen on gold surfaces. A density functional theory study of intermediations and reaction paths. J Phys Chem C 111:2607–2613Google Scholar
  139. 139.
    Subbaraman R, Strumcnik D, Stamenkovic V, Markovic NM (2010) Three phase interfaces at electrified metal-solid electrolyte systems 1. Study of the Pt(hkl)-Nafion interface. J Phys Chem C 114:8414–8422Google Scholar
  140. 140.
    Ohma A, Fushinobu K, Okazaki K (2010) Influence of Nafion® film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell. Electrochim Acta 55:8829–8838Google Scholar
  141. 141.
    Sousa R, Gonzalez ER (2005) Mathematical modeling of polymer electrolyte fuel cells. J Power Sources 147:32–45Google Scholar
  142. 142.
    Hsu NY, Yen SC, Jeng KT, Chien CC (2006) Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives. J Power Sources 161:232–239Google Scholar
  143. 143.
    Du CY, Zhao TS, Xu C (2007) Simultaneous oxygen reduction and methanol oxidation reactions at the cathode of a DMFC. A model-based electrochemical impedance spectroscopy study. J Power Sources 167:265–271Google Scholar
  144. 144.
    Macdonald DD (2006) Reflections on the history of electrochemical impedance spectroscopy. Electrochim Acta 51:1376–1388Google Scholar
  145. 145.
    Oliveira VB, Falcão DS, Rangel CM, Pinto AMFR (2007) A comparative study of approaches for direct methanol fuel cells modeling. Int J Hydrogen Energy 32:415–424Google Scholar
  146. 146.
    Scott K, Taama W, Cruickshank J (1998) Performance a direct methanol fuel cell. J Appl Electrochem 28:289–297Google Scholar
  147. 147.
    Kulikovsky AA, Divisek J, Kornyshev AA (1999) Modeling the cathode compartment of polymer electrolyte fuel cells: dead and active reaction zones. J Electrochem Soc 146:3981–3991Google Scholar
  148. 148.
    Kauranen PS, Skou E (1996) Mixed methanol oxidation/oxygen reduction currents on a carbon supported Pt catalyst. J Electroanal Chem 408:189–198Google Scholar
  149. 149.
    Simoglou A, Argyropoulos P, Martin EB, Scott K, Morris AJ, Taama WM (2001) Dynamic modeling of the voltage response of direct methanol fuel cells and stacks. Part II: feasibility study of model-based scale-up and scale down. Chem Eng Sci 56:6761–6772Google Scholar
  150. 150.
    Simoglou A, Argyropoulos P, Martin EB, Scott K, Morris AJ, Taama WM (2001) Dynamic modeling of the voltage response of direct methanol fuel cells and stacks. Part I: model development and validation. Chem Eng Sci 56:6773–6779Google Scholar
  151. 151.
    Argyropoulos P, Scott K, Shukla AK, Jackson C (2003) A semi-empirical model of the direct methanol fuel cell performance. Part I. Model development and verification. J Power Sources 123:190–199Google Scholar
  152. 152.
    Dohle H, Wippermann K (2004) Experimental evaluation and semi-empirical modeling of i-V characteristics and methanol permeation of a direct methanol fuel cell. J Power Sources 135:152–164Google Scholar
  153. 153.
    Baxter SF, Battaglia VS, White RE (1999) Methanol fuel cell model: anode. J Electrochem Soc 146:437–447Google Scholar
  154. 154.
    Wang J-T, Savinell RF (1994) In: Srinivasan S, Macdonald DD, Khandkar AC (eds) Electrode materials and processes for energy conversion and storage, PV 94-23. The Electrochemical Society Proceedings Series, Pennington, p 326Google Scholar
  155. 155.
    Kulikovsky A (2003) Analytical model of the anode side of DMFC: the effect of non-Tafel kinetics on cell performance. Electrochem Commun 5:530–538Google Scholar
  156. 156.
    Kulikovsky A, Divisek J, Kornyshev AA (2000) Two-dimensional simulation of a direct methanol fuel cell: a new (embedded) type of current collector. J Electrochem Soc 147:953–959Google Scholar
  157. 157.
    Kulikovsky AA (2000) Two-dimensional numerical modeling of a direct methanol fuel cell. J Appl Electrochem 30:1005–1014Google Scholar
  158. 158.
    Dohle H, Divisek J, Jung R (2000) Process engineering of the direct methanol fuel cell. J Power Sources 86:469–477Google Scholar
  159. 159.
    Scott K, Argyropoulos P, Sundmacher K (1999) A model for the liquid feed direct methanol fuel cell. J Electroanal Chem 477:97–110Google Scholar
  160. 160.
    Sundmacher K, Scott K (1999) Direct methanol polymer electrolyte fuel cell: analysis of charge and mass transfer in the vapour-liquid–solid system. Chem Eng Sci 54:2927–2936Google Scholar
  161. 161.
    Argyropoulos P, Scott K, Taama WM (2000) Hydrodynamic modeling of direct methanol liquid feed fuel cell stacks. J Appl Electrochem 30:899–913Google Scholar
  162. 162.
    Siebke A, Meier F, Eigenberger G, Fischer M (2001) Modeling of liquid direct methanol fuel cells. 3rd European Congress of Chemical Engineering (ECCE) Nuremberg, GermanyGoogle Scholar
  163. 163.
    Xu C, Follmann PM, Biegler LT, Jhon MS (2005) Numerical simulation and optimization of a direct methanol fuel cell. Comp Chem Eng 29:1849–1860Google Scholar
  164. 164.
    Bade Shrestha SO, Mohan S (2011) Performance and modeling of a direct methanol fuel cell. In: Proceedings of the World Congress on Engineering vol III LondonGoogle Scholar
  165. 165.
    Nordlund J, Lindbergh G (2002) A model for the porous direct methanol fuel cells anode. J Electrochem Soc 149:A1107–A1113Google Scholar
  166. 166.
    Murgia G, Pisani L, Shukla AK, Scott K (2003) A numerical model of a liquid-feed solid polymer electrolyte DMFC and its experimental validation. J Electrochem Soc 150:A1231–A1245Google Scholar
  167. 167.
    Wang ZH, Wang CY (2003) Mathematical modeling of liquid-feed direct methanol fuel cells. J Electrochem Soc 150:A508–A519Google Scholar
  168. 168.
    García BL, Sethuraman VA, Weidner JW, White RE (2004) Mathematical model of a direct methanol fuel cell. J Fuel Cell Sci Technol 1:43–48Google Scholar
  169. 169.
    Guo H, Ma C (2004) 2D analytical model of a direct methanol fuel cell. Electrochem Commun 6:306–312Google Scholar
  170. 170.
    Scharfer P, Schabel W, Kind M (2008) Modeling of alcohol and water diffusion in fuel cell membranes—experimental validation by means of in situ Raman spectroscopy. Chem Eng Sci 63:4676–4684Google Scholar
  171. 171.
    Kulikovsky AA (2005) Model of the flow with bubbles in the anode channel and performance of a direct methanol fuel cell. Electrochem Commun 7:237Google Scholar
  172. 172.
    Kulikovsky AA (2006) Bubbles in the anode channel and performance of a DMFC: asymptotic solutions. Electrochim Acta 51:2003–2011Google Scholar
  173. 173.
    Argyropoulos P, Scott K, Taama WM (1999) One-dimensional thermal model for direct methanol fuel cell stacks. Part I. model development. J Power Sources 79:169–183Google Scholar
  174. 174.
    Argyropoulos P, Scott K, Taama WM (1999) One-dimensional thermal model for direct methanol fuel cell stacks. Part II. Model based parametric analysis and predicted temperature profiles. J Power Sources 79:184–198Google Scholar
  175. 175.
    Schultz T, Sundmacher K (2005) Rigorous dynamic model of a direct methanol fuel cell based on Maxwell-Stefan mass transport equations and a Flory-Huggins activity model: formulation and experimental validation. J Power Sources 145:435–462Google Scholar
  176. 176.
    Meyers JP, Newman J (2002) Simulation of the direct methanol fuel cell I. Thermodynamic framework for a multicomponent membrane. J Electrochem Soc 149:A710–A717Google Scholar
  177. 177.
    Meyers JP, Newman J (2002) Simulation of the direct methanol fuel cell II. Modeling and data analysis of transport and kinetic phenomena. J Electrochem Soc 149:A718–A728Google Scholar
  178. 178.
    Xing L, Scott K, Sun Y-P (2011) Transient response and steady-state analysis of the anode of direct methanol fuel cells based on dual-site kinetics. Int J Electrochem Article 853261Google Scholar
  179. 179.
    Krewer U, Song Y, Sundmacher K, John V, Lübke R, Matthies G, Tobiska L (2004) Chem Eng Sci 59:119–130Google Scholar
  180. 180.
    Yang WW, Zhao TS, Xu C (2007) Three-dimensional two-phase mass transport model for direct methanol fuel cells. Electrochim Acta 53:853–862Google Scholar
  181. 181.
    Omran MP, Farhadi M, Sedighi K (2011) The effect of cell temperature and channel geometry on the performance of a direct methanol fuel cell. J Fuel Cell Sci Technol 8:061004Google Scholar
  182. 182.
    Lam A, Wetton B, Wilkinson DP (2011) One-dimensional model for a direct methanol fuel cell with a 3D anode structure. J Electrochem Soc 158:B29–B35Google Scholar
  183. 183.
    Basri S, Kamarudin SK, Daud WRW, Yaakub Z, Ahmad MM, Hashim N, Hasran UA (2009) Unsteady-state modeling for a passive liquid-feed DMFC. Int J Hydrogen Energy 34:5759–5769Google Scholar
  184. 184.
    Chen R, Zhao TS (2005) Mathematical modeling of a passive-feed DMFC with heat transfer effect. J Power Sources 152:122–130Google Scholar
  185. 185.
    Cai W, Li S, Feng L, Zhang J, Song D, Xing W, Liu C (2011) Transient behavior analysis of a new designed passive direct methanol fuel cell fed with highly concentrated methanol. J Power Sources 196:3781–3789Google Scholar
  186. 186.
    Xu C, Faghri A (2010) Water transport characteristics in a passive liquid-feed DMFC. Int J Heat Mass Transfer 53:1951–1966Google Scholar
  187. 187.
    Andreadis G, Song S, Tsiakaras P (2006) Direct ethanol fuel cell anode simulation model. J Power Sources 157:657–665Google Scholar
  188. 188.
    Sarris I, Tsiakaras P, Song S, Vlachos S (2006) A three-dimensional CFD model of direct ethanol fuel cells: anode flow bed analysis. Solid State Ion 177:2133–2138Google Scholar
  189. 189.
    Suresh NS, Jayanti S (2009) Modelling of cross-over effects in direct ethanol fuel cells (DEFCs), AIChE proceedings, paper:161991
  190. 190.
    Andreadis G, Tsiakaras P (2006) Ethanol crossover and direct ethanol PEM fuel cell performance modeling and experimental validation. Chem Eng Sci 61:7497–7508Google Scholar
  191. 191.
    Pramanik H, Basu S (2010) Modeling and experimental validation of overpotentials of a direct ethanol fuel cell. Chem Eng Process 49:635–642Google Scholar
  192. 192.
    Meyer M, Melke J, Gerteisen D (2011) Modeling and simulation of a direct ethanol fuel cell considering multistep electrochemical reactions, transport processes and mixed potentials. Electrochim Acta 56:4299–4307Google Scholar
  193. 193.
    Tang D, Chen H, Hou QH, Lv HM, Ni HJ (2011) Two-dimensional numerical simulations of tubular cathode in a direct ethanol fuel cell. Adv Mat Res 311–313:2362–2366Google Scholar
  194. 194.
    Antolini E, Gonzalez ER (2010) The electro-oxidation of carbon monoxide, hydrogen/carbon monoxide and methanol in acid medium on Pt-Sn catalysts for low-temperature fuel cells: a comparative review of the effect of Pt-Sn structural characteristics. Electrochim Acta 55:6485–6490Google Scholar
  195. 195.
    Kulikovsky AA (2011) A model for carbon and Ru corrosion due to methanol depletion in DMFC. Electrochim Acta 56:9846–9850Google Scholar
  196. 196.
    Franco AA (2012) PEMFC degradation modeling and analysis. In: Hartnig C, Roth C (eds) Polymer electrolyte membrane and direct methanol fuel cell technology (PEMFCs and DMFCs). Volume 1: Fundamentals and performance. Woodhead, Cambridge, UKGoogle Scholar
  197. 197.
    Franco AA (2013) Toward a bottom-up multiscale modeling framework for the transient analysis of PEM fuel cells operation. In: Franco AA (ed) Polymer electrolyte fuel cells: science, applications and challenges. CRC Press/Taylor & Francis Group, Boca RatonGoogle Scholar
  198. 198.
    Moçotéguy P, Druart F, Bultel Y, Besse S, Rakotondrainibe A (2007) Monodimensional modeling and experimental study of the dynamic behavior of proton exchange membrane fuel cell stack operating in dead-end mode. J Power Sources 167:349–357Google Scholar
  199. 199.
    Jang SS, Merinov BV, Jacob T, Goddard III WA (2005) In: International conference on solid state ionics-15, Abstract P498, International Solid State IonicsGoogle Scholar
  200. 200.
    Wang JX, Springer TE, Adzic RR (2006) Dual –pathway kinetic equation for the hydrogen oxidation reaction on Pt electrodes. J Electrochem Soc 153:A1732–A1740Google Scholar
  201. 201.
    Krapf D, Quinn BM, Wu M-Y, Zandbergen HW, Dekker C, Lemay SG (2006) Experimental observation of nonlinear ionic transport at the nanometer scale. Nanoletters 6:2531–2535Google Scholar
  202. 202.
    Greeley J, Norskov JK (2007) Electrochemical dissolution of surface alloys in acids: thermodynamic trends from first-principles calculations. Electrochim Acta 52:5829–5836Google Scholar
  203. 203.
    Choukroun R, de Caro D, Chaudret B, Lecante P, Snoeck E (2001) H2-induced structural evolution in non-crystalline rhodium nanoparticles. New J Chem 25:525–527Google Scholar
  204. 204.
    Zhu L, Wang R, King TS, DePristo AE (1997) Effects of chemisorption on the surface. Composition of bimetallic catalysts. J Catal 167:408–411Google Scholar
  205. 205.
    Franco AA (2010) A multiscale modeling framework for the transient analysis of electrochemical power generators—From theory to the engineering practice, Habilitation Manuscript (H.D.R.), Université Claude Bernard Lyon 1.Google Scholar
  206. 206.
    Franco AA (2005) A physical multi-scale model of the electrochemical dynamics in a polymer electrolyte fuel cell—An infinite dimensional bond graph approach, Ph.D. thesis, Université Claude Bernard Lyon 1Google Scholar
  207. 207.
    Lopes Oliveira LF, Laref S, Mayousse E, Jallut C, Franco AA (2012) A multiscale physical model for the transient analysis of PEM Water Electrolyzer Anodes. Phys Chem Chem Phys 14:10215–10224Google Scholar
  208. 208.
    Cheah SK, Sycardi O, Guetaz L, Lemaire O, Gelin P, Franco AA (2011) CO impact on the stability properties of PtxCoy nanoparticles in PEMFC anodes: mechanistic insights from a combined experimental and modeling approach. J Electrochem Soc 158:B1358–B1367Google Scholar
  209. 209.
    Malek K, Franco AA (2011) Microstructural resolved modeling of aging mechanisms in PEMFC. J Phys Chem B 115:8088–8101Google Scholar
  210. 210.
    Ferreira de Morais R, Loffreda D, Sautet P, Franco AA (2011) Multi-scale Modeling Methodology to predict electrochemical observables from ab initio data: application to the ORR in a Pt(111)-based PEMFC. Electrochim Acta 56:10842–10856Google Scholar
  211. 211.
    Coulon R, Bessler W, Franco AA (2010) Modeling chemical degradation of a polymer electrolyte membrane and its impact on fuel cell performance. ECS Trans 25:259–273Google Scholar
  212. 212.
    Franco AA, Passot S, Fugier P, Billy E, Guillet N, Guetaz L, De Vito E, Mailley S (2009) PtxCoy catalysts degradation in PEFC environments: mechanistic insights—part I: multi-scale modeling. J Electrochem Soc 156:B410–B424Google Scholar
  213. 213.
    Franco AA, Guinard M, Barthe B, Lemaire O (2009) Impact of carbon monoxide on PEFC catalyst carbon support degradation under current-cycled operating conditions. Electrochim Acta 54:5267–5279Google Scholar
  214. 214.
    Franco AA, Tembely M (2007) Transient multi-scale model of aging mechanisms in a PEFC cathode. J Electrochem Soc 154:B712–B723Google Scholar
  215. 215.
    Franco AA, Schott P, Jallut C, Maschke B (2006) A dynamic mechanistic model of an electrochemical interface. J Electrochem Soc 153:A1053–A1061Google Scholar
  216. 216.
    Maschke B, van der Schaft AJ (2001) Canonical interdomain coupling in distributed parameter systems: an extension of the symplectic gyrator. In: Proceedings of the international mechanical engineering congress and exposition. ASME, New YorkGoogle Scholar
  217. 217.
    Couenne F, Jallut C, Maschke B, Breedveld P, Tayakout M (2006) Bond graph modeling for chemical reactors. Math Comp Model Dynam Syst 12:159–174Google Scholar
  218. 218.
    Franco AA, Jallut C, Maschke B (2006) Multi-scale bond graph model of the electrochemical dynamics in a fuel cell. In: Troch I, Breitenecker F (eds) Proceeding 5th Mathmod conference, Vienna P103Google Scholar
  219. 219.
    Franco AA, Bessler WG, Coulon R, Ichinose D (2013) Paper in preparationGoogle Scholar
  220. 220.
    Eikerling M, Malek K, Wang Q (2008) Catalyst layer modeling: structure, properties, and performance. In: Zhang JJ (ed) PEM fuel cells catalysts and catalyst layers—fundamentals and applications. Springer, LondonGoogle Scholar
  221. 221.
  222. 222.
    Franco AA, Xue KH (2013) Carbon-based electrodes for lithium air batteries: scientific and technological challenges from a modeling perspective. ECS J Solid State Sci Technol 2(10):M3084Google Scholar
  223. 223.
    Franco AA (2013) Multiscale modeling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Adv 3(32):13027–13058Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratoire de Réactivité et de Chimie des Solides (LRCS)Université de Picardie Jules Verne & CNRS, UMR 7314-33Amiens CedexFrance
  2. 2.Réseau sur le Stockage Electrochimique de l’Energie (RS2E)FR CNRS 3459AmiensFrance

Personalised recommendations