Electro-oxidation of 3-Carbon Alcohols and Its Viability for Fuel Cell Application

  • Janaina Fernandes GomesEmail author
  • Patricia Maria Patrizi Pratta
  • Germano Tremiliosi-Filho


N-propanol, 2-propanol, 1,2-propanediol, 1,3-propanediol, glycerol, allyl and propargyl are all aliphatic alcohols containing three carbon atoms.

The difference between them is the number of hydroxyl groups, their positions in the molecular chain and the saturation degree. The interaction between these alcohols and model surfaces (such as platinum and gold) and the further reaction has been widely investigated in the last three decades. Previous studies have revealed that the electrosorption properties of alcohols with three carbon atoms chain depend on: (1) the number of hydrogen atoms bonded to the α-carbon atom; (2) the position of the OH in the hydrocarbon chain; (3) the number of OH groups; and (4) the relative position of the OH group. One of the motivations for studying alcohols with three carbon atoms chain is the possibility of application of these alcohols in direct alcohol fuel cells for electric energy generation, co-generation of heat and chemicals. In particular, glycerol is an interesting alcohol, since it is abundantly produced as a co-product of the biodiesel fabrication and it has high energy content. In this chapter, we concentrate attention on the reactivity of glycerol over Pt, Pd and Au-based electrodes in acidic and alkaline medium and on the application of glycerol in direct glycerol fuel cell, highlighting the main challenges and perspectives on that.


Fuel Cell Oxygen Reduction Reaction Reversible Hydrogen Electrode Fuel Cell Application Glyceric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alonso C, Gonzalez-velasco J (1988) Study of the electrooxidation of 1,2-propanediol on an Au electrode in basic medium. J Electroanal Chem 248:193–208CrossRefGoogle Scholar
  2. 2.
    Avramovivic ML, Leger JM, Lamy C, Jovic VD, Petrovic SD (1991) The electrooxidation of glycerol on the gold(100)-oriented single-crystal surface and polycrystalline surface in 0.1 M NaOH. J Electroanal Chem 308:309–317CrossRefGoogle Scholar
  3. 3.
    Gao P, Lin CH, Shannon C, Salaita GN, White JH, Chaffins SA, Hubbard AT (1991) Studies of adsorbed saturated alcohols at Pt(111) electrodes by vibrational spectroscopy (EELS), Auger-spectroscopy, and electrochemistry. Langmuir 7:1515–1524CrossRefGoogle Scholar
  4. 4.
    Elshafei AA, Elmaksoud SAA, Moussa MNH (1992) Electrocatalytic oxidation of the propanol isomers on platinum ad-atom electrodes in alkaline-medium. Z Phys Chem 177:211–223CrossRefGoogle Scholar
  5. 5.
    Hamelin A, Ho YH, Chang SC, Gao XP, Weaver MJ (1992) Surface crystallographic dependence of voltammetric oxidation of polyhydric alcohols and related systems at monocrystalline gold acidic aqueous interfaces. Langmuir 8:975–981CrossRefGoogle Scholar
  6. 6.
    Luczak T, Beltowska-Brzezinska M, Holze R (1993) Molecular structure effects in the adsorption of terminal and vicinal aliphatic diols on a gold electrode. Electrochim Acta 38:717–720CrossRefGoogle Scholar
  7. 7.
    Pastor E, Schmidt VM, Iwasita T, Arevalo MC, Gonzalez S, Arvia AJ (1993) The reactivity of primary C3-alcohols on gold electrodes in acid-media – a comparative-study based on DEMS data. Electrochim Acta 38:1337–1344CrossRefGoogle Scholar
  8. 8.
    Venancio EC, Napporn WT, Motheo AJ (2002) Electro-oxidation of glycerol on platinum dispersed in polyaniline matrices. Electrochim Acta 47:1495–1501CrossRefGoogle Scholar
  9. 9.
    Sen Gupta S, Datta J (2005) An investigation into the electro-oxidation of ethanol and 2-propanol for application in direct alcohol fuel cells (DAFCs). J Chem Sci 117(4):337–344CrossRefGoogle Scholar
  10. 10.
    Rodrigues IA, Nart FC (2006) 2-Propanol oxidation on platinum and platinum-rhodium electrodeposits. J Electroanal Chem 590:145–151CrossRefGoogle Scholar
  11. 11.
    Kim HJ, Choi SM, Green S, Tompsett GA, Lee SH, Huber GW, Kim WB (2011) Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol. Appl Catal B Environ 101:366–375CrossRefGoogle Scholar
  12. 12.
    Santasalo-Aarnio A, Kwon Y, Ahlberg E, Kontturi K, Kallio T, Koper MTM (2011) Comparison of methanol, ethanol and iso-propanol oxidation on Pt and Pd electrodes in alkaline media studied by HPLC. Electrochem Commun 13:466–469CrossRefGoogle Scholar
  13. 13.
    Gomes JF, Tremiliosi-Filho G (2011) Spectroscopic studies of the glycerol electro-oxidation on polycrystalline Au and Pt surfaces in acidic and alkaline media. Electrocatalysis 2:96–105CrossRefGoogle Scholar
  14. 14.
    Feng Y, Yin W, Li Z, Huang C, Wang Y (2010) Ethylene glycol, 2-propanol electrooxidation in alkaline medium on the ordered intermetallic PtPb surface. Electrochim Acta 55:6991–6999CrossRefGoogle Scholar
  15. 15.
    Giannetti BF, Almeida C, Bonilla SH, Mengod MOA, Raboczkay T (2003) Electrocatalytic effect of Pb and Sn adatoms on the oxidation of 1-propanol on platinized platinum electrodes: determination of the apparent activation energy. Zeits Phys Chem Int 217:35–44Google Scholar
  16. 16.
    Kwon Y, Lai SCS, Rodriguez P, Koper MTM (2011) Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J Am Chem Soc 133:6914–6917CrossRefGoogle Scholar
  17. 17.
    Santasalo A, Vidal-Iglesias FJ, Solla-Gullon J, Berna A, Kallio T, Feliu JM (2009) Electrooxidation of methanol and 2-propanol mixtures at platinum single crystal electrodes. Electrochim Acta 54:6576–6583CrossRefGoogle Scholar
  18. 18.
    Sokolova E (1975) Influence of nature of alcohols on mechanisms of their electrochemical oxidation. Electrochim Acta 20:323–330CrossRefGoogle Scholar
  19. 19.
    Sokolova E (1979) Zur elektrooxidation zweiwertiger alkohole. Electrochim Acta 24:147–155CrossRefGoogle Scholar
  20. 20.
    Mota CJA, da Silva CXA, Gonçalves VLC (2009) Gliceroquímica: novos produtos e processos a partir da glicerina de produção de biodiesel. Química Nova 32:639–648CrossRefGoogle Scholar
  21. 21.
    Ilie A, Simoes M, Baranton S, Coutanceau C, Martemianov S (2011) Influence of operational parameters and of catalytic materials on electrical performance of direct glycerol solid alkaline membrane fuel cells. J Power Sources 196:4965–4971CrossRefGoogle Scholar
  22. 22.
    Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150:27–31CrossRefGoogle Scholar
  23. 23.
    Zhang Z, Xin L, Li W (2012) Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: cogeneration of electricity and valuable chemicals. Appl Catal B Environ 119:40–48CrossRefGoogle Scholar
  24. 24.
    Gasparotto LHS, Garcia AC, Gomes JF, Tremiliosi G (2012) Electrocatalytic performance of environmentally friendly synthesized gold nanoparticles towards the borohydride electro-oxidation reaction. J Power Sources 218:73–78CrossRefGoogle Scholar
  25. 25.
    Garcia A, Gasparotto LS, Gomes JF, Tremiliosi-Filho G (2012) Straightforward synthesis of carbon-supported Ag nanoparticles and their application for the oxygen reduction reaction. Electrocatalysis 3:147–152CrossRefGoogle Scholar
  26. 26.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693CrossRefGoogle Scholar
  27. 27.
    Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24:62–67CrossRefGoogle Scholar
  28. 28.
    El-Sayed IH, Huang XH, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834CrossRefGoogle Scholar
  29. 29.
    Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024CrossRefGoogle Scholar
  30. 30.
    Lee HJ, Yeo SY, Jeong SH (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38:2199–2204CrossRefGoogle Scholar
  31. 31.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  32. 32.
    Simões M, Baranton S, Coutanceau C (2010) Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl Catal B Environ 93:354–362CrossRefGoogle Scholar
  33. 33.
    Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283–296CrossRefGoogle Scholar
  34. 34.
    Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Hutchings GJ (2003) Oxidation of glycerol using supported Pt, Pd and Au catalysts. Phys Chem Chem Phys 5:1329–1336CrossRefGoogle Scholar
  35. 35.
    Bianchi CL, Canton P, Dimitratos N, Porta F, Prati L (2005) Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catal Today 102:203–212CrossRefGoogle Scholar
  36. 36.
    Demirel S, Lehnert K, Lucas M, Claus P (2007) Use of renewables for the production of chemicals: glycerol oxidation over carbon supported gold catalysts. Appl Catal B Environ 70:637–643CrossRefGoogle Scholar
  37. 37.
    Dimitratos N, Lopez-Sanchez JA, Lennon D, Porta F, Prati L, Villa A (2006) Effect of particle size on monometallic and bimetallic (Au, Pd)/C on the liquid phase oxidation of glycerol. Catal Lett 108:147–153CrossRefGoogle Scholar
  38. 38.
    Garcia R, Besson M, Gallezot P (1995) Chemoselective catalytic-oxidation of glycerol with air on platinum metals. Appl Catal A Gen 127:165–176CrossRefGoogle Scholar
  39. 39.
    Kimura H, Tsuto K, Wakisaka T, Kazumi Y, Inaya Y (1993) Selective oxidation of glycerol on a platinum bismuth catalyst. Appl Catal A Gen 96:217–228CrossRefGoogle Scholar
  40. 40.
    Kwon Y, Schouten KJP, Koper MTM (2011) Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes. ChemCatChem 3:1176–1185CrossRefGoogle Scholar
  41. 41.
    Roquet L, Belgsir EM, Leger JM, Lamy C (1994) Kinetics and mechanisms of the electrocatalytic oxidation of glycerol as investigated by chromatographic analysis of the reaction-products – potential and pH effects. Electrochim Acta 39:2387–2394CrossRefGoogle Scholar
  42. 42.
    Martins CA, Giz MJ, Camara GA (2011) Generation of carbon dioxide from glycerol: evidences of massive production on polycrystalline platinum. Electrochim Acta 56:4549–4553CrossRefGoogle Scholar
  43. 43.
    Kahyaoglu A, Beden B, Lamy C (1984) The electrocatalytic oxidation of glycerol on gold and platinum-electrodes in aqueous-media. Electrochim Acta 29:1489–1492CrossRefGoogle Scholar
  44. 44.
    Grace AN, Pandian K (2006) Pt, Pt-Pd and Pt-Pd/Ru nanoparticles entrapped polyaniline electrodes – a potent electrocatalyst towards the oxidation of glycerol. Electrochem Commun 8:1340–1348CrossRefGoogle Scholar
  45. 45.
    Kwon Y, Koper MTM (2010) Combining voltammetry with HPLC: application to electro-oxidation of glycerol. Anal Chem 82:5420–5424CrossRefGoogle Scholar
  46. 46.
    Demirel-Gulen S, Lucas M, Claus P (2005) Liquid phase oxidation of glycerol over carbon supported gold catalysts. Catal Today 102:166–172CrossRefGoogle Scholar
  47. 47.
    Schnaidt J, Heinen M, Denot D, Jusys Z, Jürgen Behm R (2011) Electrooxidation of glycerol studied by combined in situ IR spectroscopy and online mass spectrometry under continuous flow conditions. J Electroanal Chem 661:250–264CrossRefGoogle Scholar
  48. 48.
    Gootzen JFE, Wonders AH, Visscher W, vanVeen JAR (1997) Adsorption of C-3 alcohols, 1-butanol, and ethene on platinized platinum as studied with FTIRS and DEMS. Langmuir 13:1659–1667CrossRefGoogle Scholar
  49. 49.
    Leung LWH, Weaver MJ (1990) Influence of adsorbed carbon-monoxide on the electrocatalytic oxidation of simple organic-molecules at platinum and palladium electrodes in acidic solution – a survey using real-time FTIR spectroscopy. Langmuir 6:323–333CrossRefGoogle Scholar
  50. 50.
    Fernandez PS, Martins ME, Camara GA (2012) New insights about the electro-oxidation of glycerol on platinum nanoparticles supported on multi-walled carbon nanotubes. Electrochim Acta 66:180–187CrossRefGoogle Scholar
  51. 51.
    Fernandez PS, Martins ME, Martins CA, Camara GA (2012) The electro-oxidation of isotopically labelled glycerol on platinum: new information on C-C bond cleavage and CO2 production. Electrochem Commun 15:14–17CrossRefGoogle Scholar
  52. 52.
    Avramovivic M, Leger JM, Beden B, Hahn F, Lamy C (1993) Adsorption of glycerol on platinum in alkaline medium – effect of the electrode structure. J Electroanal Chem 351:285–297CrossRefGoogle Scholar
  53. 53.
    Gomes JF, de Paula FBC, Gasparotto LHS, Tremiliosi-Filho G (2012) The influence of the Pt crystalline surface orientation on the glycerol electro-oxidation in acidic media. Electrochim Acta 76:88–93CrossRefGoogle Scholar
  54. 54.
    Iwasita T (2002) Electrocatalysis of methanol oxidation. Electrochim Acta 47:3663–3674CrossRefGoogle Scholar
  55. 55.
    Xia XH, Iwasita T, Ge F, Vielstich W (1996) Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum. Electrochim Acta 41:711–718CrossRefGoogle Scholar
  56. 56.
    Herrero E, Franaszczuk K, Wieckowski A (1994) Electrochemistry of methanol at low-index crystal planes of platinum – an integrated voltammetric and chronoamperometric study. J Phys Chem 98:5074–5083CrossRefGoogle Scholar
  57. 57.
    Tremiliosi G, Kim H, Chrzanowski W, Wieckowski A, Grzybowska B, Kulesza P (1999) Reactivity and activation parameters in methanol oxidation on platinum single crystal electrodes ‘decorated’ by ruthenium adlayers. J Electroanal Chem 467:143–156CrossRefGoogle Scholar
  58. 58.
    Xia XH, Liess HD, Iwasita T (1997) Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J Electroanal Chem 437:233–240CrossRefGoogle Scholar
  59. 59.
    Morin MC, Lamy C, Leger JM, Vasquez JL, Aldaz A (1990) Structural effects in electrocatalysis – oxidation of ethanol on platinum single-crystal electrodes – effect of pH. J Electroanal Chem 283:287–302CrossRefGoogle Scholar
  60. 60.
    Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2008) Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes. Faraday Discuss 140:379–397CrossRefGoogle Scholar
  61. 61.
    Lai SCS, Koper MTM (2008) Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes. Faraday Discuss 140:399–416CrossRefGoogle Scholar
  62. 62.
    Gomes JF, Busson B, Tadjeddine A, Tremiliosi G (2008) Ethanol electro-oxidation over Pt(hkl): comparative study on the reaction intermediates probed by FTIR and SFG spectroscopies. Electrochim Acta 53:6899–6905Google Scholar
  63. 63.
    Lai SCS, Kleijn SEF, Ozturk FTZ, Vellinga VCV, Koning J, Rodriguez P, Koper MTM (2010) Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catal Today 154:92–104CrossRefGoogle Scholar
  64. 64.
    Ocón P, Alonso C, Celdrán R, González-Velasco J (1986) Study of the electrooxidation of n-propanol on an Au electrode in basic medium. J Electroanal Chem 206:179–196CrossRefGoogle Scholar
  65. 65.
    Simões M, Baranton S, Coutanceau C (2011) Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification. Appl Catal B Environ 110:40–49CrossRefGoogle Scholar
  66. 66.
    Mougenot M, Caillard A, Simoes M, Baranton S, Coutanceau C, Brault P (2011) PdAu/C catalysts prepared by plasma sputtering for the electro-oxidation of glycerol. Appl Catal B Environ 107:372–379CrossRefGoogle Scholar
  67. 67.
    Kwon Y, Birdja Y, Spanos I, Rodriguez P, Koper MTM (2012) Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal 2:759–764CrossRefGoogle Scholar
  68. 68.
    Gomes JF, Gasparotto LHS, Tremiliosi-Filho G (2013) Glycerol electro-oxidation over glassy-carbon-supported Au nanoparticles: direct influence of the carbon support on the electrode catalytic activity. Phys Chem Chem Phys 15:10339–10349CrossRefGoogle Scholar
  69. 69.
    Simões FC, dos Anjos DM, Vigier F, Leger JM, Hahn F, Coutanceau C, Gonzalez ER, Tremiliosi-Filho G, de Andrade AR, Olivi P, Kokoh KB (2007) Electroactivity of tin modified platinum electrodes for ethanol electrooxidation. J Power Sources 167:1–10CrossRefGoogle Scholar
  70. 70.
    Simões M (2011) Development of multimetallic nanostructured electrocatalysts for an application in a solid alkaline membrane fuel cell (SAMFC). Thesis, Université de Poitiers, PoitiersGoogle Scholar
  71. 71.
    Gasparotto LHS, Ciapina EG, Ticianelli EA, Tremiliosi-Filho G (2012) Electrodeposition of PVA-protected PtCo electrocatalysts for the oxygen reduction reaction in H2SO4. J Power Sources 197:97–101CrossRefGoogle Scholar
  72. 72.
    Bose S, Kuila T, Thi XLN, Kim NH, Lau KT, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36:813–843CrossRefGoogle Scholar
  73. 73.
    Battirola LC, Gasparotto LHS, Rodrigues-Filho UP, Tremiliosi-Filho G (2012) Poly (imide)/organically-modified montmorillonite nanocomposite as a potential membrane for alkaline fuel cells. Membranes 2:430–439CrossRefGoogle Scholar
  74. 74.
    Bert P, Bianchini C, Giambastiani G, Marchionni A, Tampucci A, Vizza F (2008) A process for the partial oxidation of alcohols in water by direct alcohol fuel cells. International Patent Number WO 2008/138865 A1Google Scholar
  75. 75.
    Jeffcoate CS, Gershun AV, Woyciesjes PM, Marinho FJ (2003) Heat transfer composition for fuel cell assembly, e.g. proton exchange membrane fuel cell, comprises alcohol, polyalkene oxide, additive, and water. United States Patent Number: US 7,481,948 B2Google Scholar
  76. 76.
    Ragsdale S (2010) Fuel cell using polyhydric mixtures diretly as a fuel. International Patent Number WO/2010/028323Google Scholar
  77. 77.
    Wang X, Chen C, Duan H (2004) Implantable fuel cell. United States. Patent Number: US 2004/0091757 A1Google Scholar
  78. 78.
    Liu BC, Zhang HC, Ma HC, Zhang YC (2010) Double-effect oxygen electrode catalyst slurry for fuel cell, is obtained by using catalyst nanoparticles, proton-conductive polymer and alcoholic solution. China. Patent Number: CN101773825-AGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Janaina Fernandes Gomes
    • 1
    Email author
  • Patricia Maria Patrizi Pratta
    • 2
  • Germano Tremiliosi-Filho
    • 1
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Departamento de Engenharia QuímicaUniversidade Federal de São CarlosSão CarlosBrazil

Personalised recommendations