Advertisement

Pt and Pd-Based Electrocatalysts for Ethanol and Ethylene Glycol Fuel Cells

  • O. Solorza-FeriaEmail author
  • F. Javier Rodríguez VarelaEmail author
Chapter

Abstract

Direct Oxidation Fuel Cells (DOFCs) are power systems that can replace H2/O2 fuel cells in different applications where the use of hydrogen is a major problem. The use of liquid fuels can be of great advantage due to the easiness of their transport and handling. A considerable number of small organic molecules have been considered as fuels in DOFCs. Methanol is the most studied liquid fuel, but the main problem of this molecule is its high toxicity score. Some alternative liquid fuels are taking an important role and are being considered as replacements of methanol, mainly because they are prone to be electro-oxidized at low temperatures at suitable electrocatalysts. C2-fuels such as ethanol (EtOH, C2H5OH) and ethylene glycol (EG, C2H6O2) are some of the most interesting molecules for DOFCs, because of their high energy density and due to the fact that only one C–C bond scission occurs during the dissociative adsorption of the molecule to form CO2. In this chapter we present a description of the Direct Ethanol Fuel Cells (DEFC) and the Direct Ethylene Glycol Fuel Cell (DEGFC). We describe the reaction mechanism of the electro-oxidation of these fuels, the problems related to their crossover and the development of EtOH and EG tolerant cathodes.

Keywords

Fuel Cell Oxygen Reduction Reaction High Catalytic Activity Dissociative Adsorption Oxygen Reduction Reaction Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rodríguez Varela FJ, Savadogo O (2008) Catalytic activity of carbon-supported electrocatalysts for direct ethanol fuel cell applications. J Electrochem Soc 155:B618–B624CrossRefGoogle Scholar
  2. 2.
    Lamy C, Léger J-M, Srinivasan S (2001) Direct methanol fuel cells: from a twentieth century electrochemist’s dream to a twenty-first century emerging technology. In: Bockris J-O’M, Conway B, White RE (eds) Modem aspects of electrochemistry, vol 34. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  3. 3.
    Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Léger J-M (2002) Recent advances in the development of Direct Alcohol Fuel Cells (DAFC). J Power Sources 105:283–296CrossRefGoogle Scholar
  4. 4.
    Aricò AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161CrossRefGoogle Scholar
  5. 5.
    Neergat M, Leveratto D, Stimming U (2002) Catalysts for direct methanol fuel cells. Fuel Cells 2:25–30CrossRefGoogle Scholar
  6. 6.
    Demirci UB (2009) How green are the chemicals used as liquid fuels in direct liquid-feed fuel cells? Environ Int 35:626–631CrossRefGoogle Scholar
  7. 7.
    Stevanovic S, Tripkovic D, Rogan J, Minic D, Gavrilovic A, Tripkovic A, Jovanovic VM (2011) Enhanced activity in ethanol oxidation of Pt3Sn electrocatalysts synthesized by microwave irradiation. Russ J Phys Chem A 85:2299–2304CrossRefGoogle Scholar
  8. 8.
    Silva JCM, Parreira LS, De Souza RFB, Calegaro ML, Spinacé EV, Neto AO, Santos MC (2011) PtSn/C alloyed and non-alloyed materials: differences in the ethanol electro-oxidation reaction pathways. Appl Catal B Environ 110:141–147CrossRefGoogle Scholar
  9. 9.
    Selvaraj V, Vinoba M, Alagar M (2008) Electrocatalytic oxidation of ethylene glycol on Pt and Pt–Ru nanoparticles modified multi-walled carbon nanotubes. J Colloid Interf Sci 322:537–544CrossRefGoogle Scholar
  10. 10.
    Livshits V, Philosoph M, Peled E (2008) Direct ethylene glycol fuel-cell stack — study of oxidation intermediate products. J Power Sources 178:687–691CrossRefGoogle Scholar
  11. 11.
    Kim HJ, Kim DY, Han H, Shul YG (2006) PtRu/C-Au/TiO2 electrocatalyst for a direct methanol fuel cell. J Power Sources 159:484–490CrossRefGoogle Scholar
  12. 12.
    Suk YJ, Tae KH, Joh H-I, Kim H, Heup MS (2011) Preparation of a CO-tolerant PtRuxSny/C electrocatalyst with an optimal Ru/Sn ratio by selective Sn-deposition on the surfaces of Pt and Ru. Int J Hydrogen Energy 36:1930–1938CrossRefGoogle Scholar
  13. 13.
    Lamy C, Belgsir EM, Léger J-M (2001) Electrocatalytic oxidation of aliphatic alcohols: application to the direct alcohol fuel cell (DAFC). J Appl Electrochem 31:799–809CrossRefGoogle Scholar
  14. 14.
    Vigier F, Coutanceau C, Perrard A, Belgsir EM, Lamy C (2004) Development of anode catalysts for direct ethanol fuel cell. J Appl Electrochem 34:439–446CrossRefGoogle Scholar
  15. 15.
    Zhou W, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, Xin Q (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B Environ 46:273–285CrossRefGoogle Scholar
  16. 16.
    Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Poulianitis K, Kontou S, Tsiakaras P (2004) Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. J Power Sources 131:217–223CrossRefGoogle Scholar
  17. 17.
    Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C (2004) On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J Electroanal Chem 563:81–89CrossRefGoogle Scholar
  18. 18.
    Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Léger J-M (2004) Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim Acta 49:3901–3908CrossRefGoogle Scholar
  19. 19.
    Rodríguez Varela FJ, Savadogo O (2009) Ethanol-tolerant Pt-alloy cathodes for direct ethanol fuel cell (DEFC) applications. Asia-Pac J Chem Eng 4:17–24CrossRefGoogle Scholar
  20. 20.
    Antolini E, Perez J (2011) The use of rare earth-based materials in low-temperature fuel cells. Int J Hydrogen Energy 36:15752–15765CrossRefGoogle Scholar
  21. 21.
    De Souza RFB, Flausino AEA, Rascio DC, Oliveira RTS, Teixeira Neto E, Calegaro ML, Santos MC (2009) Ethanol oxidation reaction on PtCeO2/C electrocatalysts prepared by the polymeric precursor method. Appl Catal B Environ 91:516–523CrossRefGoogle Scholar
  22. 22.
    Oliveira Neto A, Linardi M, dos Anjos DM, Tremiliosi-Filho G, Spinacé EV (2009) Electro-oxidation of ethanol on PtSn/CeO2–C electrocatalyst. J Appl Electrochem 39:1153–1156CrossRefGoogle Scholar
  23. 23.
    Tayal J, Rawat B, Basu S (2011) Bi-metallic and tri-metallic Pt-Sn/C, Pt-Ir/C, Pt-Ir-Sn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. Int J Hydrogen Energy 36:14884–14897CrossRefGoogle Scholar
  24. 24.
    Iwasita T, Pastor E (1994) A DEMS and FTIR spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochim Acta 39:531–537CrossRefGoogle Scholar
  25. 25.
    Rightmire RA, Rowland RL, Boos DL, Beals DL (1964) Ethyl alcohol oxidation at platinum electrodes. J Electrochem Soc 111:242–247CrossRefGoogle Scholar
  26. 26.
    Lamy C, Coutanceau C, Leger J-M (2009) The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production. Wiley, New YorkGoogle Scholar
  27. 27.
    Peled E, Livshits V, Duvdevani T (2002) High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM). J Power Sources 106:245–248CrossRefGoogle Scholar
  28. 28.
    Livshits V, Peled E (2006) Progress in the development of a high-power, direct ethylene glycol fuel cell (DEGFC). J Power Sources 161:1187–1191CrossRefGoogle Scholar
  29. 29.
    Travitsky N, Burstein L, Rosenberg Y, Peled E (2009). Effect of methanol, ethylene glycol and their oxidation by-products on the activity of Pt-based oxygen-reduction catalysts. J Power Sources 194:161–167Google Scholar
  30. 30.
    Rodriguez Varela J, Savadogo O (2010). Celdas de combustible de consumo directo de molÕculas orgÃnicas, In: Rodriguez Varela FJ, Solorza Feria O, HernÃndez Pacheco E (eds) Celdas de Combustible. y1d books, CanadaGoogle Scholar
  31. 31.
    Peled E, Duvdevani T, Aharon A, Melman A (2001) New fuels as alternatives to methanol for direct oxidation fuel cells. Electrochem Solid State Lett 4:A38–A41CrossRefGoogle Scholar
  32. 32.
    Oliveira Neto A, Linardi M, Spinacé EV (2006) Electro-oxidation of ethylene glycol on PtSn/C and PtSnNi/C electrocatalysts. Ionics 12:309–313CrossRefGoogle Scholar
  33. 33.
    Chetty R, Scott K (2007) Catalysed titanium mesh electrodes for ethylene glycol fuel cells. J Appl Electrochem 37:1077–1084CrossRefGoogle Scholar
  34. 34.
    Serov A, Kwak C (2010) Recent achievements in direct ethylene glycol fuel cells (DEGFC). Appl Catal B Environ 97:1–12CrossRefGoogle Scholar
  35. 35.
    Rodríguez Varela FJ, Fraire Luna S, Savadogo O (2009) Synthesis and evaluation of highly tolerant Pd electrocatalysts cathodes in direct ethylene glycol fuel cells. Energies 2:944–956CrossRefGoogle Scholar
  36. 36.
    Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450CrossRefGoogle Scholar
  37. 37.
    Morozan A, Jousselene B, Palacin S (2011) Low-platinum and platinum free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ Sci 4:1238–1254CrossRefGoogle Scholar
  38. 38.
    Keith JA, Jerskiewicz G, Jacob T (2010) Theoretical investigations of the oxygen reduction reaction. Chem Phys Chem 11:2714–2731CrossRefGoogle Scholar
  39. 39.
    Feng Y, Gago A, Timperman L, Alonso-Vante N (2011) Chalcogenide metal centers for oxygen reduction reaction: activity and tolerance. Electrochim Acta 56:1009–1022CrossRefGoogle Scholar
  40. 40.
    Tsivadze AY, Tarasevich MR, Kuzov AV, Romanova IA, Pripadchev DA (2008) New nanosized cathode electrocatalysts tolerant to ethanol. Doklady Phys Chem 421:166–169CrossRefGoogle Scholar
  41. 41.
    Suárez-Alcántara K, Solorza-Feria O (2009) Comparative study of oxygen reduction on RuxMySez (M = Cr, Mo, W) electrocatalysts for polymer exchange membrane fuel cell. J Power Sources 192:165–169CrossRefGoogle Scholar
  42. 42.
    Ramos-Sánchez G, Solorza-Feria O (2010) Synthesis and characterization of Pd0.5NixSe(0.5-x). Int J Hydrogen Energy 35:12105–12110CrossRefGoogle Scholar
  43. 43.
    Norskov JK, Rossmeisl J, Logadottir A, Lindquist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for the oxygen reduction reaction at a fuel cell cathode. J Phys Chem B 108:17886–17892CrossRefGoogle Scholar
  44. 44.
    Tripkovic V, Skulason E, Siahrostami S, Norskov JK, Rossmeisl J (2010) The oxygen reduction mechanism on Pd(111) from density functional theory calculations. Electrochim Acta 55:7975–7981CrossRefGoogle Scholar
  45. 45.
    Duan Z, Wang G (2011) A first principle study of oxygen reduction reaction on a Pt(111) surface modified a subsurface transition metal M (M = Ni, Co or Fe). Phys Chem Chem Phys 13:20178–20187CrossRefGoogle Scholar
  46. 46.
    Nilekar AU, Mavrikakis M (2008) Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf Sci 602:L89–L94CrossRefGoogle Scholar
  47. 47.
    Morales-Acosta D, López de la Fuente D, Arriaga LG, Vargas Gutierrez G, Rodríguez Varela FJ (2011) Electrochemical investigation of Pt-Co/MWCNT as an alcohol-tolerant ORR catalyst for direct oxidation fuel cells. Int J Electrochem Sci 6:1835–1854Google Scholar
  48. 48.
    Rodríguez Varela FJ, Gaona Coronado AA, Jiang Q-Z, Bartolo Pérez P (2011) Pt-CeOx/MWCNT electrocatalysts as ethanol-tolerant ORR cathodes for direct alcohol fuel cells. J New Mater Electrochem Syst 14:75–80Google Scholar
  49. 49.
    Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135CrossRefGoogle Scholar
  50. 50.
    Lopes T, Antolini E, Gonzalez ER (2008) Carbon supported Pt-Pd alloys as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells. Int J Hydrogen Energy 33:5563–5570CrossRefGoogle Scholar
  51. 51.
    Savadogo O, Rodriguez Varela FJ (2008) Palladium-alloy catalysts as ethanol tolerant cathodes for direct alcohol fuel cell applications. J New Mater Electrochem Syst 11:69–74Google Scholar
  52. 52.
    Savadogo O, Rodríguez Varela FJ (2006) Palladium-alloy catalysts as ethanol tolerant cathodes for direct alcohol fuel cell (DEFC) applications. ECS Trans 1:247–254CrossRefGoogle Scholar
  53. 53.
    Salvador-Pascual JJ, Collins-Martínez V, López-Ortiz A, Solorza-Feria O (2010) Low Pt content on the Pd45Pt5Sn50 cathode catalyst for PEM fuel cells. J Power Sources 195:3374–3379CrossRefGoogle Scholar
  54. 54.
    Ramos-Sánchez G, Yee-Madeira H, Solorza-Feria O (2008) PdNi electrocatalyst for oxygen reduction in acid media. Int J Hydrogen Energy 33:3596–3600CrossRefGoogle Scholar
  55. 55.
    Morales-Acosta D, Arriaga LG, Alvarez-Contreras L, Fraire Luna S, Rodríguez Varela FJ (2009) Evaluation of Pt40Pd60/MWCNT electrocatalyst as ethylene glycol-tolerant oxygen reduction cathodes. Electrochem Commun 11:1414–1417CrossRefGoogle Scholar
  56. 56.
    Rodríguez Varela FJ, Fraire Luna S, Dabek Klapco R (2009) Evaluation of Pd/C electrocatalyst as ORR cathodes tolerant to ethylene glycol. J New Mater Electrochem Syst 12:3–8Google Scholar
  57. 57.
    Miyazaki K, Sugimura N, Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2008) Perovskite-type oxides La1−xSrxMnO3 for cathode catalysts in direct ethylene glycol alkaline fuel cells. J Power Sources 178:683–686CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN)Mexico CityMexico

Personalised recommendations