Advertisement

Catalysts for Methanol Oxidation

  • Ernesto R. GonzalezEmail author
  • Andressa Mota-Lima
Chapter

Abstract

Methanol electroxidation proceeds via a multistep reaction. Herein, mechanisms of reaction and reaction rates of sub-set of the mechanism on different surfaces are discussed. Platinum is a reasonable catalyst for the first methanol electroxidation steps (dehydrogenation), but not for the last (CO electroxidation). Hence, alloying Platinum with a second metal was used as a strategy to enhance the rate of the last step. Accordingly, enhanced rates of CO electroxidation are attained by modifying the bonding energy of the adsorbate to the catalyst or by promoting the formation of oxygenated species at lower overvoltage. Finally, new perspectives on the field of methanol catalysts are commented including the search for catalysts that promote early onset of oscillations, i.e. under lower overvoltage.

Keywords

Oxygen Reduction Reaction Methanol Oxidation Direct Methanol Fuel Cell Formic Acid Oxidation Methanol Oxidation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Batista EA, Malpass GRP, Motheo AJ et al (2004) New mechanistic aspects of methanol oxidation. J Electroanal Chem 571:273–282Google Scholar
  2. 2.
    Iwasita T (2002) Electrocatalysis of methanol oxidation. Electrochim Acta 47:3663–3674Google Scholar
  3. 3.
    Cohen JL, Volpe DJ, Abruña HD (2007) Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys Chem Chem Phys 9:49–77Google Scholar
  4. 4.
    Batista EA, Malpass GRP, Motheo AJ et al (2003) New insight into the pathways of methanol oxidation. Electrochem Commun 5:843–846Google Scholar
  5. 5.
    Chen YX, Miki A, Ye S et al (2003) Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J Am Chem Soc 125:3680–3681Google Scholar
  6. 6.
    Liu SX, Liao LW, Tao Q et al (2011) The kinetics of CO pathway in methanol oxidation at Pt electrodes, a quantitative study by ATR-FTIR spectroscopy. Phys Chem Chem Phys 13:9725–9735Google Scholar
  7. 7.
    Zhao W, Jusys Z, Behm RJ (2010) Quantitative online analysis of liquid-phase products of methanol oxidation in aqueous sulfuric acid solutions using electrospray ionization mass spectrometry. Anal Chem 82:2472–2479Google Scholar
  8. 8.
    Zhao W, Jusys Z, Behm RJ (2012) Complete quantitative online analysis of methanol electrooxidation products via electron impact and electrospray ionization mass spectrometry. Anal Chem 84:5479–5483Google Scholar
  9. 9.
    Santasalo-Aarnio A, Kwon Y, Ahlberg E et al (2011) Comparison of methanol, ethanol and iso-propanol oxidation on Pt and Pd electrodes in alkaline media studied by HPLC. Electrochem Commun 13:466–469Google Scholar
  10. 10.
    Jusys Z, Kaiser J, Behm RJ (2003) Methanol electrooxidation over Pt/C fuel cell catalysts: dependence of product yields on catalyst loading. Langmuir 19:6759–6769Google Scholar
  11. 11.
    Liao LW, Liu SX, Tao Q et al (2011) A method for kinetic study of methanol oxidation at Pt electrodes by electrochemical in situ infrared spectroscopy. J Electroanal Chem 650:233–240Google Scholar
  12. 12.
    Parsons R, Vandernoot T (1988) The oxidation of small organic molecules: a survey of recent fuel cell related research. J Electroanal Chem Interfacial Electrochem 257:9–45Google Scholar
  13. 13.
    Grozovski V, Climent V, Herrero E et al (2011) The role of the surface structure in the oxidation mechanism of methanol. J Electroanal Chem 662:43–51Google Scholar
  14. 14.
    García G, Koper MTM (2011) Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells. Chem Phys Chem 12:2064–2072Google Scholar
  15. 15.
    Vidal F, Tadjeddine A, Humbert C et al (2012) The influence of surface defects in methanol dissociative adsorption and CO oxidation on Pt(1 1 0) probed by nonlinear vibrational SFG spectroscopy. J Electroanal Chem 672:1–6Google Scholar
  16. 16.
    Juanto S, Beden B, Hahn F et al (1987) Infrared spectroscopic study of the methanol adsorbates at a platinum electrode: Part II. The Pt (100) surface in an acid medium. J Electroanal Chem Interfacial Electrochem 237:119–129Google Scholar
  17. 17.
    Herrero E, Franaszczuk K, Wieckowski A (1994) Electrochemistry of methanol at low index crystal planes of platinum: an integrated voltammetric and chronoamperometric study. J Phys Chem 98:5074–5083Google Scholar
  18. 18.
    Papoutsis A, Léger JM, Lamy C (1993) Study of the kinetics of adsorption and electro-oxidation of MeOH on Pt(100) in an acid medium by programmed potential voltammetry. J Electroanal Chem 359:141–160Google Scholar
  19. 19.
    Chang SC, Leung LWH, Weaver MJ (1990) Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces. J Phys Chem 94:6013–6021Google Scholar
  20. 20.
    Solla-Gullon J, Vidal-Iglesias FJ, Lopez-Cudero A et al (2008) Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys 10:3689–3698Google Scholar
  21. 21.
    Beden B, Kadirgan F, Lamy C et al (1981) Electrocatalytic oxidation of methanol on platinum-based binary electrodes. J Electroanal Chem Interfacial Electrochem 127:75–85Google Scholar
  22. 22.
    Campbell SA, Parsons R (1992) Effect of Bi and Sn adatoms on formic acid and methanol oxidation at well defined platinum surfaces. J Chem Soc Faraday Trans 88:833–841Google Scholar
  23. 23.
    Haner AN, Ross PN (1991) Electrochemical oxidation of methanol on tin-modified platinum single-crystal surfaces. J Phys Chem 95:3740–3746Google Scholar
  24. 24.
    Lizcano-Valbuena WH, Paganin VA, Gonzalez ER (2002) Methanol electro-oxidation on gas diffusion electrodes prepared with PtRu/C catalysts. Electrochim Acta 47:3715–3722Google Scholar
  25. 25.
    Zhang X, Chan K-Y (2002) Water-in-oil microemulsion synthesis of platinum–ruthenium nanoparticles, their characterization and electrocatalytic properties. Chem Mater 15:451–459Google Scholar
  26. 26.
    Kim T-W, Park S-J, Jones LE et al (2005) Structure and electrocatalysis of sputtered RuPt thin-film electrodes. J Phys Chem B 109:12845–12849Google Scholar
  27. 27.
    Watanabe M, Uchida M, Motoo S (1987) Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. J Electroanal Chem Interfacial Electrochem 229:395–406Google Scholar
  28. 28.
    Lizcano-Valbuena WH, De Souza A, Paganin VA et al (2002) Performance of a DMFC using Pt-Ru/C catalysts prepared by reduction with formic acid. Fuel Cells 2:159–165Google Scholar
  29. 29.
    Chu D, Gilman S (1996) Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures. J Electrochem Soc 143:1685–1690Google Scholar
  30. 30.
    Lizcano-Valbuena WH, Paganin VA, CaP L et al (2003) Catalysts for DMFC: relation between morphology and electrochemical performance. Electrochim Acta 48:3869–3878Google Scholar
  31. 31.
    Godoi DRM, Perez J, Mercedes Villullas H (2007) Influence of particle size on the properties of Pt–Ru∕C catalysts prepared by a microemulsion method. J Electrochem Soc 154:B474–B479Google Scholar
  32. 32.
    Godoi DRM, Perez J, Villullas HM (2009) Effects of alloyed and oxide phases on methanol oxidation of Pt − Ru/C nanocatalysts of the same particle size. J Phys Chem C 113:8518–8525Google Scholar
  33. 33.
    Frelink T, Visscher W, Van Veen JAR (1995) On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 335:353–360Google Scholar
  34. 34.
    Azevedo DC, Lizcano-Valbuena WH, Gonzalez ER (2004) An impedance study of the rate determining step for methanol oxidation on platinum and platinum-ruthenium supported on high surface area carbon. J New Mater Electrochem Syst 7:191–196Google Scholar
  35. 35.
    Krausa M, Vielstich W (1994) Study of the electrocatalytic influence of Pt/Ru and Ru on the oxidation of residues of small organic molecules. J Electroanal Chem 379:307–314Google Scholar
  36. 36.
    Godoi DRM, Villullas HM (2012) Relevance of electronic effects on the yield of CO2 from fethanol oxidation. Langmuir 28:1064–1067Google Scholar
  37. 37.
    Salgado JRC, Paganin VA, Gonzalez ER et al (2013) Characterization and performance evaluation of Pt–Ru electrocatalysts supported on different carbon materials for direct methanol fuel cells. Int J Hydrogen Energy 38:910–920Google Scholar
  38. 38.
    Hepel M, Kumarihamy I, Zhong CJ (2006) Nanoporous TiO2-supported bimetallic catalysts for methanol oxidation in acidic media. Electrochem Commun 8:1439–1444Google Scholar
  39. 39.
    Villullas HM, Mattos-Costa FI, Bulhões LOS (2004) Electrochemical oxidation of methanol on Pt nanoparticles dispersed on RuO2. J Phys Chem B 108:12898–12903Google Scholar
  40. 40.
    Kuznetsov VI, Belyi AS, Yurchenko EN et al (1986) Mössbauer spectroscopic and chemical analysis of the composition of Sn-containing components of Pt-Sn/Al2O3(Cl) reforming catalyst. J Catal 99:159–170Google Scholar
  41. 41.
    Radmilovic V, Richardson TJ, Chen SJ et al (2005) Carbon-supported Pt–Sn electrocatalysts for the anodic oxidation of H2, CO, and H2/CO mixtures. Part I. Microstructural characterization. J Catal 232:199–209Google Scholar
  42. 42.
    González MJ, Hable CT, Wrighton MS (1998) Electrocatalytic oxidation of small carbohydrate fuels at Pt–Sn modified electrodes. J Phys Chem B 102:9881–9890Google Scholar
  43. 43.
    Janssen MMP, Moolhuysen J (1976) Platinum–tin catalysts for methanol fuel cells prepared by a novel immersion technique, by electrocodeposition and by alloying. Electrochim Acta 21:861–868Google Scholar
  44. 44.
    Watanabe M, Furuuchi Y, Motoo S (1985) Electrocatalysis by ad-atoms: Part XIII. Preparation of ad-electrodes with tin ad-atoms for methanol, formaldehyde and formic acid fuel cells. J Electroanal Chem Interfacial Electrochem 191:367–375Google Scholar
  45. 45.
    Mcnicol BD, Short RT, Chapman AG (1976) Methanol electro-oxidation catalysts. Platinum promoted by tin. J Chem Soc Faraday Trans 1 72:2735–2743Google Scholar
  46. 46.
    Rahim MAA, Khalil MW, Hassan HB (2000) Platinum–tin alloy electrodes for direct methanol fuel cells. J Appl Electrochem 30:1151–1155Google Scholar
  47. 47.
    Honma I, Toda T (2003) Temperature dependence of kinetics of methanol electro-oxidation on PtSn alloys. J Electrochem Soc 150:A1689–A1692Google Scholar
  48. 48.
    Cathro KJ (1969) The oxidation of water-soluble organic fuels using platinum-tin catalysts. J Electrochem Soc 116:1608–1611Google Scholar
  49. 49.
    Wang K, Gasteiger HA, Markovic NM et al (1996) On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. Electrochim Acta 41:2587–2593Google Scholar
  50. 50.
    Frelink T, Visscher W, Van Veen JAR (1994) The effect of Sn on Pt/C catalysts for the methanol electro-oxidation. Electrochim Acta 39:1871–1875Google Scholar
  51. 51.
    Bittins-Cattaneo B, Iwasita T (1987) Electrocatalysis of methanol oxidation by adsorbed tin on platinum. J Electroanal Chem Interfacial Electrochem 238:151–161Google Scholar
  52. 52.
    Morimoto Y, Yeager EB (1998) Comparison of methanol oxidations on Pt, Pt|Ru and Pt|Sn electrodes. J Electroanal Chem 444:95–100Google Scholar
  53. 53.
    Antolini E, Gonzalez ER (2011) Effect of synthesis method and structural characteristics of Pt–Sn fuel cell catalysts on the electro-oxidation of CH3OH and CH3CH2OH in acid medium. Catal Today 160:28–38Google Scholar
  54. 54.
    Colmati F, Antolini E, Gonzalez ER (2005) Pt–Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid. Electrochim Acta 50:5496–5503Google Scholar
  55. 55.
    Herranz T, García S, Martínez-Huerta MV et al (2012) Electrooxidation of CO and methanol on well-characterized carbon supported PtxSn electrodes. Effect of crystal structure. Int J Hydrogen Energy 37:7109–7118Google Scholar
  56. 56.
    Uemura Y, Inada Y, Bando KK et al (2011) In situ time-resolved XAFS study on the structural transformation and phase separation of Pt3Sn and PtSn alloy nanoparticles on carbon in the oxidation process. Phys Chem Chem Phys 13:15833–15844Google Scholar
  57. 57.
    Arikan T, Kannan AM, Kadirgan F (2013) Binary Pt–Pd and ternary Pt–Pd–Ru nanoelectrocatalysts for direct methanol fuel cells. Int J Hydrogen Energy 38:2900–2907Google Scholar
  58. 58.
    Ramos SG, Calafiore A, Bonesi AR et al (2012) Supported catalysts for alcohol oxidation synthesis and analysis of their catalytic activity. Int J Hydrogen Energy 37:14849–14853Google Scholar
  59. 59.
    Antolini E (2007) Platinum-based ternary catalysts for low temperature fuel cells. Part I. Preparation methods and structural characteristics. Appl Catal B Environ 74:324–336Google Scholar
  60. 60.
    Antolini E (2007) Platinum-based ternary catalysts for low temperature fuel cells. Part II. Electrochemical properties. Appl Catal B Environ 74:337–350Google Scholar
  61. 61.
    Martínez-Huerta MV, Rojas S, Gómez De La Fuente JL et al (2006) Effect of Ni addition over PtRu/C based electrocatalysts for fuel cell applications. Appl Catal B Environm 69:75–84Google Scholar
  62. 62.
    Liu J, Cao J, Huang Q et al (2008) Methanol oxidation on carbon-supported Pt-Ru-Ni ternary nanoparticle electrocatalysts. J Power Sources 175:159–165Google Scholar
  63. 63.
    Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9:2654–2675Google Scholar
  64. 64.
    Mahapatra SS, Dutta A, Datta J (2011) Temperature dependence on methanol oxidation and product formation on Pt and Pd modified Pt electrodes in alkaline medium. Int J Hydrogen Energy 36:14873–14883Google Scholar
  65. 65.
    Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450Google Scholar
  66. 66.
    Iwasita T, Nart FC, Lopez B et al (1992) On the study of adsorbed species at platinum from methanol, formic acid and reduced carbon dioxide via in situ FT-ir spectroscopy. Electrochim Acta 37:2361–2367Google Scholar
  67. 67.
    Ishikawa Y, Liao MS, Cabrera CR (2000) Oxidation of methanol on platinum, ruthenium and mixed Pt-M metals (M = Ru, Sn): a theoretical study. Surf Sci 463:66–80Google Scholar
  68. 68.
    Vilekar SA, Fishtik I, Datta R (2007) Topological analysis of catalytic reaction networks: methanol decomposition on Pt(111). J Catal 252:258–270Google Scholar
  69. 69.
    Waszczuk P, Lu GQ, Wieckowski A et al (2002) UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis. Electrochim Acta 47:3637–3652Google Scholar
  70. 70.
    Li LC, Wang YW, Tian AM (2008) Adsorption of methanol on the Pt-Mo(111)/C surface. Wuli Huaxue Xuebao//Acta Physico – Chimi Sin 24:2013–2018Google Scholar
  71. 71.
    Grdeń M, Łukaszewski M, Jerkiewicz G et al (2008) Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption. Electrochim Acta 53:7583–7598Google Scholar
  72. 72.
    Lewis FA (1967) The palladium hydrogen system. Academic, LondonGoogle Scholar
  73. 73.
    Yépez O, Scharifker BR (2002) Oxidation of formate on hydrogen-loaded palladium. Int J Hydrogen Energy 27:99–105Google Scholar
  74. 74.
    Yépez O, Scharifker BR (1999) Oxidation of CO on hydrogen-loaded palladium. J Appl Electrochem 29:1185–1190Google Scholar
  75. 75.
    Garcia AC, Paganin VA, Ticianelli EA (2008) CO tolerance of PdPt/C and PdPtRu/C anodes for PEMFC. Electrochim Acta 53:4309–4315Google Scholar
  76. 76.
    Papageorgopoulos DC, Keijzer M, Veldhuis JBJ et al (2002) CO tolerance of Pd-rich platinum palladium carbon-supported electrocatalysts. J Electrochem Soc 149:A1400–A1404Google Scholar
  77. 77.
    Hoshi N, Kida K, Nakamura M et al (2006) Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J Phys Chem B 110:12480–12484Google Scholar
  78. 78.
    Gasteiger HA, Markovic N, Ross PN et al (1994) Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys. J Phys Chem 98:617–625Google Scholar
  79. 79.
    Lu C, Masel RI (2001) The effect of ruthenium on the binding of CO, H2, and H2O on Pt(110). J Phys Chem B 105:9793–9797Google Scholar
  80. 80.
    Angerstein-Kozlowska H, Conway BE, Sharp WBA (1973) The real condition of electrochemically oxidized platinum surfaces: Part I. Resolution of component processes. J Electroanal Chem Interfacial Electrochem 43:9–36Google Scholar
  81. 81.
    Conway BE (1995) Electrochemical oxide film formation at noble metals as a surface-chemical process. Prog Surf Sci 49:331–452Google Scholar
  82. 82.
    Kucernak AR, Offer GJ (2008) The role of adsorbed hydroxyl species in the electrocatalytic carbon monoxide oxidation reaction on platinum. Phys Chem Chem Phys 10:3699–3711Google Scholar
  83. 83.
    Ciapina EG, Gonzalez ER (2009) Investigation of the electro-oxidation of CO on Pt-based carbon supported catalysts (Pt75Sn25/C, Pt65Ru35/C and Pt/C) by electrochemical impedance spectroscopy. J Electroanal Chem 626:130–142Google Scholar
  84. 84.
    de los Santos-Álvarez N, Alden LR, Rus E et al (2009) CO tolerance of ordered intermetallic phases. J Electroanal Chem 626:14–22Google Scholar
  85. 85.
    Shubina TE, Koper MTM (2002) Quantum-chemical calculations of CO and OH interacting with bimetallic surfaces. Electrochim Acta 47:3621–3628Google Scholar
  86. 86.
    Wang H, Alden L, Disalvo FJ et al (2008) Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study. Phys Chem Chem Phys 10:3739–3751Google Scholar
  87. 87.
    Ranjan C, Hoffmann R, Disalvo FJ et al (2007) Electronic effects in CO chemisorption on Pt-Pb intermetallic surfaces: a theoretical study. J Phys Chem C 111:17357–17369Google Scholar
  88. 88.
    Christoffersen E, Liu P, Ruban A et al (2001) Anode materials for low-temperature fuel cells: a density functional theory study. J Catal 199:123–131Google Scholar
  89. 89.
    Liao M-S, Cabrera CR, Ishikawa Y (2000) A theoretical study of CO adsorption on Pt, Ru and Pt–M (M = Ru, Sn, Ge) clusters. Surf Sci 445:267–282Google Scholar
  90. 90.
    Capon A, Parson R (1973) The oxidation of formic acid at noble metal electrodes: I. Review of previous work. J Electroanal Chem Interfacial Electrochem 44:1–7Google Scholar
  91. 91.
    Fernandez-Vega A, Feliu JM, Aldaz A et al (1991) Heterogeneous electrocatalysis on well-defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms: Part IV. Formic acid oxidation on the Pt(111)-As system. J Electroanal Chem Interfacial Electrochem 305:229–240Google Scholar
  92. 92.
    Llorca MJ, Herrero E, Feliu JM et al (1994) Formic acid oxidation on Pt(111) electrodes modified by irreversibly adsorbed selenium. J Electroanal Chem 373:217–225Google Scholar
  93. 93.
    Herrero E, Llorca MJ, Feliu JM et al (1995) Oxidation of formic acid on Pt(100) electrodes modified by irreversibly adsorbed tellurium. J Electroanal Chem 383:145–154Google Scholar
  94. 94.
    Zhang M, Wilde CP (1995) The influence of organic adsorbates on the UPD process. Oxidation of formic acid at UPD lead-modified platinum electrodes. J Electroanal Chem 390:59–68Google Scholar
  95. 95.
    Seland F, Tunold R, Harrington DA (2008) Impedance study of formic acid oxidation on platinum electrodes. Electrochim Acta 53:6851–6864Google Scholar
  96. 96.
    Batista BC, Varela H (2010) Open circuit interaction of formic acid with oxidized Pt surfaces: experiments, modeling, and simulations. J Phys Chem C 114:18494–18500Google Scholar
  97. 97.
    Samjeské G, Miki A, Osawa M (2007) Electrocatalytic oxidation of formaldehyde on platinum under galvanostatic and potential sweep conditions studied by time-resolved surface-enhanced infrared spectroscopy. J Phys Chem C 111:15074–15083Google Scholar
  98. 98.
    Miyake H, Okada T, Samjeske G et al (2008) Formic acid electrooxidation on Pd in acidic solutions studied by surface enhanced infrared absorption spectroscopy. Phys Chem Chem Phys 10:3662–3669Google Scholar
  99. 99.
    Clavilier J, Parsons R, Durand R et al (1981) Formic acid oxidation on single crystal platinum electrodes. Comparison with polycrystalline platinum. J Electroanal Chem Interfacial Electrochem 124:321–326Google Scholar
  100. 100.
    Iwasita T, Xia X, Herrero E et al (1996) Early stages during the oxidation of HCOOH on single-crystal Pt electrodes as characterized by infrared spectroscopy. Langmuir 12:4260–4265Google Scholar
  101. 101.
    Solis V, Iwasita T, Pavese A et al (1988) Investigation of formic acid oxidation on palladium in acidic solutions by on-line mass spectroscopy. J Electroanal Chem Interfacial Electrochem 255:155–162Google Scholar
  102. 102.
    Nishimura K, Kunimatsu K, Machida K-I et al (1989) Electrocatalysis of Pd + Au alloy electrodes: Part IV. IR spectroscopic studies on the surface species derived from formaldehyde and formate in alkaline solutions. J Electroanal Chem Interfacial Electrochem 260:181–192Google Scholar
  103. 103.
    Pavese A, Solís V (1991) Comparative investigation of formic acid and formaldehyde oxidation on palladium by a rotating ring-disc electrode and on-line mass spectroscopy in acidic solutions. J Electroanal Chem Interfacial Electrochem 301:117–127Google Scholar
  104. 104.
    Pavese AG, Solis VM, Giordano MC (1987) Oxidation of formic acid on palladium anodes in acidic medium. Effect of Pd(II) ions. Electrochim Acta 32:1213–1216Google Scholar
  105. 105.
    Wolter O, Willsau J, Heitbaum J (1985) Reaction pathways of the anodic oxidation of formic acid on Pt evidenced by 18O labeling – a DEMS study. J Electrochem Soc 132:1635–1638Google Scholar
  106. 106.
    Gao W, Keith JA, Anton J et al (2010) Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt(111). J Am Chem Soc 132:18377–18385Google Scholar
  107. 107.
    Zhang J, Qiu C, Ma H et al (2008) Facile fabrication and unexpected electrocatalytic activity of palladium thin films with hierarchical architectures. J Phys Chem C 112:13970–13975Google Scholar
  108. 108.
    Clavilier J, Sun SG (1986) Electrochemical study of the chemisorbed species formed from formic acid dissociation at platinum single crystal electrodes. J Electroanal Chem Interfacial Electrochem 199:471–480Google Scholar
  109. 109.
    Llopis JF, Gamboa JM, Victori L (1972) Radiochemical study of the anodic behaviour of palladium. Electrochim Acta 17:2225–2230Google Scholar
  110. 110.
    Haan JL, Stafford KM, Masel RI (2010) Effects of the addition of antimony, tin, and lead to palladium catalyst formulations for the direct formic acid fuel cell. J Phys Chem C 114:11665–11672Google Scholar
  111. 111.
    Xia XH, Iwasita T (1993) Influence of underpotential deposited lead upon the oxidation of HCOOH in HClO4 at platinum electrodes. J Electrochem Soc 140:2559–2565Google Scholar
  112. 112.
    Lei H-W, Hattori H, Kita H (1996) Electrocatalysis by Pb adatoms of HCOOH oxidation at Pt(111) in acidic solution. Electrochim Acta 41:1619–1628Google Scholar
  113. 113.
    Hwang S-M, Bonevich JE, Kim JJ et al (2011) Formic acid oxidation on Pt100 − xPbx thin films electrodeposited on Au. J Electrochem Soc 158:B1019–B1028Google Scholar
  114. 114.
    Wang J, Asmussen RM, Adams B et al (2009) Facile synthesis and electrochemical properties of intermetallic PtPb nanodendrites. Chem Mater 21:1716–1724Google Scholar
  115. 115.
    Matsumoto F, Roychowdhury C, Disalvo FJ et al (2008) Electrocatalytic activity of ordered intermetallic PtPb nanoparticles prepared by borohydride reduction toward formic acid oxidation. J Electrochem Soc 155:B148–B154Google Scholar
  116. 116.
    Eiswirth M, Ertl G (1986) Kinetic oscillations in the catalytic CO oxidation on a Pt(110) surface. Surf Sci 177:90–100Google Scholar
  117. 117.
    Eiswirth RM (1987) Phänomene der selbstorganisation bei der oxidation von CO an Pt(110). Thesis, Ludwig-Maximilians Universität, MünchenGoogle Scholar
  118. 118.
    Eiswirth M, Bürger J, Strasser P et al (1996) Oscillating Langmuir–Hinshelwood mechanisms. J Phys Chem 100:19118–19123Google Scholar
  119. 119.
    Krischer K (1990) Nichtlineare Dynamik zweier Grenzflächenreaktionen – kinetische Oszillationen, Bifurkationen und deterministisches Chaos. Thesis, Free University of Berlin, Berlin, p 249Google Scholar
  120. 120.
    Nettesheim S (1993) Reaction diffusion patterns in the catalytic CO oxidation on Pt(110): front propagation and spiral waves. J Chem Phys 98:9977Google Scholar
  121. 121.
    Koper MTM, Schmidt TJ, Marković NM et al (2001) Potential oscillations and S-shaped polarization curve in the continuous electro-oxidation of CO on platinum single-crystal electrodes. J Phys Chem B 105:8381–8386Google Scholar
  122. 122.
    Azevedo DC, Pinheiro ALN, Gonzalez ER (2002) Current oscillations during CO electro-oxidation on smooth platinum. Electrochem Solid State Lett 5:A51–A54Google Scholar
  123. 123.
    Lima ABDM (2012) Kinect instabilities in the electro-oxidation of CO-containing hydrogen. Thesis, Physical Chemistry USP-IQSC, Săo CarlosGoogle Scholar
  124. 124.
    Sauerbrei S, Sensse A, Eiswirth M (2011) Application of quotient rings for stability analysis in chemical systems. Z Naturforsch A 66a:231–241Google Scholar
  125. 125.
    Sauerbrei S (2010) Mechanism and model of the oscillatory electro-oxidation of methanol. J Chem Phys 132:154901Google Scholar
  126. 126.
    Sensse A, Gatermann K, Eiswirth M (2005) Analytic solution for the electrocatalytic oxidation of formic acid. J Electroanal Chem 577:35–46Google Scholar
  127. 127.
    Li L, Wei Z, Qi X et al (2008) Chemical oscillation in electrochemical oxidation of methanol on Pt surface. Sci China B Chem 51:322–332Google Scholar
  128. 128.
    Krausa M, Vielstich W (1995) Potential oscillations during methanol oxidation at Pt-electrodes. 1. Experimental conditions. J Electroanal Chem 399:7–12Google Scholar
  129. 129.
    Schell M (1998) Mechanistic and fuel-cell implications of a tristable response in the electrochemical oxidation of methanol. J Electroanal Chem 457:221–228Google Scholar
  130. 130.
    Seland F, Tunold R, Harrington DA (2010) Activating and deactivating mass transport effects in methanol and formic acid oxidation on platinum electrodes. Electrochim Acta 55:3384–3391Google Scholar
  131. 131.
    Dahlstrom PK, Harrington DA, Seland F (2012) A study of methanol oxidation by dynamic electrochemical impedance spectroscopy. ECS Trans 41:35–47Google Scholar
  132. 132.
    Strasser P, Eiswirth M, Ertl G (1997) Oscillatory instabilities during formic acid oxidation on Pt(100), Pt(110) and Pt(111) under potentiostatic control. II. Model calculations. J Chem Phys 107:991–1003Google Scholar
  133. 133.
    Chen S, Noles T, Schell M (2000) Effects of anions on chemical instabilities in the oxidation of formic acid. Electrochem Commun 2:171–174Google Scholar
  134. 134.
    Raspel F, Eiswirth M (1994) Current oscillations in the electrochemical oxidation of formic acid at Pt single crystal surfaces. J Phys Chem 98:7613–7618Google Scholar
  135. 135.
    Mota A, Gonzalez ER, Eiswirth M (2013) Enhanced efficiency of CO-containing hydrogen electroxidation with autonomous oscillations. J Phys Chem C 117:12495–12501Google Scholar
  136. 136.
    Eiswirth M (1994) Instability and oscillations in chemistry. Suuri kagaku 372:59–64Google Scholar
  137. 137.
    Gatermann K, Eiswirth M, Sensse A (2005) Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. J Symb Comput 40:1361–1382Google Scholar
  138. 138.
    Hacquard A (2005) Improving and understanding direc methanol fuel cell (DMFC) performance. Thesis, Worcester Polytechnic InstituteGoogle Scholar
  139. 139.
    Du CY, Zhao TS, Yang WW (2007) Effect of methanol crossover on the cathode behavior of a DMFC: a half-cell investigation. Electrochim Acta 52:5266–5271Google Scholar
  140. 140.
    Mota A, Gonzalez ER, Eiswirth M (2013). Continuous CO electroxidation: bistability and oscillations. Phys Chem Chem Phys (to Submitted)Google Scholar
  141. 141.
    Kadyk T, Kirsch S, Hanke-Rauschenbach R et al (2011) Autonomous potential oscillations at the Pt anode of a PEM fuel cell under CO poisoning. Electrochim Acta 56:10593–10602Google Scholar
  142. 142.
    Mota A, Gonzalez ER, Eiswirth M (2011) Kinetic insights over a PEMFC operating on stationary and oscillatory states. J Phys Chem A 115:13773–13782Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Instituto de Química de São Carlos-USPSão CarlosBrazil

Personalised recommendations