Introduction to Direct Alcohol Fuel Cells

  • Horacio R. CortiEmail author
  • Ernesto R. Gonzalez


Fuel cells are strongly linked to renewable energies, particularly to the so-called “Hydrogen Economy”. For decades the development of fuel cells able to convert hydrogen and oxygen in electrical energy with water as unique byproduct has motivated huge activity in fundamental and applied electrochemistry.

In this chapter we introduce the concept of methanol economy and discuss its status and perspectives. To be a reality the methanol and other alcohol economies depend on the development of alcohol feed fuel cells, whose components, operation modes and general performance are analyzed.


Fuel Cell Catalyst Layer Proton Exchange Membrane Fuel Cell Internal Combustion Engine Direct Methanol Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    BP Statistical Review of World Energy (2011). Available in:
  2. 2.
  3. 3.
  4. 4.
    Rühl C, Appleby P, Fennema J, Naumov A, Schaffer ME (2012) Economic development and the demand for energy: a historical perspective on the next 20 years. Energy Policy 50:109–116, Smith Bits S.T.A.T.SCrossRefGoogle Scholar
  5. 5.
    Crutzen P, Mosier AR, Smith KA, Winiwarter W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205CrossRefGoogle Scholar
  6. 6.
    Olah GA, Goeppert A, Surya Prakash GK (2006) Beyond oil and gas: the methanol economy. Wiley-VCH, WeinheimGoogle Scholar
  7. 7.
    Winter CJ (2000) In: Winter C-J (ed) On energies-of-change, the hydrogen solution: policy, business, and technology decisions ahead. Gerling Akademie Verlag, MunichGoogle Scholar
  8. 8.
    Lamy C, Léger JM, Srinavasan S (2001) Direct methanol fuel cells: from a twentieth century electrochemical’s dream to a twenty-first century emerging technology. In: Bockris JO’M et al (eds) Modern aspect of electrochemistry, vol 34. Kluwer/Plenum, New York, pp 53–118CrossRefGoogle Scholar
  9. 9.
    Reid J (1903) Process of generating electricity. US Patent 736,016Google Scholar
  10. 10.
    Kordesch KV, Simader GR (1995) Environmental impact of fuel cell technology. Chem Rev 95:191–207CrossRefGoogle Scholar
  11. 11.
    Miiller E (1922) Die elektrochemische oxydation organischer verbindungen. Z Elektrochem 28:101–106Google Scholar
  12. 12.
    Tanaka S (1929) Z Elektrochem 35:38–42Google Scholar
  13. 13.
    Kordesch K, Marko A (1950) Oesterr Chem Ztg 52:125–130Google Scholar
  14. 14.
    Justi EW, Winsel AW (1955) British Patent 821,688Google Scholar
  15. 15.
    Wynn JE (1960) Proc Ann Power Sources Conf 14:52–57Google Scholar
  16. 16.
    Hunger HE (1960) Proc Ann Power Sources Conf 14:55–59Google Scholar
  17. 17.
    Vielstich W (1965) In: Baker BS (ed) Hydrocarbon fuel cell technology. Academic, New York, p 79Google Scholar
  18. 18.
    Koscher GA, Kordesch KV (2003) Alkaline methanol–air system. J Solid State Electrochem 7:632–636CrossRefGoogle Scholar
  19. 19.
    Murray JN, Grimes PG (1963) Fuel cells. American Institute of Chemical Engineers, New York, pp 57Google Scholar
  20. 20.
    McNicol BD, Rand DAJ, Williams KR (1999) Direct methanol-air fuel cells for road transportation. J Power Sources 83:15–31CrossRefGoogle Scholar
  21. 21.
    Aricó AS, Baglio V, Antonucci V (2009) Direct methanol fuel cells: history, status and perspectives. In: Liu H, Zhang J (eds) Electrocatalysis for direct methanol fuel cells. Wiley, Weinheim, pp 1–78CrossRefGoogle Scholar
  22. 22.
    Cathro KJ (1969) The oxidation of water-soluble organic fuels using platinum-tin catalysts. J Electrochem Soc 116:1608–1611CrossRefGoogle Scholar
  23. 23.
    Janssen MMP, Moolhuysen J (1976) Platinum-tin catalysts for methanol fuel cells prepared by a novel immersion technique, by electrocodeposition and by alloying. Electrochim Acta 21:861–868CrossRefGoogle Scholar
  24. 24.
    Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J Electroanal Chem 60:275–283CrossRefGoogle Scholar
  25. 25.
    Cameron DS, Hards GA, Harrison B, Potter RJ (1987) Direct methanol fuel cells. Recent developments in the search for improved performance. Platinum Metals Rev 31:173–181Google Scholar
  26. 26.
    Apanel G, Johnson E (2004) Direct methanol fuel cells – ready to go commercial? Fuel Cells Bull 2004:12–17CrossRefGoogle Scholar
  27. 27.
    Surampudi L, Narayanan SI, Vamos F, Frank H, Halpert G, LaConti A, Kosek J, Surya Prakash GK, Olah GA (1994) Advances in direct oxidation methanol fuel cells. J Power Sources 47:377–385CrossRefGoogle Scholar
  28. 28.
    Demirci UB (2007) Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J Power Sources 169:239–246CrossRefGoogle Scholar
  29. 29.
    Eccarius S, Garcia BL, Hebling C, Weidner JW (2008) Experimental validation of a methanol crossover model in DMFC applications. J Power Sources 179:723–733CrossRefGoogle Scholar
  30. 30.
    Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450CrossRefGoogle Scholar
  31. 31.
    Song S, Tsiakaras P (2006) Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Appl Catal B Environm 63:187–193CrossRefGoogle Scholar
  32. 32.
    Bever D, Wagner N, Von Bradke M (1998) Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures. Int J Hydrogen Energy 23:57–63CrossRefGoogle Scholar
  33. 33.
    Giorgi L, Antolini E, Pozio A, Passalacqua E (1998) Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochim Acta 43:3675–3680CrossRefGoogle Scholar
  34. 34.
    Ralph TR, Hards GA, Keating JE, Campbell SA, Wilkinson DP, Davis H, St. Pierre J, Johnson MC (1997) Low cost electrodes for proton exchange membrane fuel cells: performance in single cells and Ballard stacks. J Electrochem Soc 144:3845–3857CrossRefGoogle Scholar
  35. 35.
    Gottesfeld S, Minas C (2008) Optimization of direct methanol fuel cell systems and their mode of operation. In: Kakaç S, Pramuanjaroenkij A, Vasiliev L (eds) Mini-micro fuel cells. Springer, Dordrecht, pp 257–268CrossRefGoogle Scholar
  36. 36.
    Barton SC, Patterson T, Wang E, Fuller TF, West AC (2001) Mixed-reactant, strip-cell direct methanol fuel cells. J Power Sources 96:329–336CrossRefGoogle Scholar
  37. 37.
    Priestnall MA, Kotzeva VP, Fish DJ, Nilsson EM (2002) Compact mixed-reactant fuel cells. J Power Sources 106:21–30CrossRefGoogle Scholar
  38. 38.
    Scott K, Shukla AK (2007) Direct methanol fuel cells: fundamentals, problems and perspectives. In: White RE (ed) Modern aspects of electrochemistry, vol 40. Springer, New York, pp 127–227Google Scholar
  39. 39.
    Shukla AK, Raman RK (2003) Methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells. Annu Rev Mater Res 33:155–168CrossRefGoogle Scholar
  40. 40.
    Ilicic AB, Wilkinson DP, Fatih K, Girard F (2008) High fuel concentration direct-liquid fuel cell with a redox couple cathode. J Electrochem Soc 155:B1322–B1327CrossRefGoogle Scholar
  41. 41.
    Ilicic AB, Wilkinson DP, Fatih K (2010) Advancing direct liquid redox fuel cells: mixed-reactant and in situ regeneration opportunities. J Electrochem Soc 157:B529–B535CrossRefGoogle Scholar
  42. 42.
    Lam A, Wilkinson DP, Zhang J (2009) Control of variable power conditions for a membraneless direct methanol fuel cell. J Power Sources 194:991–996CrossRefGoogle Scholar
  43. 43.
    Kim YS, Pivovar BS (2007) Chapter 4: Polymer electrolyte membranes for direct methanol fuel cells. In: Zhao TS, Kreuer KD, Van Nguyen T (eds) Advances in fuel cells. Elsevier, San Diego, pp 187–234Google Scholar
  44. 44.
    Lu G, Wang CY (2005) Chapter 9: Two-phase microfluidics, heat and mass transport in direct methanol fuel cells. In: Sundén B, Faghri M (eds) Transport phenomena in fuel cells. WIT Press, Southampton/Boston, pp 317–358CrossRefGoogle Scholar
  45. 45.
    Liao Q, Zhu X, Zheng X, Ding Y (2007) Visualization study on the dynamics of CO2 bubbles in anode channels and performance of a DMFC. J Power Sources 171:644–651CrossRefGoogle Scholar
  46. 46.
    Park YJ, Lee JH, Kang S, Sauk JH, Song I (2008) Mass balance research for high electrochemical performance direct methanol fuel cells with reduced methanol crossover at various operating conditions. J Power Sources 178:181–187CrossRefGoogle Scholar
  47. 47.
    Pasaogullari U, Wang CY, Chen KS (2005) Two-phase transport in polymer electrolyte fuel cells with bilayer cathode gas diffusion media. J Electrochem Soc 152:A1574–A1582CrossRefGoogle Scholar
  48. 48.
    Zhang J, Yin GP, Lai QZ, Wang ZB, Cai KD, Liu P (2007) The influence of anode gas diffusion layer on the performance of low-temperature DMFC. J Power Sources 168:453–458CrossRefGoogle Scholar
  49. 49.
    Kang K, Lee G, Gwak G, Choi Y, Ju H (2012) Development of an advanced MEA to use high-concentration methanol fuel in a direct methanol fuel cell system. Int J Hydrogen Energy 37:6285–6291CrossRefGoogle Scholar
  50. 50.
    Xing LH, Gao YZ, Wang ZB, Du CY, Yin GP (2011) Effect of anode diffusion layer fabricated with mesoporous carbon on the performance of direct dimethyl ether fuel cell. Int J Hydrogen Energy 36:11102–11107CrossRefGoogle Scholar
  51. 51.
    Aricó AS, Cretí P, Baglio V, Modica E, Antonucci V (2000) Influence of flow field design on the performance of a direct methanol fuel cell. J Power Sources 91:202–209CrossRefGoogle Scholar
  52. 52.
    Vijayakumar R, Rajkumar M, Sridhar P, Pitchumani S (2012) Effect of anode and cathode flow field depths on the performance of liquid feed direct methanol fuel cells (DMFCs). J Appl Electrochem 42:319–324CrossRefGoogle Scholar
  53. 53.
    Martin JJ, Qian W, Wang H, Neburchilov V, Zhang J, Wilkinson DP, Chang Z (2007) Design and testing of a passive planar three-cell DMFC. J Power Sources 164:287–292CrossRefGoogle Scholar
  54. 54.
    Chan YH, Zhao TS, Chen R, Xu C (2008) A self-regulated fuel-feed system for passive direct methanol fuel cells. J Power Sources 176:183–190CrossRefGoogle Scholar
  55. 55.
    Chan YH, Zhao TS, Chen R, Xu C (2008) A small mono-planar direct methanol fuel cell stack with passive operation. J Power Sources 178:118–124CrossRefGoogle Scholar
  56. 56.
    Kelley SC, Deluga GA, Smyrl WH (2000) A miniature methanol/air polymer electrolyte fuel cell. Electrochem Solid State Lett 3:407–409CrossRefGoogle Scholar
  57. 57.
    Nguyen NT, Chan SH (2006) Micromachined polymer electrolyte membrane and direct methanol fuel cells – a review. J Micromech Microeng 16:R1–R12CrossRefGoogle Scholar
  58. 58.
    Cha SW, O’Hayre R, Prinz FB (2004) The influence of size scale on the performance of fuel cells. J Power Sources 175:789–795Google Scholar
  59. 59.
    Zhang B, Zhang Y, He H, Li J, Yuan Z, Na C, Liu X (2010) Development and performance analysis of a metallic micro-direct methanol fuel cell for high-performance applications. J Power Sources 195:7338–7348CrossRefGoogle Scholar
  60. 60.
    Pavio J, Bostaph J, Fisher A, Hallmark J, Mylan BJ, Xie CG (2002) LTCC fuel cell system for portable wireless electronics. Adv Microelectr 29:1–8Google Scholar
  61. 61.
    Yen TJ, Fang N, Zhang X, Lu GQ, Wang CY (2003) A micro-methanol fuel cell operating at near room temperature. Appl Phys Lett 83:4056–4058CrossRefGoogle Scholar
  62. 62.
    Aravamudhan S, Rahman ARA, Bhansali S (2005) Porous silicon based orientation independent, self-priming microdirect ethanol fuel cell. Sens Actuat A 123–124:497–504CrossRefGoogle Scholar
  63. 63.
    Lu GQ, Wang CY (2006) Development of high performance micro DMFCs and a DMFC stack. J Fuel Cell Technol 3:131–136CrossRefGoogle Scholar
  64. 64.
    Yuan Z, Zhang Y, Fu W, Li Z, Liu X (2013) Investigation of a small-volume direct methanol fuel cell stack for portable application. Energy 51:462–467CrossRefGoogle Scholar
  65. 65.
    Litterst C, Eccarius S, Hebling C, Zengerle R, Koltay P (2006) Increasing μDMFC efficiency by passive CO2 bubble removal and discontinuous operation. J Micromech Microeng 16:S248–S253CrossRefGoogle Scholar
  66. 66.
    Sundarrajan S, Allakhverdiev SI, Ramakrishna S (2012) Progress and perspectives in micro direct methanol fuel cell. Int J Hydrogen Energy 37:8765–8786CrossRefGoogle Scholar
  67. 67.
    Zhao TS, Xu C, Chen R, Yang WW (2009) Mass transport phenomena in direct methanol fuel cells. Prog Energy Comb Sci 35:275–292CrossRefGoogle Scholar
  68. 68.
    Zhao TS, Chen R, Yang WW, Xu C (2009) Small direct methanol fuel cells with passive supply of reactants. J Power Sources 191:185–202CrossRefGoogle Scholar
  69. 69.
    Garcia BL, Weidner JW (2007) Review of direct methanol fuel cells. In: White RE (ed) Modern aspects of electrochemistry, vol 40. Springer, New York, pp 229–284Google Scholar
  70. 70.
    Kamarudin SK, Daud WRW, Ho SL, Hasran UA (2007) Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). J Power Sources 163:743–754CrossRefGoogle Scholar
  71. 71.
    Zhao X, Yin M, Ma L, Liang L, Liu C, Liao J, Lu T, Xing W (2011) Recent advances in catalysts for direct methanol fuel cells. Energy Environ Sci 4:2736–2753CrossRefGoogle Scholar
  72. 72.
    Sharma S, Poleet BG (2012) Support materials for PEMFC and DMFC electrocatalysts – a review. J Power Sources 208:96–119CrossRefGoogle Scholar
  73. 73.
    Kim YS, Zelenay P (2009) Direct methanol fuel cell durability. In: Büchi FN et al (eds) Polymer electrolyte fuel cells durability. Springer, New York, pp 223–240CrossRefGoogle Scholar
  74. 74.
    Bahrami H, Faghri A (2012) Review and advances of direct methanol fuel cells: Part II: Modeling and numerical simulation. J Power Sources 230:286–296CrossRefGoogle Scholar
  75. 75.
    Dillon R, Srinivasan S, Aricó AS, Antonucci V (2004) International activities in DMFC R&D: status of technologies and potential applications. J Power Sources 127:112–126CrossRefGoogle Scholar
  76. 76.
    Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12CrossRefGoogle Scholar
  77. 77.
    Friedl J, Stimming U (2013) Model catalyst studies on hydrogen and ethanol oxidation for fuel cells. Electrchim Acta 101:41–58CrossRefGoogle Scholar
  78. 78.
    Zhao TS, Li YS, Shen SY (2010) Anion-exchange membrane direct ethanol fuel cells: status and perspective. Front Energy Power Eng China 4:443–458CrossRefGoogle Scholar
  79. 79.
    Brouzgou A, Podias A, Tsiakaras P (2013) PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review. J Appl Electrochem 43:119–136CrossRefGoogle Scholar
  80. 80.
    Kamarudin MZF, Kamarudin SK, Masdar MS, Daud WRW (2013, in press) Review: direct ethanol fuel cells. Int J Hydrogen Energy. doi: 10.1016/j.ijhydene.2012.07.59
  81. 81.
    Heath CE (1964) Proc Ann Power Sources Conf 18:33Google Scholar
  82. 82.
    Tamura K, Tsukui T, Kamo T, Kudo T (1984) Hitachi Hyoron 66:49Google Scholar
  83. 83.
    Waidhas M, Drenckhahn W, Preidea W, Landes H (1996) Direct-fuelled fuel cells. J Power Sources 61:91–97CrossRefGoogle Scholar
  84. 84.
    Hogarth MP, Hards GA (1996) Direct methanol fuel cells. Platinum Metal Rev 40:150–159Google Scholar
  85. 85.
    Narayanam SR, Halpert G, Chun W, Jeffries-Nakamura B, Valdez TI, Frank H, Surampudi S (1996) Proceedings of 37th Power Sources Conference, Cherry Hill, NJ (USA), pp 96–99Google Scholar
  86. 86.
    Gottesfeld S, Cleghom SJC, Ren X, Springer TE Wilson MS, Zawodzinski T (1996) In: Courtesy Associates (ed) Fuel cell seminar. Washington, DC, pp 521–524Google Scholar
  87. 87.
    Fuller TF, Murach BL, Maricle DL (1997) 191th meeting of the electrochemical society, vol 97-1, abstract 620. The Electrochemical Society, Pennington, p 812Google Scholar
  88. 88.
    Aricó AS, Antonucci PL, Modica E, Baglio V, Kim H, Antonucci V (2002) Effect of Pt-Ru alloy composition on high-temperature methanol electro-oxidation. Electrochim Acta 47:3723–3732CrossRefGoogle Scholar
  89. 89.
    Baldauf M, Preidel W (2001) Experimental results on the direct electrochemical oxidation of methanol in PEM fuel cells. J Appl Electrochem 31:781–786CrossRefGoogle Scholar
  90. 90.
    Ren X, Wilson MS, Gottesfeld S (1996) High performance direct methanol polymer electrolyte fuel cells. J Electrochem Soc 143:L12–L15CrossRefGoogle Scholar
  91. 91.
    Scott K, Taama W, Cruickshank J (1998) Performance of a direct methanol fuel cell. J Appl Electrochem 28:289–297CrossRefGoogle Scholar
  92. 92.
    Shukla AK (2002) An improved-performance liquid-feed solid-polymer-electrolyte direct methanol fuel cell operating at near-ambient conditions. Electrochim Acta 47:3401–3407CrossRefGoogle Scholar
  93. 93.
    Witham CK, Chun W, Valdez TI, Narayanan SR (2000) Performance of direct methanol fuel cells with sputter-deposited anode catalyst layers. Electrochem Solid State Lett 3:497–500CrossRefGoogle Scholar
  94. 94.
    Antonucci PL, Aricó AS, Creti P, Ramunni E, Antonucci V (1999) Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation. Solid State Ion 125:431–437CrossRefGoogle Scholar
  95. 95.
    Yang C, Srinivasan S, Aricó AS, Creti P, Baglio V, Antonucci V (2001) Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochem Solid State Lett 4:A31–A34CrossRefGoogle Scholar
  96. 96.
    Jung DH, Jo YH, Jung JH, Cho SH, Kim CS, Shin DR (2000) Proceedings of fuel cell seminar, Portland, pp 420–423Google Scholar
  97. 97.
    Kim D, Cho EA, Hong SA, Oh IH, Ha IH (2004) Recent progress in passive direct methanol fuel cells at KIST. J Power Sources 130:172–177CrossRefGoogle Scholar
  98. 98.
    Kim C, Kim YJ, Yanagisawa T, Park KC, Endo M (2004) High-performance of cup-stacked-type carbon nanotubes as a Pt-Ru catalyst support for fuel cell applications. J Appl Phys 96:5903–5905CrossRefGoogle Scholar
  99. 99.
    Wong CW, Zhao TS, Ye Q, Liu JG (2006) Experimental investigations of the anode flow field of a micro direct methanol fuel cell. J Power Sources 155:291–296CrossRefGoogle Scholar
  100. 100.
    Lu CQ, Wang CY (2005) Development of micro direct methanol fuel cells for high power applications. J Power Sources 144:141–145CrossRefGoogle Scholar
  101. 101.
    Hou H, Sun G, He R, Wu Z, Sun B (2008) Alkali doped polybenzimidazole membrane for high performance alkaline direct methanol fuel cell. J Power Sources 182:95–99CrossRefGoogle Scholar
  102. 102.
    Fujiwara N, Siroma Z, Yamazaki S, Ioroi T, Senoh H, Yasuda K (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185:621–626CrossRefGoogle Scholar
  103. 103.
    Kjeang E, Djilali N, Sinton D (2009) Chapter 3: Advances in microfluidic fuel cells. In: Zhao TS (ed) Micro fuel cells. Academic, Burlington, pp 99–139CrossRefGoogle Scholar
  104. 104.
    Ferrigno R, Stroock AD, Clark TD, Mayer M, Whitesides GM (2002) Membraneless vanadium redox fuel cell using laminar flow. J Am Chem Soc 124:12930–12931CrossRefGoogle Scholar
  105. 105.
    Tominaka S, Nishizeko H, Ohta S, Osaka T (2009) On-chip fuel cells for safe and high-power operation: investigation of alcohol fuel solutions. Energy Environ Sci 2:849–852CrossRefGoogle Scholar
  106. 106.
    Tominaka S, Ohta S, Obata H, Momma T, Osaka T (2008) On-chip fuel cell: micro direct methanol fuel cell of an air-breathing, membraneless, and monolithic design. J Am Chem Soc 130:10456–10457CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Departamento de Física de la Materia CondensadaCentro Atómico Constituyentes, CNEA, and INQUIMAE (Universidad de Buenos Aires – CONICET)Buenos AiresArgentina
  2. 2.Instituto de Química de São Carlos-USPSão CarlosBrazil

Personalised recommendations