Skip to main content

Novel Functions of Core Cell Cycle Regulators in Neuronal Migration

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 800))

Abstract

The cerebral cortex is one of the most intricate regions of the brain, which required elaborated cell migration patterns for its development. Experimental observations show that projection neurons migrate radially within the cortical wall, whereas interneurons migrate along multiple tangential paths to reach the developing cortex. Tight regulation of the cell migration processes ensures proper positioning and functional integration of neurons to specific cerebral cortical circuits. Disruption of neuronal migration often lead to cortical dysfunction and/or malformation associated with neurological disorders. Unveiling the molecular control of neuronal migration is thus fundamental to understand the physiological or pathological development of the cerebral cortex. Generation of functional cortical neurons is a complex and stratified process that relies on decision of neural progenitors to leave the cell cycle and generate neurons that migrate and differentiate to reach their final position in the cortical wall. Although accumulating work shed some light on the molecular control of neuronal migration, we currently do not have a comprehensive understanding of how cell cycle exit and migration/differentiation are coordinated at the molecular level. The current chapter tends to lift the veil on this issue by discussing how core cell cycle regulators, and in particular p27Kip1 acts as a multifunctional protein to control critical steps of neuronal migration through activities that go far beyond cell cycle regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275(5304):1308–1311

    Article  PubMed  CAS  Google Scholar 

  • Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278(5337):474–476

    Article  PubMed  CAS  Google Scholar 

  • Ayala R, Shu T, Tsai LH (2007) Trekking across the brain: the journey of neuronal migration. Cell 128(1):29–43, doi:S0092-8674(06)01648-5 [pii] 10.1016/j.cell.2006.12.021

    Article  PubMed  CAS  Google Scholar 

  • Baldassarre G, Belletti B, Nicoloso MS, Schiappacassi M, Vecchione A, Spessotto P, Morrione A, Canzonieri V, Colombatti A (2005) p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 7(1):51–63

    Article  PubMed  CAS  Google Scholar 

  • Bar-Sagi D, Hall A (2000) Ras and Rho GTPases: a family reunion. Cell 103(2):227–238

    Article  PubMed  CAS  Google Scholar 

  • Bellenchi GC, Gurniak CB, Perlas E, Middei S, Ammassari-Teule M, Witke W (2007) N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev 21(18):2347–2357, doi:21/18/2347 [pii] 10.1101/gad.434307

    Article  PubMed  CAS  Google Scholar 

  • Bellion A, Baudoin JP, Alvarez C, Bornens M, Metin C (2005) Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci 25(24):5691–5699, doi:25/24/5691 [pii] 10.1523/JNEUROSCI.1030-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Besson A, Assoian RK, Roberts JM (2004a) Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? Nat Rev Cancer 4(12):948–955

    Article  PubMed  CAS  Google Scholar 

  • Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM (2004b) p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 18(8):862–876, doi:10.1101/gad.1185504 1185504 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Besson A, Hwang HC, Cicero S, Donovan SL, Gurian-West M, Johnson D, Clurman BE, Dyer MA, Roberts JM (2007) Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 21(14):1731–1746, doi:gad.1556607 [pii] 10.1101/gad.1556607

    Article  PubMed  CAS  Google Scholar 

  • Bielas S, Higginbotham H, Koizumi H, Tanaka T, Gleeson JG (2004) Cortical neuronal migration mutants suggest separate but intersecting pathways. Annu Rev Cell Dev Biol 20:593–618

    Article  PubMed  CAS  Google Scholar 

  • Breuss M, Heng JI, Poirier K, Tian G, Jaglin XH, Qu Z, Braun A, Gstrein T, Ngo L, Haas M, Bahi-Buisson N, Moutard ML, Passemard S, Verloes A, Gressens P, Xie Y, Robson KJ, Rani DS, Thangaraj K, Clausen T, Chelly J, Cowan NJ, Keays DA (2012) Mutations in the beta-tubulin gene TUBB5 cause microcephaly with structural brain abnormalities. Cell Rep 2(6):1554–1562. doi:10.1016/j.celrep.2012.11.017

    Article  PubMed  CAS  Google Scholar 

  • Chrzanowska-Wodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133(6):1403–1415

    Article  PubMed  CAS  Google Scholar 

  • Connor MK, Kotchetkov R, Cariou S, Resch A, Lupetti R, Beniston RG, Melchior F, Hengst L, Slingerland JM (2003) CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis. Mol Biol Cell 14(1):201–213. doi:10.1091/mbc.E02-06-0319

    Article  PubMed  CAS  Google Scholar 

  • Cushion TD, Dobyns WB, Mullins JG, Stoodley N, Chung SK, Fry AE, Hehr U, Gunny R, Aylsworth AS, Prabhakar P, Uyanik G, Rankin J, Rees MI, Pilz DT (2013) Overlapping cortical malformations and mutations in TUBB2B and TUBA1A. Brain 136(Pt 2):536–548. doi:10.1093/brain/aws338

    Article  PubMed  Google Scholar 

  • Diez-Juan A, Andres V (2003) Coordinate control of proliferation and migration by the p27Kip1/cyclin-dependent kinase/retinoblastoma pathway in vascular smooth muscle cells and fibroblasts. Circ Res 92(4):402–410

    Article  PubMed  CAS  Google Scholar 

  • Distel M, Hocking JC, Volkmann K, Koster RW (2010) The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. J Cell Biol 191(4):875–890. doi:10.1083/jcb.201004154

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Verdugo JM, Caille I, Alvarez-Buylla A, Chao MV, Casaccia-Bonnefil P (2002) Lack of the cell-cycle inhibitor p27Kip1 results in selective increase of transit-amplifying cells for adult neurogenesis. J Neurosci 22(6):2255–2264

    PubMed  CAS  Google Scholar 

  • Elias LA, Kriegstein AR (2008) Gap junctions: multifaceted regulators of embryonic cortical development. Trends Neurosci 31(5):243–250, doi:S0166-2236(08)00094-5 [pii] 10.1016/j.tins.2008.02.007

    Article  PubMed  CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635. doi:10.1038/nature01148

    Article  PubMed  CAS  Google Scholar 

  • Fujita N, Sato S, Katayama K, Tsuruo T (2002) Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem 277(32):28706–28713. doi:10.1074/jbc.M203668200

    Article  PubMed  CAS  Google Scholar 

  • Fujita N, Sato S, Tsuruo T (2003) Phosphorylation of p27Kip1 at threonine 198 by p90 ribosomal protein S6 kinases promotes its binding to 14-3-3 and cytoplasmic localization. J Biol Chem 278(49):49254–49260. doi:10.1074/jbc.M306614200

    Article  PubMed  CAS  Google Scholar 

  • Furutachi S, Matsumoto A, Nakayama KI, Gotoh Y (2013) p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO J 32(7):970–981. doi:10.1038/emboj.2013.50

    Article  PubMed  CAS  Google Scholar 

  • Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross ME, Walsh CA (1998) Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92(1):63–72

    Article  PubMed  CAS  Google Scholar 

  • Godin JD, Thomas N, Laguesse S, Malinouskaya L, Close P, Malaise O, Purnelle A, Raineteau O, Campbell K, Fero M, Moonen G, Malgrange B, Chariot A, Metin C, Besson A, Nguyen L (2012) p27(Kip1) is a microtubule-associated protein that promotes microtubule polymerization during neuron migration. Dev Cell 23(4):729–744, doi:10.1016/j.devcel.2012.08.006 S1534-5807(12)00374-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Gungabissoon RA, Bamburg JR (2003) Regulation of growth cone actin dynamics by ADF/cofilin. J Histochem Cytochem 51(4):411–420

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Tsai LH, Wynshaw-Boris A (2002) Life is a journey: a genetic look at neocortical development. Nat Rev Genet 3(5):342–355

    Article  PubMed  CAS  Google Scholar 

  • Heng JI, Moonen G, Nguyen L (2007) Neurotransmitters regulate cell migration in the telencephalon. Eur J Neurosci 26(3):537–546

    Article  PubMed  Google Scholar 

  • Hevner RF, Daza RA, Rubenstein JL, Stunnenberg H, Olavarria JF, Englund C (2003) Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev Neurosci 25(2–4):139–151

    Article  PubMed  CAS  Google Scholar 

  • Higginbotham HR, Gleeson JG (2007) The centrosome in neuronal development. Trends Neurosci 30(6):276–283, doi:S0166-2236(07)00078-1 [pii] 10.1016/j.tins.2007.04.001

    Article  PubMed  CAS  Google Scholar 

  • Ishida N, Kitagawa M, Hatakeyama S, Nakayama K (2000) Phosphorylation at serine 10, a major phosphorylation site of p27(Kip1), increases its protein stability. J Biol Chem 275(33):25146–25154. doi:10.1074/jbc.M001144200

    Article  PubMed  CAS  Google Scholar 

  • Ishida N, Hara T, Kamura T, Yoshida M, Nakayama K, Nakayama KI (2002) Phosphorylation of p27Kip1 on serine 10 is required for its binding to CRM1 and nuclear export. J Biol Chem 277(17):14355–14358. doi:10.1074/jbc.C100762200

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Masuyama N, Nakayama K, Nakayama KI, Gotoh Y (2007) The cyclin-dependent kinase inhibitors p57 and p27 regulate neuronal migration in the developing mouse neocortex. J Biol Chem 282(1):390–396, doi:M609944200 [pii] 10.1074/jbc.M609944200

    Article  PubMed  CAS  Google Scholar 

  • Jaglin XH, Poirier K, Saillour Y, Buhler E, Tian G, Bahi-Buisson N, Fallet-Bianco C, Phan-Dinh-Tuy F, Kong XP, Bomont P, Castelnau-Ptakhine L, Odent S, Loget P, Kossorotoff M, Snoeck I, Plessis G, Parent P, Beldjord C, Cardoso C, Represa A, Flint J, Keays DA, Cowan NJ, Chelly J (2009) Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat Genet 41(6):746–752. doi:10.1038/ng.380

    Article  PubMed  CAS  Google Scholar 

  • Joseph B, Andersson ER, Vlachos P, Sodersten E, Liu L, Teixeira AI, Hermanson O (2009) p57Kip2 is a repressor of Mash1 activity and neuronal differentiation in neural stem cells. Cell Death Differ 16(9):1256–1265. doi:10.1038/cdd.2009.72

    Article  PubMed  CAS  Google Scholar 

  • Kappeler C, Saillour Y, Baudoin JP, Tuy FP, Alvarez C, Houbron C, Gaspar P, Hamard G, Chelly J, Metin C, Francis F (2006) Branching and nucleokinesis defects in migrating interneurons derived from doublecortin knockout mice. Hum Mol Genet 15(9):1387–1400

    Article  PubMed  CAS  Google Scholar 

  • Kardinal C, Dangers M, Kardinal A, Koch A, Brandt DT, Tamura T, Welte K (2006) Tyrosine phosphorylation modulates binding preference to cyclin-dependent kinases and subcellular localization of p27Kip1 in the acute promyelocytic leukemia cell line NB4. Blood 107(3):1133–1140. doi:10.1182/blood-2005-05-1771

    Article  PubMed  CAS  Google Scholar 

  • Kawauchi T, Chihama K, Nabeshima Y, Hoshino M (2006) Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration. Nat Cell Biol 8(1):17–26, doi:ncb1338 [pii] 10.1038/ncb1338

    Article  PubMed  CAS  Google Scholar 

  • Kholmanskikh SS, Dobrin JS, Wynshaw-Boris A, Letourneau PC, Ross ME (2003) Disregulated RhoGTPases and actin cytoskeleton contribute to the migration defect in Lis1-deficient neurons. J Neurosci 23(25):8673–8681, doi:23/25/8673 [pii]

    PubMed  CAS  Google Scholar 

  • Kholmanskikh SS, Koeller HB, Wynshaw-Boris A, Gomez T, Letourneau PC, Ross ME (2006) Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nat Neurosci 9(1):50–57, doi:nn1619 [pii] 10.1038/nn1619

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273(5272):245–248

    Article  PubMed  CAS  Google Scholar 

  • Kippin TE, Martens DJ, van der Kooy D (2005) p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev 19(6):756–767, doi:19/6/756 [pii] 10.1101/gad.1272305

    Article  PubMed  CAS  Google Scholar 

  • Koizumi H, Higginbotham H, Poon T, Tanaka T, Brinkman BC, Gleeson JG (2006) Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain. Nat Neurosci 9(6):779–786

    Article  PubMed  CAS  Google Scholar 

  • Larrea MD, Liang J, Da Silva T, Hong F, Shao SH, Han K, Dumont D, Slingerland JM (2008) Phosphorylation of p27Kip1 regulates assembly and activation of cyclin D1-Cdk4. Mol Cell Biol 28(20):6462–6472. doi:10.1128/MCB.02300-07

    Article  PubMed  CAS  Google Scholar 

  • Li X, Tang X, Jablonska B, Aguirre A, Gallo V, Luskin MB (2009) p27(KIP1) regulates neurogenesis in the rostral migratory stream and olfactory bulb of the postnatal mouse. J Neurosci 29(9):2902–2914. doi:10.1523/JNEUROSCI.4051-08.2009

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E, Slingerland JM (2002) PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8(10):1153–1160. doi:10.1038/nm761

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Sun L, Torii M, Rakic P (2012) Connexin 43 controls the multipolar phase of neuronal migration to the cerebral cortex. Proc Natl Acad Sci U S A 109(21):8280–8285, doi:1205880109 [pii] 10.1073/pnas.1205880109

    Article  PubMed  CAS  Google Scholar 

  • Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2(11):780–790

    Article  PubMed  CAS  Google Scholar 

  • Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483

    Article  PubMed  CAS  Google Scholar 

  • Marin O, Valdeolmillos M, Moya F (2006) Neurons in motion: same principles for different shapes? Trends Neurosci 29(12):655–661. doi:10.1016/j.tins.2006.10.001

    Article  PubMed  CAS  Google Scholar 

  • Marin O, Valiente M, Ge X, Tsai LH (2010) Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol 2(2):a001834. doi:10.1101/cshperspect.a001834

    Article  PubMed  Google Scholar 

  • McAllister SS, Becker-Hapak M, Pintucci G, Pagano M, Dowdy SF (2003) Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol Cell Biol 23(1):216–228

    Article  PubMed  CAS  Google Scholar 

  • Metin C, Baudoin JP, Rakic S, Parnavelas JG (2006) Cell and molecular mechanisms involved in the migration of cortical interneurons. Eur J Neurosci 23(4):894–900

    Article  PubMed  Google Scholar 

  • Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA, Dowdy SF (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 4(12):1449–1452. doi:10.1038/4042

    Article  PubMed  CAS  Google Scholar 

  • Nagano T, Yoneda T, Hatanaka Y, Kubota C, Murakami F, Sato M (2002) Filamin A-interacting protein (FILIP) regulates cortical cell migration out of the ventricular zone. Nat Cell Biol 4(7):495–501

    PubMed  CAS  Google Scholar 

  • Nguyen L, Rigo JM, Rocher V, Belachew S, Malgrange B, Rogister B, Leprince P, Moonen G (2001) Neurotransmitters as early signals for central nervous system development. Cell Tissue Res 305(2):187–202

    Article  PubMed  CAS  Google Scholar 

  • Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, Parras C, Philpott A, Roberts JM, Guillemot F (2006) p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20(11):1511–1524, doi:gad.377106 [pii] 10.1101/gad.377106

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7(2):136–144. doi:10.1038/nn1172

    Article  PubMed  CAS  Google Scholar 

  • Ohnuma S, Philpott A, Wang K, Holt CE, Harris WA (1999) p27Xic1, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina. Cell 99(5):499–510

    Article  PubMed  CAS  Google Scholar 

  • Pechnick RN, Zonis S, Wawrowsky K, Pourmorady J, Chesnokova V (2008) p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus. Proc Natl Acad Sci U S A 105(4):1358–1363, doi:0711030105 [pii] 10.1073/pnas.0711030105

    Article  PubMed  CAS  Google Scholar 

  • Perez-Luna M, Aguasca M, Perearnau A, Serratosa J, Martinez-Balbas M, Jesus Pujol M, Bachs O (2012) PCAF regulates the stability of the transcriptional regulator and cyclin-dependent kinase inhibitor p27 Kip1. Nucleic Acids Res 40(14):6520–6533. doi:10.1093/nar/gks343

    Article  PubMed  CAS  Google Scholar 

  • Pilz DT, Matsumoto N, Minnerath S, Mills P, Gleeson JG, Allen KM, Walsh CA, Barkovich AJ, Dobyns WB, Ledbetter DH, Ross ME (1998) LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 7(13):2029–2037, doi:ddb267 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Rakic S, Yanagawa Y, Obata K, Faux C, Parnavelas JG, Nikolic M (2009) Cortical interneurons require p35/Cdk5 for their migration and laminar organization. Cereb Cortex 19(8):1857–1869, doi:bhn213 [pii] 10.1093/cercor/bhn213

    Article  PubMed  Google Scholar 

  • Rash BG, Grove EA (2006) Area and layer patterning in the developing cerebral cortex. Curr Opin Neurobiol 16(1):25–34

    Article  PubMed  CAS  Google Scholar 

  • Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, Caskey CT, Ledbetter DH (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364(6439):717–721. doi:10.1038/364717a0

    Article  PubMed  CAS  Google Scholar 

  • Reynaud EG, Leibovitch MP, Tintignac LA, Pelpel K, Guillier M, Leibovitch SA (2000) Stabilization of MyoD by direct binding to p57(Kip2). J Biol Chem 275(25):18767–18776

    Article  PubMed  CAS  Google Scholar 

  • Rivas RJ, Hatten ME (1995) Motility and cytoskeletal organization of migrating cerebellar granule neurons. J Neurosci 15(2):981–989

    PubMed  CAS  Google Scholar 

  • Schaar BT, McConnell SK (2005) Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci U S A 102(38):13652–13657, doi:0506008102 [pii] 10.1073/pnas.0506008102

    Article  PubMed  CAS  Google Scholar 

  • Sekimoto T, Fukumoto M, Yoneda Y (2004) 14-3-3 suppresses the nuclear localization of threonine 157-phosphorylated p27(Kip1). EMBO J 23(9):1934–1942. doi:10.1038/sj.emboj.7600198

    Article  PubMed  CAS  Google Scholar 

  • Solecki DJ, Model L, Gaetz J, Kapoor TM, Hatten ME (2004) Par6alpha signaling controls glial-guided neuronal migration. Nat Neurosci 7(11):1195–1203

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Marx SO, Chen HJ, Poon M, Marks AR, Rabbani LE (2001) Role for p27(Kip1) in vascular smooth muscle cell migration. Circulation 103(24):2967–2972

    Article  PubMed  CAS  Google Scholar 

  • Tamamaki N, Fujimori KE, Takauji R (1997) Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J Neurosci 17(21):8313–8323

    PubMed  CAS  Google Scholar 

  • Tanaka T, Serneo FF, Higgins C, Gambello MJ, Wynshaw-Boris A, Gleeson JG (2004) Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J Cell Biol 165(5):709–721, doi:10.1083/jcb.200309025 jcb.200309025 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Tsai LH, Gleeson JG (2005) Nucleokinesis in neuronal migration. Neuron 46(3):383–388

    Article  PubMed  CAS  Google Scholar 

  • Tsai JW, Bremner KH, Vallee RB (2007) Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 10(8):970–979, doi:nn1934 [pii] 10.1038/nn1934

    Article  PubMed  CAS  Google Scholar 

  • Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H (1999) p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 9(12):661–664

    Article  PubMed  CAS  Google Scholar 

  • Tury A, Mairet-Coello G, DiCicco-Bloom E (2011) The cyclin-dependent kinase inhibitor p57Kip2 regulates cell cycle exit, differentiation, and migration of embryonic cerebral cortical precursors. Cereb Cortex 21(8):1840–1856. doi:10.1093/cercor/bhq254

    Article  PubMed  Google Scholar 

  • Umeshima H, Hirano T, Kengaku M (2007) Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc Natl Acad Sci U S A 104(41):16182–16187. doi:10.1073/pnas.0708047104

    Article  PubMed  CAS  Google Scholar 

  • Vernon AE, Devine C, Philpott A (2003) The cdk inhibitor p27Xic1 is required for differentiation of primary neurones in Xenopus. Development 130(1):85–92

    Article  PubMed  CAS  Google Scholar 

  • Viglietto G, Motti ML, Bruni P, Melillo RM, D’Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, Bellacosa A, Fusco A, Santoro M (2002) Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 8(10):1136–1144. doi:10.1038/nm762

    Article  PubMed  CAS  Google Scholar 

  • Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells – over and over and over again. Nat Cell Biol 4(4):E97–E100. doi:10.1038/ncb0402-e97

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Sanada K, Samuels BA, Shih H, Tsai LH (2003) Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 114(4):469–482

    Article  PubMed  CAS  Google Scholar 

  • Yokota Y, Gashghaei HT, Han C, Watson H, Campbell KJ, Anton ES (2007) Radial glial dependent and independent dynamics of interneuronal migration in the developing cerebral cortex. PLoS One 2(8):e794. doi:10.1371/journal.pone.0000794

    Article  PubMed  Google Scholar 

  • Zeng Y, Hirano K, Hirano M, Nishimura J, Kanaide H (2000) Minimal requirements for the nuclear localization of p27(Kip1), a cyclin-dependent kinase inhibitor. Biochem Biophys Res Commun 274(1):37–42. doi:10.1006/bbrc.2000.3098

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Tan W, Wu X, Poustovoitov M, Strasner A, Li W, Borcherding N, Ghassemian M, Karin M (2013) A NIK-IKKalpha module expands ErbB2-induced tumor-initiating cells by stimulating nuclear export of p27/Kip1. Cancer Cell. doi:10.1016/j.ccr.2013.03.012

    Google Scholar 

Download references

Acknowledgements

We would like to apologize to all authors whose work could not be cited du to length restrictions. L.N. is Research Associate from the Belgian National Funds for Scientific Research (F.R.S- F.N.R.S.). His laboratory is funded by grants from the F.R.S.- F.N.R.S., the Fonds Léon Fredericq, the Fondation Médicale Reine Elisabeth, the Belgian Science Policy (IAP-VII network P7/20), ARC (ARC11/16-01), the Walloon excellence in lifesciences and biotechnology (WELBIO). J.G. has been awarded Marie-Curie and EMBO long-term fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Godin, J.D., Nguyen, L. (2014). Novel Functions of Core Cell Cycle Regulators in Neuronal Migration. In: Nguyen, L., Hippenmeyer, S. (eds) Cellular and Molecular Control of Neuronal Migration. Advances in Experimental Medicine and Biology, vol 800. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7687-6_4

Download citation

Publish with us

Policies and ethics