Skip to main content

The Impact of JNK on Neuronal Migration

  • Chapter
  • First Online:
Book cover Cellular and Molecular Control of Neuronal Migration

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 800))

Abstract

Incorrect placement of nerve cells during brain development leaves us at risk of diseases and conditions ranging from epilepsy and mental retardation to schizophrenia and dyslexia. The developing brain produces cells at an impressive rate, with up to 250,000 new cells generated every minute. These newborn cells migrate long distances in sequential waves to settle in the layers that make up the cerebral cortex. If a nerve cell moves too fast or too slow during this journey, it may not take the correct route or reach its appropriate destination. Much knowledge has been accumulated on molecular cues and transcriptional programs regulating cortical development. More recently, components of the c-Jun N-terminal signaling cascade have been brought to light as important intracellular regulators of nerve cell motility. In this chapter, we focus on this family of protein kinases, their upstream activators and downstream targets in the context of neuronal migration. We first present basic information on these molecules, much of which derives from studies outside the nervous system. We then highlight key findings on JNK signaling in brain where it phosphorylates brain-specific proteins that influence microtubule homeostasis. Finally, we summarize recent findings from transgenic mice on the regulation of neuronal migration by JNK cascade components and by JNK substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell AN, Rivera-Perez JA, Cuevas BD, Uhlik MT, Sather S, Johnson NL, Minton SK, Lauder JM, Winter-Vann AM, Nakamura K, Magnuson T, Vaillancourt RR, Heasley LE, Johnson GL (2005) Ablation of MEKK4 kinase activity causes neurulation and skeletal patterning defects in the mouse embryo. Mol Cell Biol 25(20):8948–8959. doi:10.1128/MCB.25.20.8948-8959.2005

    PubMed  CAS  Google Scholar 

  • Antonsson B, Kassel DB, Di Paolo G, Lutjens R, Riederer BM, Grenningloh G (1998) Identification of in vitro phosphorylation sites in the growth cone protein SCG10. Effect of phosphorylation site mutants on microtubule-destabilizing activity. J Biol Chem 273(14):8439–8446

    PubMed  CAS  Google Scholar 

  • Bai J, Ramos RL, Ackman JB, Thomas AM, Lee RV, LoTurco JJ (2003) RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci 6(12):1277–1283

    PubMed  CAS  Google Scholar 

  • Behrens A, Sibilia M, Wagner EF (1999) Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21(3):326–329. doi:10.1038/6854

    PubMed  CAS  Google Scholar 

  • Björkblom B, Ostman N, Hongisto V, Komarovski V, Filén JJ, Nyman TA, Kallunki T, Courtney MJ, Coffey ET (2005) Constitutively active cytoplasmic c-Jun N-terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule-associated protein 2 as an effector. J Neurosci 25(27):6350–6361. doi:25/27/6350 [pii] 10.1523/JNEUROSCI.1517-05.2005

    PubMed  Google Scholar 

  • Björkblom B, Vainio JC, Hongisto V, Herdegen T, Courtney MJ, Coffey ET (2008) All JNKs can kill, but nuclear localization is critical for neuronal death. J Biol Chem 283(28):19704–19713. doi:M707744200 [pii] 10.1074/jbc.M707744200

    PubMed  Google Scholar 

  • Björkblom B, Padzik A, Mohammad H, Westerlund N, Komulainen E, Hollos P, Parviainen L, Papageorgiou AC, Iljin K, Kallioniemi O, Kallajoki M, Courtney MJ, Mågård M, James P, Coffey ET (2012) c-Jun N-terminal kinase phosphorylation of MARCKSL1 determines actin stability and migration in neurons and in cancer cells. Mol Cell Biol 32(17):3513–3526. doi:MCB.00713-12 [pii] 10.1128/MCB.00713-12

    PubMed  Google Scholar 

  • Bogoyevitch MA, Kobe B (2006) Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev 70(4):1061–1095. doi:70/4/1061 [pii] 10.1128/MMBR.00025-06

    PubMed  CAS  Google Scholar 

  • Brecht S, Kirchhof R, Chromik A, Willesen M, Nicolaus T, Raivich G, Wessig J, Waetzig V, Goetz M, Claussen M, Pearse D, Kuan CY, Vaudano E, Behrens A, Wagner E, Flavell RA, Davis RJ, Herdegen T (2005) Specific pathophysiological functions of JNK isoforms in the brain. Eur J Neurosci 21(2):363–377. doi:EJN3857 [pii] 10.1111/j.1460-9568.2005.03857.x

    PubMed  Google Scholar 

  • Britto JM, Tait KJ, Johnston LA, Hammond VE, Kalloniatis M, Tan SS (2011) Altered speeds and trajectories of neurons migrating in the ventricular and subventricular zones of the reeler neocortex. Cereb Cortex 21(5):1018–1027. doi:10.1093/cercor/bhq168

    PubMed  Google Scholar 

  • Byrd DT, Kawasaki M, Walcoff M, Hisamoto N, Matsumoto K, Jin Y (2001) UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 32(5):787–800

    PubMed  CAS  Google Scholar 

  • Chang L, Jones Y, Ellisman MH, Goldstein LS, Karin M (2003) JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell 4(4):521–533

    PubMed  CAS  Google Scholar 

  • Chen J, Chang S, Duncan SA, Okano HJ, Fishell G, Aderem A (1996) Disruption of the MacMARCKS gene prevents cranial neural tube closure and results in anencephaly. Proc Natl Acad Sci U S A 93(13):6275–6279

    PubMed  CAS  Google Scholar 

  • Chi H, Sarkisian MR, Rakic P, Flavell RA (2005) Loss of mitogen-activated protein kinase kinase kinase 4 (MEKK4) results in enhanced apoptosis and defective neural tube development. Proc Natl Acad Sci U S A 102(10):3846–3851. doi:10.1073/pnas.0500026102

    PubMed  CAS  Google Scholar 

  • Christerson LB, Vanderbilt CA, Cobb MH (1999) MEKK1 interacts with alpha-actinin and localizes to stress fibers and focal adhesions. Cell Motil Cytoskeleton 43(3):186–198. doi:10.1002/(SICI)1097-0169(1999)43:3<186::AID-CM2>3.0.CO;2–1

    Google Scholar 

  • Coffey ET, Courtney MJ (1997) Regulation of SAPKs in CNS neurons. Biochem Soc Trans 25(4):S568

    PubMed  CAS  Google Scholar 

  • Coffey ET, Hongisto V, Dickens M, Davis RJ, Courtney MJ (2000) Dual roles for c-Jun N-terminal kinase in developmental and stress responses in cerebellar granule neurons. J Neurosci 20(20):7602–7613. doi:20/20/7602 [pii]

    PubMed  CAS  Google Scholar 

  • Coffey ET, Smiciene G, Hongisto V, Cao J, Brecht S, Herdegen T, Courtney MJ (2002) c-Jun N-terminal protein kinase (JNK) 2/3 is specifically activated by stress, mediating c-Jun activation, in the presence of constitutive JNK1 activity in cerebellar neurons. J Neurosci 22(11):4335–4345. doi:20026401

    PubMed  CAS  Google Scholar 

  • Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, Laguesse S, Cornez I, Rahmouni S, Ormenese S, Belachew S, Malgrange B, Chapelle JP, Siebenlist U, Moonen G, Chariot A, Nguyen L (2009) Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136(3):551–564. doi:S0092-8674(08)01518-3 [pii] 10.1016/j.cell.2008.11.043

    PubMed  CAS  Google Scholar 

  • Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2):239–252

    PubMed  CAS  Google Scholar 

  • de Anda FC, Rosario AL, Durak O, Tran T, Gräff J, Meletis K, Rei D, Soda T, Madabhushi R, Ginty DD, Kolodkin AL, Tsai LH (2012) Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex. Nat Neurosci 15(7):1022–1031. doi:10.1038/nn.3141

    PubMed  Google Scholar 

  • Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76(6):1025–1037

    PubMed  Google Scholar 

  • des Portes V, Pinard JM, Billuart P, Vinet MC, Koulakoff A, Carrie A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y, Catala M, Kahn A, Beldjord C, Chelly J (1998) A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92(1):51–61. doi:S0092-8674(00)80898-3 [pii]

    PubMed  Google Scholar 

  • Dickens M, Rogers JS, Cavanagh J, Raitano A, Xia Z, Halpern JR, Greenberg ME, Sawyers CL, Davis RJ (1997) A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277(5326):693–696

    PubMed  CAS  Google Scholar 

  • Eferl R, Sibilia M, Hilberg F, Fuchsbichler A, Kufferath I, Guertl B, Zenz R, Wagner EF, Zatloukal K (1999) Functions of c-Jun in liver and heart development. J Cell Biol 145(5):1049–1061

    PubMed  CAS  Google Scholar 

  • Ferrer I, Blanco R, Carmona M, Puig B (2001) Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. J Neural Transm 108(12):1397–1415. doi:10.1007/s007020100016

    PubMed  CAS  Google Scholar 

  • Ferrer I, Blanco R, Carmona M, Puig B, Domínguez I, Viñals F (2002) Active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates are differentially expressed following systemic administration of kainic acid to the adult rat. Acta Neuropathol 103(4):391–407. doi:10.1007/s00401-001-0481-9

    PubMed  CAS  Google Scholar 

  • Fourniol FJ, Sindelar CV, Amigues B, Clare DK, Thomas G, Perderiset M, Francis F, Houdusse A, Moores CA (2010) Template-free 13-protofilament microtubule-MAP assembly visualized at 8 A resolution. J Cell Biol 191(3):463–470. doi:10.1083/jcb.201007081

    PubMed  CAS  Google Scholar 

  • Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet P, Chelly J (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23(2):247–256

    PubMed  CAS  Google Scholar 

  • Fu X, Brown KJ, Yap CC, Winckler B, Jaiswal JK, Liu JS (2013) Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons. J Neurosci 33(2):709–721. doi:10.1523/JNEUROSCI.4603-12.2013

    PubMed  CAS  Google Scholar 

  • Ganiatsas S, Kwee L, Fujiwara Y, Perkins A, Ikeda T, Labow MA, Zon LI (1998) SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc Natl Acad Sci U S A 95(12):6881–6886

    PubMed  CAS  Google Scholar 

  • Gantulga D, Tuvshintugs B, Endo Y, Takino T, Sato H, Murakami S, Yoshioka K (2008) The scaffold protein c-Jun NH2-terminal kinase-associated leucine zipper protein regulates cell migration through interaction with the G protein G(alpha 13). J Biochem 144(6):693–700. doi:10.1093/jb/mvn123

    PubMed  CAS  Google Scholar 

  • Gdalyahu A, Ghosh I, Levy T, Sapir T, Sapoznik S, Fishler Y, Azoulai D, Reiner O (2004) DCX, a new mediator of the JNK pathway. EMBO J 23(4):823–832. doi:10.1038/sj.emboj.7600079 7600079 [pii]

    PubMed  CAS  Google Scholar 

  • Geisen MJ, Di Meglio T, Pasqualetti M, Ducret S, Brunet JF, Chedotal A, Rijli FM (2008) Hox paralog group 2 genes control the migration of mouse pontine neurons through slit-robo signaling. PLoS Biol 6(6):e142. doi:10.1371/journal.pbio.0060142

    PubMed  Google Scholar 

  • Ghosh AS, Wang B, Pozniak CD, Chen M, Watts RJ, Lewcock JW (2011) DLK induces developmental neuronal degeneration via selective regulation of proapoptotic JNK activity. J Cell Biol 194(5):751–764. doi:10.1083/jcb.201103153

    PubMed  CAS  Google Scholar 

  • Gilmore EC, Ohshima T, Goffinet AM, Kulkarni AB, Herrup K (1998) Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J Neurosci 18(16):6370–6377

    PubMed  CAS  Google Scholar 

  • Grenningloh G, Soehrman S, Bondallaz P, Ruchti E, Cadas H (2004) Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. J Neurobiol 58(1):60–69. doi:10.1002/neu.10279

    PubMed  CAS  Google Scholar 

  • Gupta A, Sanada K, Miyamoto DT, Rovelstad S, Nadarajah B, Pearlman AL, Brunstrom J, Tsai LH (2003) Layering defect in p35 deficiency is linked to improper neuronal-glial interaction in radial migration. Nat Neurosci 6(12):1284–1291

    PubMed  CAS  Google Scholar 

  • Haeusgen W, Herdegen T, Waetzig V (2011) The bottleneck of JNK signaling: molecular and functional characteristics of MKK4 and MKK7. Eur J Cell Biol 90(6–7):536–544. doi:10.1016/j.ejcb.2010.11.008

    PubMed  CAS  Google Scholar 

  • Hammarlund M, Nix P, Hauth L, Jorgensen EM, Bastiani M (2009) Axon regeneration requires a conserved MAP kinase pathway. Science 323(5915):802–806. doi:10.1126/science.1165527

    PubMed  CAS  Google Scholar 

  • Hellwig S, Hack I, Zucker B, Brunne B, Junghans D (2012) Reelin together with ApoER2 regulates interneuron migration in the olfactory bulb. PLoS One 7(11):e50646. doi:10.1371/journal.pone.0050646

    PubMed  CAS  Google Scholar 

  • Hibi M, Lin A, Smeal T, Minden A, Karin M (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7(11):2135–2148

    PubMed  CAS  Google Scholar 

  • Hirai S, Kawaguchi A, Hirasawa R, Baba M, Ohnishi T, Ohno S (2002) MAPK-upstream protein kinase (MUK) regulates the radial migration of immature neurons in telencephalon of mouse embryo. Development 129(19):4483–4495

    PubMed  CAS  Google Scholar 

  • Hirai S, Cui DF, Miyata T, Ogawa M, Kiyonari H, Suda Y, Aizawa S, Banba Y, Ohno S (2006) The c-Jun N-terminal kinase activator dual leucine zipper kinase regulates axon growth and neuronal migration in the developing cerebral cortex. J Neurosci 26(46):11992–12002. doi:10.1523/JNEUROSCI.2272-06.2006

    PubMed  CAS  Google Scholar 

  • Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO, Martin ND, Walsh CA (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26(1):93–96. doi:10.1038/79246

    PubMed  CAS  Google Scholar 

  • Hu Y, Metzler B, Xu Q (1997) Discordant activation of stress-activated protein kinases or c-Jun NH2-terminal protein kinases in tissues of heat-stressed mice. J Biol Chem 272(14):9113–9119

    PubMed  CAS  Google Scholar 

  • Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K (2003) JNK phosphorylates paxillin and regulates cell migration. Nature 424(6945):219–223. doi:10.1038/nature01745

    PubMed  CAS  Google Scholar 

  • Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. J Cell Sci 117(Pt 20):4619–4628. doi:10.1242/jcs.01481

    PubMed  CAS  Google Scholar 

  • Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101(2):665–670. doi:10.1073/pnas.0307453101

    PubMed  CAS  Google Scholar 

  • Javelaud D, Laboureau J, Gabison E, Verrecchia F, Mauviel A (2003) Disruption of basal JNK activity differentially affects key fibroblast functions important for wound healing. J Biol Chem 278(27):24624–24628. doi:M301942200 [pii] 10.1074/jbc.M301942200

    PubMed  CAS  Google Scholar 

  • Jin J, Suzuki H, Hirai S, Mikoshiba K, Ohshima T (2010) JNK phosphorylates Ser332 of doublecortin and regulates its function in neurite extension and neuronal migration. Dev Neurobiol 70(14):929–942. doi:10.1002/dneu.20833

    PubMed  CAS  Google Scholar 

  • Johnson GL, Nakamura K (2007) The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta 1773(8):1341–1348. doi:10.1016/j.bbamcr.2006.12.009

    PubMed  CAS  Google Scholar 

  • Kavurma MM, Khachigian LM (2003) ERK, JNK, and p38 MAP kinases differentially regulate proliferation and migration of phenotypically distinct smooth muscle cell subtypes. J Cell Biochem 89(2):289–300. doi:10.1002/jcb.10497

    PubMed  CAS  Google Scholar 

  • Kawauchi T, Chihama K, Nabeshima Y, Hoshino M (2003) The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J 22(16):4190–4201. doi:10.1093/emboj/cdg413

    PubMed  CAS  Google Scholar 

  • Kawauchi T, Chihama K, Nishimura YV, Nabeshima Y, Hoshino M (2005) MAP1B phosphorylation is differentially regulated by Cdk5/p35, Cdk5/p25, and JNK. Biochem Biophys Res Commun 331(1):50–55. doi:10.1016/j.bbrc.2005.03.132

    PubMed  CAS  Google Scholar 

  • Kelkar N, Delmotte MH, Weston CR, Barrett T, Sheppard BJ, Flavell RA, Davis RJ (2003) Morphogenesis of the telencephalic commissure requires scaffold protein JNK-interacting protein 3 (JIP3). Proc Natl Acad Sci U S A 100(17):9843–9848. doi:10.1073/pnas.1733944100

    PubMed  CAS  Google Scholar 

  • Kennedy NJ, Davis RJ (2003) Role of JNK in tumor development. Cell Cycle 2(3):199–201

    PubMed  CAS  Google Scholar 

  • Keramaris E, Vanderluit JL, Bahadori M, Mousavi K, Davis RJ, Flavell R, Slack RS, Park DS (2005) c-Jun N-terminal kinase 3 deficiency protects neurons from axotomy-induced death in vivo through mechanisms independent of c-Jun phosphorylation. J Biol Chem 280(2):1132–1141. doi:10.1074/jbc.M410127200

    PubMed  CAS  Google Scholar 

  • Kishimoto H, Nakagawa K, Watanabe T, Kitagawa D, Momose H, Seo J, Nishitai G, Shimizu N, Ohata S, Tanemura S, Asaka S, Goto T, Fukushi H, Yoshida H, Suzuki A, Sasaki T, Wada T, Penninger JM, Nishina H, Katada T (2003) Different properties of SEK1 and MKK7 in dual phosphorylation of stress-induced activated protein kinase SAPK/JNK in embryonic stem cells. J Biol Chem 278(19):16595–16601. doi:10.1074/jbc.M213182200

    PubMed  CAS  Google Scholar 

  • Koushika SP (2008) “JIP”ing along the axon: the complex roles of JIPs in axonal transport. Bioessays 30(1):10–14. doi:10.1002/bies.20695

    PubMed  CAS  Google Scholar 

  • Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22(4):667–676. doi:S0896-6273(00)80727-8 [pii]

    PubMed  CAS  Google Scholar 

  • Kuan CY, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ, Haddad GG, Flavell RA, Davis RJ, Rakic P (2003) A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci U S A 100(25):15184–15189. doi:2336254100 [pii] 10.1073/pnas.2336254100

    PubMed  CAS  Google Scholar 

  • Kukekov NV, Xu Z, Greene LA (2006) Direct interaction of the molecular scaffolds POSH and JIP is required for apoptotic activation of JNKs. J Biol Chem 281(22):15517–15524. doi:10.1074/jbc.M601056200

    PubMed  CAS  Google Scholar 

  • Kumar RA, Pilz DT, Babatz TD, Cushion TD, Harvey K, Topf M, Yates L, Robb S, Uyanik G, Mancini GM, Rees MI, Harvey RJ, Dobyns WB (2010) TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Hum Mol Genet 19(14):2817–2827. doi:10.1093/hmg/ddq182

    PubMed  CAS  Google Scholar 

  • Kurz CL, Ewbank JJ (2003) Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet 4(5):380–390. doi:10.1038/nrg1067

    PubMed  CAS  Google Scholar 

  • Kyriakis JM, Avruch J (1990) pp54 microtubule-associated protein 2 kinase. A novel serine/threonine protein kinase regulated by phosphorylation and stimulated by poly-L-lysine. J Biol Chem 265(28):17355–17363

    PubMed  CAS  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2):807–869

    PubMed  CAS  Google Scholar 

  • Kyriakis JM, Avruch J (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92(2):689–737. doi:10.1152/physrev.00028.2011

    PubMed  CAS  Google Scholar 

  • Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369(6476):156–160. doi:10.1038/369156a0

    PubMed  CAS  Google Scholar 

  • Lee JK, Hwang WS, Lee YD, Han PL (1999) Dynamic expression of SEK1 suggests multiple roles of the gene during embryogenesis and in adult brain of mice. Brain Res Mol Brain Res 66(1–2):133–140

    PubMed  CAS  Google Scholar 

  • Lee HS, Lee DC, Park MH, Yang SJ, Lee JJ, Kim DM, Jang Y, Lee JH, Choi JY, Kang YK, Kim DI, Park KC, Kim SY, Yoo HS, Choi EJ, Yeom YI (2006) STMN2 is a novel target of beta-catenin/TCF-mediated transcription in human hepatoma cells. Biochem Biophys Res Commun 345(3):1059–1067. doi:10.1016/j.bbrc.2006.05.017

    PubMed  CAS  Google Scholar 

  • Li YH, Ghavampur S, Bondallaz P, Will L, Grenningloh G, Puschel AW (2009) Rnd1 regulates axon extension by enhancing the microtubule destabilizing activity of SCG10. J Biol Chem 284(1):363–371. doi:M808126200 [pii] 10.1074/jbc.M808126200

    PubMed  CAS  Google Scholar 

  • LoTurco JJ, Bai J (2006) The multipolar stage and disruptions in neuronal migration. Trends Neurosci 29:407–413

    PubMed  CAS  Google Scholar 

  • MacKrell AJ, Blumberg B, Haynes SR, Fessler JH (1988) The lethal myospheroid gene of Drosophila encodes a membrane protein homologous to vertebrate integrin beta subunits. Proc Natl Acad Sci U S A 85(8):2633–2637

    PubMed  CAS  Google Scholar 

  • Maekawa T, Bernier F, Sato M, Nomura S, Singh M, Inoue Y, Tokunaga T, Imai H, Yokoyama M, Reimold A, Glimcher LH, Ishii S (1999) Mouse ATF-2 null mutants display features of a severe type of meconium aspiration syndrome. J Biol Chem 274(25):17813–17819

    PubMed  CAS  Google Scholar 

  • Malchinkhuu E, Sato K, Horiuchi Y, Mogi C, Ohwada S, Ishiuchi S, Saito N, Kurose H, Tomura H, Okajima F (2005) Role of p38 mitogen-activated kinase and c-Jun terminal kinase in migration response to lysophosphatidic acid and sphingosine-1-phosphate in glioma cells. Oncogene 24(44):6676–6688. doi:10.1038/sj.onc.1208805

    PubMed  CAS  Google Scholar 

  • Manning AM, Davis RJ (2003) Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2(7):554–565. doi:10.1038/nrd1132

    PubMed  CAS  Google Scholar 

  • Maroney AC, Finn JP, Bozyczko-Coyne D, O’Kane TM, Neff NT, Tolkovsky AM, Park DS, Yan CY, Troy CM, Greene LA (1999) CEP-1347 (KT7515), an inhibitor of JNK activation, rescues sympathetic neurons and neuronally differentiated PC12 cells from death evoked by three distinct insults. J Neurochem 73(5):1901–1912

    PubMed  CAS  Google Scholar 

  • Miller BR, Press C, Daniels RW, Sasaki Y, Milbrandt J, DiAntonio A (2009) A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci 12(4):387–389. doi:10.1038/nn.2290

    PubMed  CAS  Google Scholar 

  • Mizuno N, Kokubu H, Sato M, Nishimura A, Yamauchi J, Kurose H, Itoh H (2005) G protein-coupled receptor signaling through Gq and JNK negatively regulates neural progenitor cell migration. Proc Natl Acad Sci U S A 102(35):12365–12370. doi:10.1073/pnas.0506101102

    PubMed  CAS  Google Scholar 

  • Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, Davis RJ, Shirasaki Y, Greenberg ME (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 21(19):7551–7560

    PubMed  CAS  Google Scholar 

  • Morrison DK, Davis RJ (2003) Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 19:91–118. doi:10.1146/annurev.cellbio.19.111401.091942

    PubMed  CAS  Google Scholar 

  • Mukherjee PK, DeCoster MA, Campbell FZ, Davis RJ, Bazan NG (1999) Glutamate receptor signaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal cell death. J Biol Chem 274(10):6493–6498

    PubMed  CAS  Google Scholar 

  • Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm AD, Jin Y (2005) Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell 120(3):407–420. doi:10.1016/j.cell.2004.12.017

    PubMed  CAS  Google Scholar 

  • Neidhart S, Antonsson B, Gilliéron C, Vilbois F, Grenningloh G, Arkinstall S (2001) c-Jun N-terminal kinase-3 (JNK3)/stress-activated protein kinase-beta (SAPKbeta) binds and phosphorylates the neuronal microtubule regulator SCG10. FEBS Lett 508(2):259–264. doi:S0014-5793(01)03090-3 [pii]

    PubMed  CAS  Google Scholar 

  • Nishina H, Vaz C, Billia P, Nghiem M, Sasaki T, De la Pompa JL, Furlonger K, Paige C, Hui C, Fischer KD, Kishimoto H, Iwatsubo T, Katada T, Woodgett JR, Penninger JM (1999) Defective liver formation and liver cell apoptosis in mice lacking the stress signaling kinase SEK1/MKK4. Development 126(3):505–516

    PubMed  CAS  Google Scholar 

  • Nobes CD, Lauritzen I, Mattei MG, Paris S, Hall A, Chardin P (1998) A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 141(1):187–197

    PubMed  CAS  Google Scholar 

  • Nóbrega-Pereira S, Kessaris N, Du T, Kimura S, Anderson SA, Marín O (2008) Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59(5):733–745. doi:10.1016/j.neuron.2008.07.024

    PubMed  Google Scholar 

  • Ohtaka-Maruyama C, Hirai S, Miwa A, Heng JI, Shitara H, Ishii R, Taya C, Kawano H, Kasai M, Nakajima K, Okado H (2013) RP58 regulates the multipolar-bipolar transition of newborn neurons in the developing cerebral cortex. Cell Rep 3(2):458–471. doi:10.1016/j.celrep.2013.01.012

    PubMed  CAS  Google Scholar 

  • Oliva AA, Atkins CM, Copenagle L, Banker GA (2006) Activated c-Jun N-terminal kinase is required for axon formation. J Neurosci 26(37):9462–9470. doi:10.1523/JNEUROSCI.2625-06.2006

    PubMed  CAS  Google Scholar 

  • Otto IM, Raabe T, Rennefahrt UE, Bork P, Rapp UR, Kerkhoff E (2000) The p150-Spir protein provides a link between c-Jun N-terminal kinase function and actin reorganization. Curr Biol 10(6):345–348

    PubMed  CAS  Google Scholar 

  • Ozon S, Guichet A, Gavet O, Roth S, Sobel A (2002) Drosophila stathmin: a microtubule-destabilizing factor involved in nervous system formation. Mol Biol Cell 13(2):698–710. doi:10.1091/mbc.01-07-0362

    PubMed  CAS  Google Scholar 

  • Pacary E, Heng J, Azzarelli R, Riou P, Castro D, Lebel-Potter M, Parras C, Bell DM, Ridley AJ, Parsons M, Guillemot F (2011) Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron 69(6):1069–1084. doi:10.1016/j.neuron.2011.02.018

    PubMed  CAS  Google Scholar 

  • Pirianov G, Brywe KG, Mallard C, Edwards AD, Flavell RA, Hagberg H, Mehmet H (2007) Deletion of the c-Jun N-terminal kinase 3 gene protects neonatal mice against cerebral hypoxic-ischaemic injury. J Cereb Blood Flow Metab 27(5):1022–1032. doi:10.1038/sj.jcbfm.9600413

    PubMed  CAS  Google Scholar 

  • Podkowa M, Zhao X, Chow CW, Coffey ET, Davis RJ, Attisano L (2010) Microtubule stabilization by bone morphogenetic protein receptor-mediated scaffolding of c-Jun N-terminal kinase promotes dendrite formation. Mol Cell Biol 30(9):2241–2250. doi:MCB.01166-09 [pii] 10.1128/MCB.01166-09

    PubMed  CAS  Google Scholar 

  • Poirier K, Lebrun N, Broix L, Tian G, Saillour Y, Boscheron C, Parrini E, Valence S, Pierre BS, Oger M, Lacombe D, Geneviève D, Fontana E, Darra F, Cances C, Barth M, Bonneau D, Bernadina BD, N’guyen S, Gitiaux C, Parent P, des Portes V, Pedespan JM, Legrez V, Castelnau-Ptakine L, Nitschke P, Hieu T, Masson C, Zelenika D, Andrieux A, Francis F, Guerrini R, Cowan NJ, Bahi-Buisson N, Chelly J (2013) Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet. doi:10.1038/ng.2613

    Google Scholar 

  • Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol 141(3):283–312. doi:10.1002/cne.901410303

    PubMed  CAS  Google Scholar 

  • Ramesh N, Antón IM, Martínez-Quiles N, Geha RS (1999) Waltzing with WASP. Trends Cell Biol 9(1):15–19

    PubMed  CAS  Google Scholar 

  • Riederer BM, Pellier V, Antonsson B, Di Paolo G, Stimpson SA, Lütjens R, Catsicas S, Grenningloh G (1997) Regulation of microtubule dynamics by the neuronal growth-associated protein SCG10. Proc Natl Acad Sci U S A 94(2):741–745

    PubMed  CAS  Google Scholar 

  • Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8(1):34–42. doi:10.1038/nn1374

    PubMed  CAS  Google Scholar 

  • Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF (1999) Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 89(1–2):115–124. doi:S0925-4773(99)00213-0 [pii]

    PubMed  CAS  Google Scholar 

  • Sarkisian MR, Bartley CM, Chi H, Nakamura F, Hashimoto-Torii K, Torii M, Flavell RA, Rakic P (2006) MEKK4 signaling regulates filamin expression and neuronal migration. Neuron 52(5):789–801. doi:S0896-6273(06)00823-3 [pii] 10.1016/j.neuron.2006.10.024

    PubMed  CAS  Google Scholar 

  • Schumacher N, Borawski JM, Leberfinger CB, Gessler M, Kerkhoff E (2004) Overlapping expression pattern of the actin organizers Spir-1 and formin-2 in the developing mouse nervous system and the adult brain. Gene Expr Patterns 4(3):249–255. doi:10.1016/j.modgep.2003.11.006

    PubMed  CAS  Google Scholar 

  • Sheppard AM, Pearlman AL (1997) Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J Comp Neurol 378(2):173–179

    PubMed  CAS  Google Scholar 

  • Sluss HK, Han Z, Barrett T, Goberdhan DC, Wilson C, Davis RJ, Ip YT (1996) A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev 10(21):2745–2758

    PubMed  CAS  Google Scholar 

  • Sone K, Tsuda M, Mori N (2011) Position-dependent effect of a neural-restrictive silencer-like element present in the promoter downstream of the SCG10-like protein gene. J Biochem 150(4):451–460. doi:mvr077 [pii] 10.1093/jb/mvr077

    PubMed  CAS  Google Scholar 

  • Stein R, Mori N, Matthews K, Lo LC, Anderson DJ (1988) The NGF-inducible SCG10 mRNA encodes a novel membrane-bound protein present in growth cones and abundant in developing neurons. Neuron 1(6):463–476. doi:0896-6273(88)90177-8 [pii]

    PubMed  CAS  Google Scholar 

  • Stockinger W, Brandes C, Fasching D, Hermann M, Gotthardt M, Herz J, Schneider WJ, Nimpf J (2000) The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and −2. J Biol Chem 275(33):25625–25632. doi:10.1074/jbc.M004119200

    PubMed  CAS  Google Scholar 

  • Tabata H, Nakajima K (2003) Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 23(31):9996–10001

    PubMed  CAS  Google Scholar 

  • Tabata H, Kanatani S, Nakajima K (2009) Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. Cereb Cortex 19(9):2092–2105. doi:10.1093/cercor/bhn227

    PubMed  Google Scholar 

  • Takatori A, Geh E, Chen L, Zhang L, Meller J, Xia Y (2008) Differential transmission of MEKK1 morphogenetic signals by JNK1 and JNK2. Development 135(1):23–32. doi:10.1242/dev.007120

    PubMed  CAS  Google Scholar 

  • Takekawa M, Tatebayashi K, Saito H (2005) Conserved docking site is essential for activation of mammalian MAP kinase kinases by specific MAP kinase kinase kinases. Mol Cell 18(3):295–306. doi:10.1016/j.molcel.2005.04.001

    PubMed  CAS  Google Scholar 

  • Takino T, Yoshioka K, Miyamori H, Yamada KM, Sato H (2002) A scaffold protein in the c-Jun N-terminal kinase signaling pathway is associated with focal adhesion kinase and tyrosine-phosphorylated. Oncogene 21(42):6488–6497. doi:10.1038/sj.onc.1205840

    PubMed  CAS  Google Scholar 

  • Takino T, Nakada M, Miyamori H, Watanabe Y, Sato T, Gantulga D, Yoshioka K, Yamada KM, Sato H (2005) JSAP1/JIP3 cooperates with focal adhesion kinase to regulate c-Jun N-terminal kinase and cell migration. J Biol Chem 280(45):37772–37781. doi:10.1074/jbc.M505241200

    PubMed  CAS  Google Scholar 

  • Tararuk T, Ostman N, Li W, Bjorkblom B, Padzik A, Zdrojewska J, Hongisto V, Herdegen T, Konopka W, Courtney MJ, Coffey ET (2006) JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J Cell Biol 173(2):265–277

    PubMed  CAS  Google Scholar 

  • Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4(6):496–505

    PubMed  CAS  Google Scholar 

  • Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97(6):689–701

    PubMed  CAS  Google Scholar 

  • Villanueva A, Lozano J, Morales A, Lin X, Deng X, Hengartner MO, Kolesnick RN (2001) jkk-1 and mek-1 regulate body movement coordination and response to heavy metals through jnk-1 in Caenorhabditis elegans. EMBO J 20(18):5114–5128. doi:10.1093/emboj/20.18.5114

    PubMed  CAS  Google Scholar 

  • Wada T, Nakagawa K, Watanabe T, Nishitai G, Seo J, Kishimoto H, Kitagawa D, Sasaki T, Penninger JM, Nishina H, Katada T (2001) Impaired synergistic activation of stress-activated protein kinase SAPK/JNK in mouse embryonic stem cells lacking SEK1/MKK4: different contribution of SEK2/MKK7 isoforms to the synergistic activation. J Biol Chem 276(33):30892–30897. doi:10.1074/jbc.M011780200

    PubMed  CAS  Google Scholar 

  • Wada T, Joza N, Cheng HY, Sasaki T, Kozieradzki I, Bachmaier K, Katada T, Schreiber M, Wagner EF, Nishina H, Penninger JM (2004) MKK7 couples stress signalling to G2/M cell-cycle progression and cellular senescence. Nat Cell Biol 6(3):215–226. doi:10.1038/ncb1098

    PubMed  CAS  Google Scholar 

  • Waetzig V, Zhao Y, Herdegen T (2006) The bright side of JNKs-multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration. Prog Neurobiol 80(2):84–97. doi:10.1016/j.pneurobio.2006.08.002

    PubMed  CAS  Google Scholar 

  • Wang J, Jarrett J, Huang CC, Satcher RL, Levenson AS (2007a) Identification of estrogen-responsive genes involved in breast cancer metastases to the bone. Clin Exp Metastasis 24(6):411–422. doi:10.1007/s10585-007-9078-6

    PubMed  CAS  Google Scholar 

  • Wang X, Destrument A, Tournier C (2007b) Physiological roles of MKK4 and MKK7: insights from animal models. Biochim Biophys Acta 1773(8):1349–1357. doi:10.1016/j.bbamcr.2006.10.016

    PubMed  CAS  Google Scholar 

  • Wang X, Nadarajah B, Robinson AC, McColl BW, Jin JW, Dajas-Bailador F, Boot-Handford RP, Tournier C (2007c) Targeted deletion of the mitogen-activated protein kinase kinase 4 gene in the nervous system causes severe brain developmental defects and premature death. Mol Cell Biol 27(22):7935–7946. doi:10.1128/MCB.00226-07

    PubMed  CAS  Google Scholar 

  • Westerlund N, Zdrojewska J, Padzik A, Komulainen E, Bjorkblom B, Rannikko E, Tararuk T, Garcia-Frigola C, Sandholm J, Nguyen L, Kallunki T, Courtney MJ, Coffey ET (2011) Phosphorylation of SCG10/stathmin-2 determines multipolar stage exit and neuronal migration rate. Nat Neurosci 14(3):305–313. doi:nn.2755 [pii] 10.1038/nn.2755

    PubMed  CAS  Google Scholar 

  • Whitmarsh AJ (2006) The JIP family of MAPK scaffold proteins. Biochem Soc Trans 34(Pt 5):828–832. doi:10.1042/BST0340828

    PubMed  CAS  Google Scholar 

  • Whitmarsh AJ, Davis RJ (2007) Role of mitogen-activated protein kinase kinase 4 in cancer. Oncogene 26(22):3172–3184. doi:10.1038/sj.onc.1210410

    PubMed  CAS  Google Scholar 

  • Wilhelm M, Xu Z, Kukekov NV, Gire S, Greene LA (2007) Proapoptotic Nix activates the JNK pathway by interacting with POSH and mediates death in a Parkinson disease model. J Biol Chem 282(2):1288–1295. doi:10.1074/jbc.M607038200

    PubMed  CAS  Google Scholar 

  • Wu M, Chen DF, Sasaoka T, Tonegawa S (1996) Neural tube defects and abnormal brain development in F52-deficient mice. Proc Natl Acad Sci U S A 93(5):2110–2115

    PubMed  CAS  Google Scholar 

  • Xia Y, Kao WW (2004) The signaling pathways in tissue morphogenesis: a lesson from mice with eye-open at birth phenotype. Biochem Pharmacol 68(6):997–1001. doi:10.1016/j.bcp.2004.05.028

    PubMed  CAS  Google Scholar 

  • Xia Y, Makris C, Su B, Li E, Yang J, Nemerow GR, Karin M (2000) MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc Natl Acad Sci U S A 97(10):5243–5248

    PubMed  CAS  Google Scholar 

  • Xie J, Onnockx S, Vandenbroere I, Degraef C, Erneux C, Pirson I (2008) The docking properties of SHIP2 influence both JIP1 tyrosine phosphorylation and JNK activity. Cell Signal 20(8):1432–1441. doi:10.1016/j.cellsig.2008.03.010

    PubMed  CAS  Google Scholar 

  • Yamasaki T, Kawasaki H, Arakawa S, Shimizu K, Shimizu S, Reiner O, Okano H, Nishina S, Azuma N, Penninger JM, Katada T, Nishina H (2011) Stress-activated protein kinase MKK7 regulates axon elongation in the developing cerebral cortex. J Neurosci 31(46):16872–16883. doi:31/46/16872 [pii] 10.1523/JNEUROSCI.1111-11.2011

    PubMed  CAS  Google Scholar 

  • Yamasaki T, Kawasaki H, Nishina H (2012) Diverse roles of JNK and MKK pathways in the brain. J Signal Transduct 2012:459265. doi:10.1155/2012/459265

    PubMed  Google Scholar 

  • Yang D, Tournier C, Wysk M, Lu HT, Xu J, Davis RJ, Flavell RA (1997a) Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity. Proc Natl Acad Sci U S A 94(7):3004–3009

    PubMed  CAS  Google Scholar 

  • Yang DD, Kuan CY, Whitmarsh AJ, Rincón M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997b) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389(6653):865–870. doi:10.1038/39899

    PubMed  CAS  Google Scholar 

  • Yang T, Sun Y, Zhang F, Zhu Y, Shi L, Li H, Xu Z (2012) POSH localizes activated Rac1 to control the formation of cytoplasmic dilation of the leading process and neuronal migration. Cell Rep 2(3):640–651. doi:10.1016/j.celrep.2012.08.007

    PubMed  CAS  Google Scholar 

  • Yao Z, Diener K, Wang XS, Zukowski M, Matsumoto G, Zhou G, Mo R, Sasaki T, Nishina H, Hui CC, Tan TH, Woodgett JP, Penninger JM (1997) Activation of stress-activated protein kinases/c-Jun N-terminal protein kinases (SAPKs/JNKs) by a novel mitogen-activated protein kinase kinase. J Biol Chem 272(51):32378–32383

    PubMed  CAS  Google Scholar 

  • Yujiri T, Ware M, Widmann C, Oyer R, Russell D, Chan E, Zaitsu Y, Clarke P, Tyler K, Oka Y, Fanger GR, Henson P, Johnson GL (2000) MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-kappa B activation. Proc Natl Acad Sci U S A 97(13):7272–7277. doi:10.1073/pnas.130176697

    PubMed  CAS  Google Scholar 

  • Zhang M, Zhang Y, Xu Z (2010) POSH is involved in Eiger-Basket (TNF-JNK) signaling and embryogenesis in Drosophila. J Genet Genomics 37(9):605–619. doi:10.1016/S1673-8527(09)60080-1

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor T. Coffey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zdrojewska, J., Coffey, E.T. (2014). The Impact of JNK on Neuronal Migration. In: Nguyen, L., Hippenmeyer, S. (eds) Cellular and Molecular Control of Neuronal Migration. Advances in Experimental Medicine and Biology, vol 800. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7687-6_3

Download citation

Publish with us

Policies and ethics