Advertisement

Binder Chemistry – High-Calcium Alkali-Activated Materials

  • Susan A. Bernal
  • John L. Provis
  • Ana Fernández-Jiménez
  • Pavel V. Krivenko
  • Elena Kavalerova
  • Marta Palacios
  • Caijun Shi
Chapter
Part of the RILEM State-of-the-Art Reports book series (RILEM State Art Reports, volume 13)

Abstract

As mentioned in Chap. 2, the development and assessment of alkali-activated binders based on calcium-rich precursors such as blast furnace slag (BFS) and other Ca-rich industrial by-products have been conducted for over a century [1–3]. However, an increase in interest in the understanding of the microstructure of alkali-activated binders has taken place in the past decades. This has been driven by the need for scientific methods to optimise the activation conditions which give a strong, stable binder from a particular raw material, and consequently a high-performance alkali-activated material (AAM) concrete, while achieving acceptable workability and a low environmental footprint. A detailed scientific understanding of the structure of these materials is required to generate the technical underpinnings for standards which will facilitate their wider commercial adoption [4, 5].

Keywords

Portland Cement Blast Furnace Slag Pore Solution Steel Slag Phosphorus Slag 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kühl, H.: Slag cement and process of making the same. U.S. Patent 900,939 (1908)Google Scholar
  2. 2.
    Purdon, A.O.: Improvements in processes of manufacturing cement, mortars and concretes. British Patent GB427,227 (1935)Google Scholar
  3. 3.
    Purdon, A.O.: The action of alkalis on blast-furnace slag. J. Soc. Chem. Ind. Trans. Commun. 59, 191–202 (1940)Google Scholar
  4. 4.
    van Deventer, J.S.J., Provis, J.L., Duxson, P., Brice, D.G.: Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valoriz. 1(1), 145–155 (2010)Google Scholar
  5. 5.
    van Deventer, J.S.J., Provis, J.L., Duxson, P.: Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 29, 89–104 (2012)Google Scholar
  6. 6.
    Talling, B., Krivenko, P.V.: Blast furnace slag – the ultimate binder. In: Chandra, S. (ed.) Waste Materials Used in Concrete Manufacturing, pp. 235–289. Noyes Publications, Park Ridge (1997)Google Scholar
  7. 7.
    Krivenko, P.V.: Alkaline cements – from research to application. In: Lukey, G.C. (ed.) Geopolymers 2002. Turn Potential into Profit, Melbourne. CD-ROM Proceedings. Siloxo Pty. Ltd. (2002)Google Scholar
  8. 8.
    Wang, S.D., Pu, X.C., Scrivener, K.L., Pratt, P.L.: Alkali-activated slag cement and concrete: a review of properties and problems. Adv. Cem. Res. 7(27), 93–102 (1995)Google Scholar
  9. 9.
    Richardson, I.G.: The nature of C-S-H in hardened cements. Cem. Concr. Res. 29, 1131–1147 (1999)Google Scholar
  10. 10.
    Juenger, M.C.G., Winnefeld, F., Provis, J.L., Ideker, J.: Advances in alternative cementitious binders. Cem. Concr. Res. 41(12), 1232–1243 (2011)Google Scholar
  11. 11.
    Yang, N.: Physical chemistry basis for the formation of alkali activated materials – I. J. Chin. Ceram. Soc. 24(2), 209–215 (1996)Google Scholar
  12. 12.
    Yang, N.: Physical chemistry basis for the formation of alkali activated materials – II. J. Chin. Ceram. Soc. 24(4), 459–465 (1996)Google Scholar
  13. 13.
    Li, C., Sun, H., Li, L.: A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem. Concr. Res. 40(9), 1341–1349 (2010)Google Scholar
  14. 14.
    Shi, C., Qian, J.: High performance cementing materials from industrial slags – a review. Resour. Conserv. Recycl. 29, 195–207 (2000)Google Scholar
  15. 15.
    Wang, S.D.: Review of recent research on alkali-activated concrete in China. Mag. Concr. Res. 43(154), 29–35 (1991)Google Scholar
  16. 16.
    Krivenko, P.V.: Alkaline cements. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine. Vol. 1, pp. 11–129. VIPOL Stock Company (1994)Google Scholar
  17. 17.
    Krivenko, P.V.: Alkaline cements: structure, properties, aspects of durability. In: Krivenko, P.V. (ed.) Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, pp. 3–43. ORANTA (1999)Google Scholar
  18. 18.
    Puertas, F.: Cementos de escoria activados alcalinamente: situación actual y perspectivas de futuro. Mater. Constr. 45(239), 53–64 (1995)Google Scholar
  19. 19.
    Fernández-Jiménez, A., Puertas, F.: Alkali-activated slag cements: kinetic studies. Cem. Concr. Res. 27(3), 359–368 (1997)Google Scholar
  20. 20.
    Fernández-Jiménez, A., Puertas, F., Arteaga, A.: Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data. J. Therm. Anal. Calorim. 52(3), 945–955 (1998)Google Scholar
  21. 21.
    Bernal, S.A., Provis, J.L., de Mejía Gutierrez, R., Rose, V.: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33(1), 46–54 (2011)Google Scholar
  22. 22.
    Zhou, H., Wu, X., Xu, Z., Tang, M.: Kinetic study on hydration of alkali-activated slag. Cem. Concr. Res. 23(6), 1253–1258 (1993)Google Scholar
  23. 23.
    Escalante-Garcia, J., Fuentes, A.F., Gorokhovsky, A., Fraire-Luna, P.E., Mendoza-Suarez, G.: Hydration products and reactivity of blast-furnace slag activated by various alkalis. J. Am. Ceram. Soc. 86(12), 2148–2153 (2003)Google Scholar
  24. 24.
    Fernández-Jiménez, A., Puertas, F., Sobrados, I., Sanz, J.: Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J. Am. Ceram. Soc. 86(8), 1389–1394 (2003)Google Scholar
  25. 25.
    Brough, A.R., Atkinson, A.: Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cem. Concr. Res. 32(6), 865–879 (2002)Google Scholar
  26. 26.
    Richardson, I.G., Groves, G.W.: Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag. J. Mater. Sci. 27(22), 6204–6212 (1992)Google Scholar
  27. 27.
    Myers, R.J., Bernal, S.A., San Nicolas, R., Provis, J.L.: Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross linked substituted tobermorite model. Langmuir 29(17), 5294–5306 (2013)Google Scholar
  28. 28.
    Schilling, P.J., Butler, L.G., Roy, A., Eaton, H.C.: 29Si and 27Al MAS-NMR of NaOH-activated blast-furnace slag. J. Am. Ceram. Soc. 77(9), 2363–2368 (1994)Google Scholar
  29. 29.
    Bonk, F., Schneider, J., Cincotto, M.A., Panepucci, H.: Characterization by multinuclear high-resolution NMR of hydration products in activated blast-furnace slag pastes. J. Am. Ceram. Soc. 86(10), 1712–1719 (2003)Google Scholar
  30. 30.
    Lothenbach, B., Gruskovnjak, A.: Hydration of alkali-activated slag: thermodynamic modelling. Adv. Cem. Res. 19(2), 81–92 (2007)Google Scholar
  31. 31.
    Chen, W., Brouwers, H.: The hydration of slag, part 1: reaction models for alkali-activated slag. J. Mater. Sci. 42(2), 428–443 (2007)Google Scholar
  32. 32.
    Ben Haha, M., Lothenbach, B., Le Saout, G., Winnefeld, F.: Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part I: effect of MgO. Cem. Concr. Res. 41(9), 955–963 (2011)Google Scholar
  33. 33.
    Fernández-Jiménez, A., Puertas, F.: Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Adv. Cem. Res. 15(3), 129–136 (2003)Google Scholar
  34. 34.
    Bernal, S.A., de Mejía Gutierrez, R., Rose, V., Provis, J.L.: Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem. Concr. Res. 40(6), 898–907 (2010)Google Scholar
  35. 35.
    Zhang, Y.J., Zhao, Y.L., Li, H.H., Xu, D.L.: Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag. J. Mater. Sci. 43, 7141–7147 (2008)MathSciNetGoogle Scholar
  36. 36.
    Puertas, F., Palacios, M., Manzano, H., Dolado, J.S., Rico, A., Rodríguez, J.: A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31(12), 2043–2056 (2011)Google Scholar
  37. 37.
    Ben Haha, M., Le Saout, G., Winnefeld, F., Lothenbach, B.: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 41(3), 301–310 (2011)Google Scholar
  38. 38.
    San Nicolas, R., Provis, J.L.: Interfacial transition zone in alkali-activated slag concrete. In: Twelfth International Conference on Recent Advances in Concrete Technology and Sustainability Issues, Prague, Czech Republic. Supplementary Papers CD-ROM. American Concrete Institute, Detroit (2012)Google Scholar
  39. 39.
    Bernal, S.A., San Nicolas, R., Provis, J.L., Mejía de Gutiérrez, R., van Deventer, J.S.J.: Natural carbonation of aged alkali-activated slag concretes. Mater. Struct. (2013, in press). doi: 10.1617/s11527-013-0089-2
  40. 40.
    Bernal, S.A., Provis, J.L., Rose, V., de Mejía Gutiérrez, R.: High-resolution x-ray diffraction and fluorescence microscopy characterization of alkali-activated slag-metakaolin binders. J. Am. Ceram. Soc. 96(6), 1951–1957 (2013)Google Scholar
  41. 41.
    Taylor, R., Richardson, I.G., Brydson, R.M.D.: Composition and microstructure of 20-year-old ordinary Portland cement-ground granulated blast-furnace slag blends containing 0 to 100% slag. Cem. Concr. Res. 40(7), 971–983 (2010)Google Scholar
  42. 42.
    Chen, X., Pochard, I., Nonat, A.: Thermodynamic and structural study of the substitution of Si by Al in C-S-H. In: Beaudoin, J.J. (ed.) 12th International Congress on the Chemistry of Cement, Montreal. CD-ROM proceedings (2007)Google Scholar
  43. 43.
    Pardal, X., Pochard, I., Nonat, A.: Experimental study of Si–Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions. Cem. Concr. Res. 39, 637–643 (2009)Google Scholar
  44. 44.
    Richardson, I.G., Brough, A.R., Brydson, R., Groves, G.W., Dobson, C.M.: Location of aluminum in substituted calcium silicate hydrate (C-S-H) gels as determined by 29Si and 27Al NMR and EELS. J. Am. Ceram. Soc. 76(9), 2285–2288 (1993)Google Scholar
  45. 45.
    Sun, G.K., Young, J.F., Kirkpatrick, R.J.: The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples. Cem. Concr. Res. 36(1), 18–29 (2006)Google Scholar
  46. 46.
    Shi, C., Krivenko, P.V., Roy, D.M.: Alkali-Activated Cements and Concretes. Taylor & Francis, Abingdon (2006)Google Scholar
  47. 47.
    Ben Haha, M., Lothenbach, B., Le Saout, G., Winnefeld, F.: Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part II: effect of Al2O3. Cem. Concr. Res. 42(1), 74–83 (2012)Google Scholar
  48. 48.
    Nocuń-Wczelik, W.: Heat evolution in alkali activated synthetic slag – metakaolin mixtures. J. Therm. Anal. Calorim. 86(3), 739–743 (2006)Google Scholar
  49. 49.
    Fernandez-Jimenez, A., Puertas, F., Arteaga, A.: Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data. J. Therm. Anal. Calorim. 52(3), 945–955 (1998)Google Scholar
  50. 50.
    Shi, C.: On the state and role of alkalis during the activation of alkali-activated slag cement. In: Grieve, G., Owens, G. (eds.) Proceedings of the 11th International Congress on the Chemistry of Cement, Durban, South Africa. Tech Books International, New Delhi, India, pp. 2097–2105 (2003)Google Scholar
  51. 51.
    Shi, C., Day, R.L.: A calorimetric study of early hydration of alkali-slag cements. Cem. Concr. Res. 25(6), 1333–1346 (1995)Google Scholar
  52. 52.
    Shi, C., Day, R.L.: Some factors affecting early hydration of alkali-slag cements. Cem. Concr. Res. 26(3), 439–447 (1996)Google Scholar
  53. 53.
    Wang, S.D., Scrivener, K.L., Pratt, P.L.: Factors affecting the strength of alkali-activated slag. Cem. Concr. Res. 24(6), 1033–1043 (1994)Google Scholar
  54. 54.
    Živica, V.: Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Constr. Build. Mater. 21(7), 1463–1469 (2007)Google Scholar
  55. 55.
    Shi, C., Day, R.L.: Selectivity of alkaline activators for the activation of slags. Cem. Concr. Aggress. 18(1), 8–14 (1996)Google Scholar
  56. 56.
    Roy, A., Schilling, P.J., Eaton, H.C., Malone, P.G., Brabston, W.N., Wakeley, L.D.: Activation of ground blast-furnace slag by alkali-metal and alkaline-earth hydroxides. J. Am. Ceram. Soc. 75(12), 3233–3240 (1992)Google Scholar
  57. 57.
    Song, S., Sohn, D., Jennings, H.M., Mason, T.O.: Hydration of alkali-activated ground granulated blast furnace slag. J. Mater. Sci. 35, 249–257 (2000)Google Scholar
  58. 58.
    Fernández-Jiménez, A., Palomo, J.G., Puertas, F.: Alkali-activated slag mortars. Mechanical strength behaviour. Cem. Concr. Res. 29, 1313–1321 (1999)Google Scholar
  59. 59.
    Duran Atiş, C., Bilim, C., Çelik, Ö., Karahan, O.: Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr. Build. Mater. 23(1), 548–555 (2009)Google Scholar
  60. 60.
    Palacios, M., Puertas, F.: Effectiveness of mixing time on hardened properties of waterglass-activated slag pastes and mortars. ACI Mater. J. 108(1), 73–78 (2011)Google Scholar
  61. 61.
    Gu, J., Jin, Z.: Quality control of the raw materials for alkali activated slag cement. Cement 8, 12–15 (1990)Google Scholar
  62. 62.
    Wang, P., Jin, Z., Zhang, Y.: Study on the composite activator for alkali activated slag cement. New Build. Mater. 8, 32–34 (2005)Google Scholar
  63. 63.
    Milestone, N.B.: Reactions in cement encapsulated nuclear wastes: need for toolbox of different cement types. Adv. Appl. Ceram. 105(1), 13–20 (2006)Google Scholar
  64. 64.
    Bai, Y., Collier, N., Milestone, N., Yang, C.: The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. J. Nucl. Mater. 413(3), 183–192 (2011)Google Scholar
  65. 65.
    Roy, D.: Alkali-activated cements – opportunities and challenges. Cem. Concr. Res. 29(2), 249–254 (1999)Google Scholar
  66. 66.
    Bernal, S.A., Skibsted, J., Herfort, D.: Hybrid binders based on alkali sulfate-activated Portland clinker and metakaolin. In: Palomo, A. (ed.) XIII International Congress on the Chemistry of Cement, Madrid. CD-ROM proceedings (2011)Google Scholar
  67. 67.
    Richardson, I.G., Brough, A.R., Groves, G.W., Dobson, C.M.: The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) paste. Cem. Concr. Res. 24(5), 813–829 (1994)Google Scholar
  68. 68.
    Wang, S.D., Scrivener, K.L.: Hydration products of alkali-activated slag cement. Cem. Concr. Res. 25(3), 561–571 (1995)Google Scholar
  69. 69.
    Rajaokarivony-Andriambololona, Z., Thomassin, J.H., Baillif, P., Touray, J.C.: Experimental hydration of two synthetic glassy blast furnace slags in water and alkaline solutions (NaOH and KOH 0.1 N) at 40° C: structure, composition and origin of the hydrated layer. J. Mater. Sci. 25(5), 2399–2410 (1990)Google Scholar
  70. 70.
    Richardson, I.G.: Tobermorite/jennite – and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem. Concr. Res. 34(9), 1733–1777 (2004)Google Scholar
  71. 71.
    Taylor, R., Richardson, I.G., Brydson, R.M.D.: Nature of C-S-H in 20 year old neat ordinary Portland cement and 10% Portland cement-90% ground granulated blast furnace slag pastes. Adv. Appl. Ceram. 106(6), 294–301 (2007)Google Scholar
  72. 72.
    Richardson, I.G.: The calcium silicate hydrates. Cem. Concr. Res. 38(2), 137–158 (2008)Google Scholar
  73. 73.
    Fernández-Jiménez, A.: Cementos de escorias activadas alcalinamente: influencia de las variables y modelización del proceso. Thesis, Universidad Autónoma de Madrid (2000)Google Scholar
  74. 74.
    Pardal, X., Brunet, F., Charpentier, T., Pochard, I., Nonat, A.: 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate. Inorg. Chem. 51, 1827–1836 (2012)Google Scholar
  75. 75.
    Renaudin, G., Russias, J., Leroux, F., Cau-dit-Comes, C., Frizon, F.: Structural characterization of C-S-H and C-A-S-H samples – Part II: local environment investigated by spectroscopic analyses. J. Solid State Chem. 182(12), 3320–3329 (2009)Google Scholar
  76. 76.
    Schneider, J., Cincotto, M.A., Panepucci, H.: 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes. Cem. Concr. Res. 31(7), 993–1001 (2001)Google Scholar
  77. 77.
    Palacios, M., Puertas, F.: Effect of carbonation on alkali-activated slag paste. J. Am. Ceram. Soc. 89(10), 3211–3221 (2006)Google Scholar
  78. 78.
    Yang, K.H., Song, J.K., Ashour, A.F., Lee, E.T.: Properties of cementless mortars activated by sodium silicate. Constr. Build. Mater. 22(9), 1981–1989 (2008)Google Scholar
  79. 79.
    Yang, K.H., Song, J.K., Lee, K.S., Ashour, A.F.: Flow and compressive strength of alkali-activated mortars. ACI Mater. J. 106(1), 50–58 (2009)Google Scholar
  80. 80.
    Yang, K.H., Song, J.K.: Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide. J. Mater. Civ. Eng. 21(3), 119–127 (2009)Google Scholar
  81. 81.
    Rouseková, I., Bajza, A., Živica, V.: Silica fume-basic blast furnace slag systems activated by an alkali silica fume activator. Cem. Concr. Res. 27(12), 1825–1828 (1997)Google Scholar
  82. 82.
    Živica, V.: High effective silica fume alkali activator. Bull. Mater. Sci. 27(2), 179–182 (2004)Google Scholar
  83. 83.
    Živica, V.: Effectiveness of new silica fume alkali activator. Cem. Concr. Comp. 28(1), 21–25 (2006)Google Scholar
  84. 84.
    Bernal, S.A., Rodríguez, E.D., de Mejia Gutiérrez, R., Provis, J.L., Delvasto, S.: Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste Biomass Valor. 3(1), 99–108 (2012)Google Scholar
  85. 85.
    Rodríguez, E.D., Bernal, S.A., Provis, J.L., Paya, J., Monzo, J.M., Borrachero, M.V.: Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cem. Concr. Compos. 35(1), 1–11 (2013)Google Scholar
  86. 86.
    Wang, S.D., Scrivener, K.L.: 29Si and 27Al NMR study of alkali-activated slag. Cem. Concr. Res. 33(5), 769–774 (2003)Google Scholar
  87. 87.
    Bernal, S.A., Provis, J.L., Walkley, B., San Nicolas, R., Gehman, J.D., Brice, D.G., Kilcullen, A., Duxson, P., van Deventer, J.S.J.: Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem. Concr. Res. 53, 127–144 (2013). doi: 10.1016/j.cemconres.2013.06.007 Google Scholar
  88. 88.
    Gruskovnjak, A., Lothenbach, B., Holzer, L., Figi, R., Winnefeld, F.: Hydration of alkali-activated slag: comparison with ordinary Portland cement. Adv. Cem. Res. 18(3), 119–128 (2006)Google Scholar
  89. 89.
    Lloyd, R.R., Provis, J.L., Smeaton, K.J., van Deventer, J.S.J.: Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion. Microporous Mesoporous Mater. 126(1–2), 32–39 (2009)Google Scholar
  90. 90.
    Ismail, I., Bernal, S.A., Provis, J.L., Hamdan, S., van Deventer, J.S.J.: Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater. Struct. 46(3), 361–373 (2013)Google Scholar
  91. 91.
    Melo Neto, A.A., Cincotto, M.A., Repette, W.: Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem. Concr. Res. 38, 565–574 (2008)Google Scholar
  92. 92.
    Häkkinen, T.: The influence of slag content on the microstructure, permeability and mechanical properties of concrete: Part 1. Microstructural studies and basic mechanical properties. Cem. Concr. Res. 23(2), 407–421 (1993)Google Scholar
  93. 93.
    Bakharev, T., Sanjayan, J.G., Cheng, Y.B.: Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cem. Concr. Res. 29(10), 1619–1625 (1999)Google Scholar
  94. 94.
    Bernal, S.A., Provis, J.L., Brice, D.G., Kilcullen, A., Duxson, P., van Deventer, J.S.J.: Accelerated carbonation testing of alkali-activated binders significantly underestimate the real service life: the role of the pore solution. Cem. Concr. Res. 42(10), 1317–1326 (2012)Google Scholar
  95. 95.
    Faucon, P., Delagrave, A., Petit, J.C., Richet, C., Marchand, J.M., Zanni, H.: Aluminum incorporation in calcium silicate hydrates (C-S-H) depending on their Ca/Si ratio. J. Phys. Chem. B 103(37), 7796–7802 (1999)Google Scholar
  96. 96.
    Andersen, M.D., Jakobsen, H.J., Skibsted, J.: Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: a high-field 27Al and 29Si MAS NMR investigation. Inorg. Chem. 42(7), 2280–2287 (2003)Google Scholar
  97. 97.
    Andersen, M.D., Jakobsen, H.J., Skibsted, J.: A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res. 36(1), 3–17 (2006)Google Scholar
  98. 98.
    Le Saoût, G., Ben Haha, M., Winnefeld, F., Lothenbach, B.: Hydration degree of alkali-activated slags: a 29Si NMR study. J. Am. Ceram. Soc. 94(12), 4541–4547 (2011)Google Scholar
  99. 99.
    Sakulich, A.R., Anderson, E., Schauer, C., Barsoum, M.W.: Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete. Constr. Build. Mater. 23, 2951–2959 (2009)Google Scholar
  100. 100.
    Xu, H., Provis, J.L., van Deventer, J.S.J., Krivenko, P.V.: Characterization of aged slag concretes. ACI Mater. J. 105(2), 131–139 (2008)Google Scholar
  101. 101.
    Bakharev, T., Sanjayan, J.G., Cheng, Y.B.: Alkali activation of Australian slag cements. Cem. Concr. Res. 29(1), 113–120 (1999)Google Scholar
  102. 102.
    Fernández-Jiménez, A., Puertas, F.: Setting of alkali-activated slag cement. Influence of activator nature. Adv. Cem. Res. 13(3), 115–121 (2001)Google Scholar
  103. 103.
    Sakulich, A.R., Miller, S., Barsoum, M.W.: Chemical and microstructural characterization of 20-month-old alkali-activated slag cements. J. Am. Ceram. Soc. 93(6), 1741–1748 (2010)Google Scholar
  104. 104.
    Moseson, A.J., Moseson, D.E., Barsoum, M.W.: High volume limestone alkali-activated cement developed by design of experiment. Cem. Concr. Compos. 34(3), 328–336 (2012)Google Scholar
  105. 105.
    Małolepszy, J.: Activation of synthetic melilite slags by alkalies. In: Proceedings of the 8th International Congress on the Chemistry of Cement, Rio de Janeiro, Brazil. Vol. 4, pp. 104–107 (1986)Google Scholar
  106. 106.
    Collins, F., Sanjayan, J.G.: Early age strength and workability of slag pastes activated by NaOH and Na2CO3. Cem. Concr. Res. 28(5), 655–664 (1998)Google Scholar
  107. 107.
    Collins, F., Sanjayan, J.G.: Workability and mechanical properties of alkali-activated slag concrete. Cem. Concr. Res. 29, 455–458 (1999)Google Scholar
  108. 108.
    Hewlett, P.C.: Lea’s Chemistry of Cement and Concrete, 4th edn. Elsevier, Oxford (1998)Google Scholar
  109. 109.
    Douglas, E., Brandstetr, J.: A preliminary study on the alkali activation of ground granulated blast-furnace slag. Cem. Concr. Res. 20(5), 746–756 (1990)Google Scholar
  110. 110.
    Fundi, Y.S.A.: Alkaline pozzolana Portland cement. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine. Vol. 1, pp. 181–192. VIPOL Stock Company (1994)Google Scholar
  111. 111.
    Shi, C., Day, R.L.: Chemical activation of blended cements made with lime and natural pozzolans. Cem. Concr. Res. 23(6), 1389–1396 (1993)Google Scholar
  112. 112.
    Shi, C., Day, R.L.: Pozzolanic reaction in the presence of chemical activators: Part II. Reaction products and mechanism. Cem. Concr. Res. 30(4), 607–613 (2000)Google Scholar
  113. 113.
    Shi, C., Day, R.L.: Pozzolanic reaction in the presence of chemical activators: Part I. Reaction kinetics. Cem. Concr. Res. 30(1), 51–58 (2000)Google Scholar
  114. 114.
    Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Pore solution composition and alkali diffusion in inorganic polymer cement. Cem. Concr. Res. 40(9), 1386–1392 (2010)Google Scholar
  115. 115.
    Oliveira, C.T.A., John, V.M., Agopyan, V.: Pore water composition of clinker free granulated blast furnace slag cements pastes. In: Krivenko, P.V. (ed.) Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, pp. 109–119. ORANTA (1999)Google Scholar
  116. 116.
    Song, S., Jennings, H.M.: Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem. Concr. Res. 29, 159–170 (1999)Google Scholar
  117. 117.
    Puertas, F., Fernández-Jiménez, A., Blanco-Varela, M.T.: Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem. Concr. Res. 34(1), 139–148 (2004)Google Scholar
  118. 118.
    Faucon, P., Charpentier, T., Nonat, A., Petit, J.C.: Triple-quantum two-dimensional 27Al magic angle nuclear magnetic resonance study of the aluminum incorporation in calcium silicate hydrates. J. Am. Chem. Soc. 120(46), 12075–12082 (1998)Google Scholar
  119. 119.
    Glasser, F.P.: Mineralogical aspects of cement in radioactive waste disposal. Miner. Mag. 65(5), 621–633 (2001)Google Scholar
  120. 120.
    Roy, A.: Sulfur speciation in granulated blast furnace slag: an x-ray absorption spectroscopic investigation. Cem. Concr. Res. 39, 659–663 (2009)Google Scholar
  121. 121.
    Provis, J.L., Duxson, P., van Deventer, J.S.J.: The role of particle technology in developing sustainable construction materials. Adv. Powder Technol. 21(1), 2–7 (2010)Google Scholar
  122. 122.
    Talling, B., Brandstetr, J.: Present state and future of alkali-activated slag concretes. In: Malhotra, V.M. (ed.) 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP114, Trondheim, Norway. Vol. 2, pp. 1519–1546. American Concrete Institute, Detroit, MI (1989)Google Scholar
  123. 123.
    Collins, F., Sanjayan, J.G.: Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder. Cem. Concr. Res. 29(3), 459–462 (1999)Google Scholar
  124. 124.
    Lim, N.G., Jeong, S.W., Her, J.W., Ann, K.Y.: Properties of cement-free concrete cast by finely grained nanoslag with the NaOH-based alkali activator. Constr. Build. Mater. 35, 557–563 (2012)Google Scholar
  125. 125.
    Kumar, R., Kumar, S., Badjena, S., Mehrotra, S.P.: Hydration of mechanically activated granulated blast furnace slag. Metall. Mater. Trans. B 36(6), 873–883 (2005)Google Scholar
  126. 126.
    ASTM International: Standard Test Method for Hydraulic Activity of Slag Cement by Reaction with Alkali (ASTM C1073 – 12). West Conshohocken (2012)Google Scholar
  127. 127.
    Osborn, E.F., Roeder, P.L., Ulmer, G.C.: Part I – phase equilibria at solidus temperatures in the quaternary system CaO-MgO-Al2O3-SiO2 and their bearing on optimum composition of blast furnace slag and on slag properties. Bull. Earth Miner. Sci. Exp. Stat. Penn. State Univ. 85, 1–22 (1969)Google Scholar
  128. 128.
    Brown, P.W.: The system Na2O-CaO-SiO2-H2O. J. Am. Ceram. Soc. 73(11), 3457–3561 (1990)Google Scholar
  129. 129.
    Kalousek, G.L.: Studies of proportions of the quaternary system soda-lime-silica-water at 25°C. J. Res. Nat. Bur. Stand. 32, 285–302 (1944)Google Scholar
  130. 130.
    Ilyukhin, V.V., Kuznetsov, V.A., Lobatchov, A.N., Bakshutov, V.S.: Hydrosilicates of Calcium. Synthesis of Monocrystals and Crystal Chemistry. Nauka, Moscow (1979)Google Scholar
  131. 131.
    Taylor, H.F.W.: A method for predicting alkali ion concentrations in cement pore solutions. Adv. Cem. Res. 1(1), 5–16 (1987)Google Scholar
  132. 132.
    Hong, S.Y., Glasser, F.P.: Alkali binding in cement pastes: Part I. The C-S-H phase. Cem. Concr. Res. 29(12), 1893–1903 (1999)Google Scholar
  133. 133.
    Stade, H.: On the reaction of C-S-H(di, poly) with alkali hydroxides. Cem. Concr. Res. 19(5), 802–810 (1989)Google Scholar
  134. 134.
    Atkins, M., Bennett, D., Dawes, A., Glasser, F., Kindness, A., Read, D.: A thermodynamic model for blended cements; Research Report for the Department of the Environment, DoE/HMIP/RR/92/005 (1991)Google Scholar
  135. 135.
    Chen, W., Brouwers, H.J.H.: Alkali binding in hydrated Portland cement paste. Cem. Concr. Res. 40(5), 716–722 (2010)Google Scholar
  136. 136.
    Hong, S.Y., Glasser, F.P.: Alkali sorption by C-S-H and C-A-S-H gels: Part II. Role of alumina. Cem. Concr. Res. 32(7), 1101–1111 (2002)Google Scholar
  137. 137.
    Skibsted, J., Andersen, M.D.: The effect of alkali ions on the incorporation of aluminum in the calcium silicate hydrate (C–S–H) phase resulting from Portland cement hydration studied by 29Si MAS NMR. J. Am. Ceram. Soc. 96(2), 651–656 (2013)Google Scholar
  138. 138.
    García Lodeiro, I., Macphee, D.E., Palomo, A., Fernández-Jiménez, A.: Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cem. Concr. Res. 39, 147–153 (2009)Google Scholar
  139. 139.
    García-Lodeiro, I.: Compatibility of cement gels C-S-H and N-A-S-H. Studies in real samples and in synthetic gels. Thesis, Universidad Autónoma de Madrid (2008)Google Scholar
  140. 140.
    Blakeman, E.A., Gard, J.A., Ramsay, C.G., Taylor, H.F.W.: Studies on the system sodium oxide-calcium oxide-silica-water. J. Appl. Chem. Biotechnol. 24(4–5), 239–245 (1974)Google Scholar
  141. 141.
    Nelson, E.B., Kalousek, G.L.: Effects of Na2O on calcium silicate hydrates at elevated temperatures. Cem. Concr. Res. 7(6), 687–694 (1977)Google Scholar
  142. 142.
    Duxson, P., Provis, J.L., Lukey, G.C., van Deventer, J.S.J., Separovic, F., Gan, Z.H.: 39K NMR of free potassium in geopolymers. Ind. Eng. Chem. Res. 45(26), 9208–9210 (2006)Google Scholar
  143. 143.
    Shi, C.: Steel slag – its production, processing, characteristics and cementitious properties. J. Mater. Civil Eng. 16(3), 230–236 (2004)Google Scholar
  144. 144.
    Hu, S., Wang, H., Zhang, G., Ding, Q.: Bonding and abrasion resistance of geopolymeric repair material made with steel slag. Cem. Concr. Compos. 30(3), 239–244 (2008)Google Scholar
  145. 145.
    Wang, Y., Lin, D.: The steel slag blended cement. Silic. Indus. 6, 121–126 (1983)Google Scholar
  146. 146.
    Petropavlovsky, O.N.: Slag alkaline binding systems and concretes based on steelmaking slag. Thesis, Kiev Civil Engineering Institute (1987)Google Scholar
  147. 147.
    Li, D., Wu, X.: Improvement of early strength of steel slag cement. Jiangsu Build. Mater. 4, 24–27 (1992)Google Scholar
  148. 148.
    Shi, C., Wu, X., Tang, M.: Research on alkali-activated cementitious systems in China. Adv. Cem. Res. 5(17), 1–7 (1993)Google Scholar
  149. 149.
    Bin, Q., Wu, X., Tang, M.: An investigation on alkali-BFS-steel slag cement. In: 2nd Beijing International Symposium on Cements and Concretes, Beijing, P.R. China, pp. 288–294 (1989)Google Scholar
  150. 150.
    Bin, Q., Wu, X., Tang, M.: High strength alkali steel-iron slag binder. In: 9th International Congress on the Chemistry of Cement, New Delhi, India, pp. 291–297 (1992)Google Scholar
  151. 151.
    Shi, C.: Corrosion resistant cement made with steel mill by-products. In: International Symposium on the Utilization of Metallurgical Slag, Beijing, P.R. China, pp. 171–178 (1999)Google Scholar
  152. 152.
    Shi, C.: Characteristics and cementitious properties of ladle slag fines from steel production. Cem. Concr. Res. 32(3), 459–462 (2002)Google Scholar
  153. 153.
    Kavalerova, E., Petropavlovsky, O., Krivenko, P.V.: The role of solid-phase basicity on heat evolution during hardening of cements. In: Tammirinne, M. (ed.) International Conference on Practical Applications in Environmental Geotechnology (ecogeo*2000), Helsinki, Finland, pp. 73–80. VTT Technical Research Centre of Finland (2000)Google Scholar
  154. 154.
    Natali Murri, A., Rickard, W.D.A., Bignozzi, M.C., van Riessen, A.: High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cem. Concr. Res. 43, 51–61 (2013)Google Scholar
  155. 155.
    Bignozzi, M.C., Manzi, S., Lancellotti, I., Kamseu, E., Barbieri, L., Leonelli, C.: Mix-design and characterization of alkali activated materials based on metakaolin and ladle slag. Appl. Clay Sci. 73, 78–85 (2013)Google Scholar
  156. 156.
    Shi, C.: Study on alkali activated phosphorous slag cement. J. Nanjing Inst. Chem. Technol. 10(2), 110–116 (1988)Google Scholar
  157. 157.
    Shi, C.: Influence of temperature on hydration of alkali activated phosphorous slag. J. Nanjing Inst. Chem. Technol. 11(1), 94–99 (1989)Google Scholar
  158. 158.
    Fang, Y., Mao, Z., Wang, C., Zhu, Q.: Performance of alkali-activated phosphor slag-fly ash cement and the microstructure of its hardened paste. J. Chin. Ceram. Soc. 35(4), 451–455 (2007)Google Scholar
  159. 159.
    Technologiya Metallov: Processing of slags of non-ferrous metallurgy. Chelyabinsk, Russia (2008). http://http://www.technologiya-metallov.com/englisch/oekologie_4.htm
  160. 160.
    University of Wisconsin Recycled Materials Resource Center: Nonferrous slags – material description, Madison. (2013). http://http://rmrc.wisc.edu/ug-mat-nonferrous-slags/
  161. 161.
    Małolepszy, J., Deja, J., Brylicki, W.: Industrial application of slag alkaline concretes. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine. Vol. 2, pp. 989–1001. VIPOL Stock Company (1994)Google Scholar
  162. 162.
    Bin, X., Yuan, X.: Research of alkali-activated nickel slag cement. In: Krivenko, P.V. (ed.) Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, pp. 531–536. ORANTA (1999)Google Scholar
  163. 163.
    Zosin, A.P., Priimak, T.I., Avsaragov, K.B.: Geopolymer materials based on magnesia-iron slags for normalization and storage of radioactive wastes. At. Energy 85(1), 510–514 (1998)Google Scholar
  164. 164.
    Narang, K.C., Chopra, S.K.: Studies on alkaline activation of BF, steel and alloy slags. Silic. Indus. 9, 175–182 (1983)Google Scholar
  165. 165.
    Chen, J.-X., Chen, H.-B., Xiao, P., Zhang, L.-F.: A study on complex alkali-slag environmental concrete. In: Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China, pp. 299–307. Center for Transportation Research and Education, Ames (2004)Google Scholar
  166. 166.
    Kalinkin, A.M., Kumar, S., Gurevich, B.I., Alex, T.C., Kalinkina, E.V., Tyukavkina, V.V., Kalinnikov, V.T., Kumar, R.: Geopolymerization behavior of Cu–Ni slag mechanically activated in air and in CO2 atmosphere. Int. J. Miner. Proc. 112–113, 101–106 (2012)Google Scholar
  167. 167.
    Komnitsas, K., Zaharaki, D.: Utilisation of low-calcium slags to improve the strength and durability of geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 345–378. Woodhead, Cambridge (2009)Google Scholar
  168. 168.
    Komnitsas, K., Zaharaki, D., Perdikatsis, V.: Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers. J. Hazard. Mater. 161(2–3), 760–768 (2009)Google Scholar
  169. 169.
    Komnitsas, K., Zaharaki, D., Bartzas, G.: Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl. Clay Sci. 73, 103–109 (2013)Google Scholar
  170. 170.
    Komnitsas, K., Zaharaki, D., Perdikatsis, V.: Geopolymerisation of low calcium ferronickel slags. J. Mater. Sci. 42(9), 3073–3082 (2007)Google Scholar
  171. 171.
    Pontikes, Y., Machiels, L., Onisei, S., Pandelaers, L., Geysen, D., Jones, P.T., Blanpain, B.: Slags with a high Al and Fe content as precursors for inorganic polymers. Appl. Clay Sci. 73, 93–102 (2013)Google Scholar
  172. 172.
    Sathonsaowaphak, A., Chindaprasirt, P., Pimraksa, K.: Workability and strength of lignite bottom ash geopolymer mortar. J. Hazard. Mater. 168(1), 44–50 (2009)Google Scholar
  173. 173.
    Chindaprasirt, P., Jaturapitakkul, C., Chalee, W., Rattanasak, U.: Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 29(2), 539–543 (2009)Google Scholar
  174. 174.
    Slavík, R., Bednařík, V., Vondruška, M., Nemec, A.: Preparation of geopolymer from fluidized bed combustion bottom ash. J. Mater. Proc. Technol. 200(1–3), 265–270 (2008)Google Scholar
  175. 175.
    Xu, H., Li, Q., Shen, L., Wang, W., Zhai, J.: Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes. J. Hazard. Mater. 175(1–3), 198–204 (2010)Google Scholar
  176. 176.
    Topçu, I.B., Toprak, M.U.: Properties of geopolymer from circulating fluidized bed combustion coal bottom ash. Mater. Sci. Eng. A. 528(3), 1472–1477 (2011)Google Scholar
  177. 177.
    Luna Galiano, Y., Fernández Pereira, C., Vale, J.: Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. J. Hazard. Mater. 185(1), 373–381 (2011)Google Scholar
  178. 178.
    Zheng, L., Wang, W., Shi, Y.: The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 79(6), 665–671 (2010)Google Scholar
  179. 179.
    Zheng, L., Wang, C., Wang, W., Shi, Y., Gao, X.: Immobilization of MSWI fly ash through geopolymerization: Effects of water-wash. Waste Manag. 31(2), 311–317 (2011)Google Scholar

Copyright information

© RILEM 2014

Authors and Affiliations

  • Susan A. Bernal
    • 1
    • 2
  • John L. Provis
    • 1
    • 2
  • Ana Fernández-Jiménez
    • 3
  • Pavel V. Krivenko
    • 4
  • Elena Kavalerova
    • 4
  • Marta Palacios
    • 5
  • Caijun Shi
    • 6
  1. 1.Department of Materials Science and EngineeringUniversity of SheffieldSheffieldUK
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of MelbourneMelbourneAustralia
  3. 3.Department of Cements and Materials RecyclingInstituto de Ciencias de la Construcción Eduardo Torroja (IETcc-CSIC)MadridSpain
  4. 4.V.D. Glukhovskii Scientific Research Institute for Binders and MaterialsKiev National University of Civil Engineering and ArchitectureKievUkraine
  5. 5.Institute for Building Materials (IfB), ETH ZürichZürichSwitzerland
  6. 6.College of Civil EngineeringHunan UniversityChangshaChina

Personalised recommendations