Other Potential Applications for Alkali-Activated Materials

  • Susan A. Bernal
  • Pavel V. Krivenko
  • John L. Provis
  • Francisca Puertas
  • William D. A. Rickard
  • Caijun Shi
  • Arie van Riessen
Part of the RILEM State-of-the-Art Reports book series (RILEM State Art Reports, volume 13)


The focus of this chapter is the discussion of a variety of niche applications (other than as a large-scale civil infrastructure material) in which alkali-activated binders and concretes have shown potential for commercial-scale development. The majority of these applications have not yet seen large-scale AAM utilisation, except as noted in the various sections of the chapter. However, there have been at least pilot-scale or demonstration projects in each of the areas listed, and each provides scope for future development and potentially profitable advances in science and technology. In addition to the applications specifically discussed in this chapter, there are also commercial and academic developments in alkali-activation for specific applications including a commercial product which is being marketed as a domestic tiling grout showing some self-cleaning properties [1], as well as alkali-activated metakaolin binders as a vehicle for controlled-release drug delivery [2, 3]. Although undoubtedly promising and of commercial interest, these are rather specialised applications, and so the focus of this chapter is instead on broader categories of research and development rather than in providing detailed analysis of specific products. The areas to be discussed will include lightweight materials, well cements, fire-resistant materials, and fibre-reinforced composites.


Flexural Strength Portland Cement Lightweight Aggregate Autoclave Aerate Concrete Fire Resistant Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    BASF SE: PCI technical data sheet 254, PCI Geofug. (2011).
  2. 2.
    Forsgren, J., Pedersen, C., Strømme, M., Engqvist, H.: Synthetic geopolymers for controlled delivery of oxycodone: adjustable and nanostructured porosity enables tunable and sustained drug release. PLoS ONE 6(3), e17759 (2011)Google Scholar
  3. 3.
    Jämstorp, E., Forsgren, J., Bredenberg, S., Engqvist, H., Strømme, M.: Mechanically strong geopolymers offer new possibilities in treatment of chronic pain. J. Control. Release 146(3), 370–377 (2010)Google Scholar
  4. 4.
    Liefke, E.: Industrial applications of foamed geopolymers. In: Davidovits, J., Davidovits, R., James, C. (eds.) Proceedings of Géopolymère ‵99 – Second International Conference, Saint-Quentin, France. Vol. 1, pp. 189–199 (1999)Google Scholar
  5. 5.
    Talling, B., Brandstetr, J.: Present state and future of alkali-activated slag concretes. In: Malhotra, V.M. (ed.) 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP114, Trondheim, Norway. Vol. 2, pp. 1519–1546. American Concrete Institute. Detroit, MI (1989)Google Scholar
  6. 6.
    Krivenko, P.V., Kovalchuk, G.Y.: Heat-resistant fly ash based geocements. In: Lukey, G.C. (ed.) Geopolymers 2002. Turn Potential into Profit, Melbourne, Australia. CD-ROM Proceedings. Siloxo Pty. Ltd. (2002)Google Scholar
  7. 7.
    Krivenko, P.V., Kovalchuk, G.Y.: Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix. J. Mater. Sci. 42(9), 2944–2952 (2007)Google Scholar
  8. 8.
    Shi, C., Krivenko, P.V., Roy, D.M.: Alkali-Activated Cements and Concretes. Taylor & Francis, Abingdon (2006)Google Scholar
  9. 9.
    Grutzeck, M.W., Kwan, S., DiCola, M.: Zeolite formation in alkali-activated cementitious systems. Cem. Concr. Res. 34(6), 949–955 (2004)Google Scholar
  10. 10.
    Brooks, R., Bahadory, M., Tovia, F., Rostami, H.: Properties of alkali-activated fly ash: high performance to lightweight. Int. J. Sustain. Eng. 3(3), 211–218 (2010)Google Scholar
  11. 11.
    Arellano Aguilar, R., Burciaga Díaz, O., Escalante García, J.I.: Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates. Constr. Build. Mater. 24(7), 1166–1175 (2010)Google Scholar
  12. 12.
    Helferich, R.L.: Lightweight hydrogel-bound aggregate shapes and process for producing same. U.S. Patent 4,963,515 (1990)Google Scholar
  13. 13.
    Bell, J.L., Kriven, W.M.: Preparation of ceramic foams from metakaolin-based geopolymer gels. Ceram. Eng. Sci. Proc. 29(10), 97–111 (2008)Google Scholar
  14. 14.
    Prud’homme, E., Michaud, P., Joussein, E., Clacens, J.M., Rossignol, S.: Role of alkaline cations and water content on geomaterial foams: monitoring during formation. J. Non-Cryst. Solids 357(4), 1270–1278 (2011)Google Scholar
  15. 15.
    Prud’homme, E., Michaud, P., Joussein, E., Peyratout, C., Smith, A., Arrii-Clacens, S., Clacens, J.M., Rossignol, S.: Silica fume as porogent agent in geo-materials at low temperature. J. Eur. Ceram. Soc. 30(7), 1641–1648 (2010)Google Scholar
  16. 16.
    Prud’homme, E., Michaud, P., Joussein, E., Peyratout, C., Smith, A., Rossignol, S.: In situ inorganic foams prepared from various clays at low temperature. Appl. Clay Sci. 51(1–2), 15–22 (2011)Google Scholar
  17. 17.
    Henon, J., Alzina, A., Absi, J., Smith, D.S., Rossignol, S.: Porosity control of cold consolidated geomaterial foam: temperature effect. Ceram. Int. 38(1), 77–84 (2012)Google Scholar
  18. 18.
    Vaou, V., Panias, D.: Thermal insulating foamy geopolymers from perlite. Miner. Eng. 23(14), 1146–1151 (2010)Google Scholar
  19. 19.
    Davidovits, J.: Geopolymer Chemistry and Applications. Institut Géopolymère, Saint-Quentin (2008)Google Scholar
  20. 20.
    Bean, D.L., Malone, P.G.: Alkali-activated glassy silicate foamed concrete. U.S. Patent 5,605,570 (1995)Google Scholar
  21. 21.
    Birch, G.D.: Cellular cementitious composition. U.S. Patent 8,167,994 B2 (2012)Google Scholar
  22. 22.
    Zhao, Y., Ye, J., Lu, X., Liu, M., Lin, Y., Gong, W., Ning, G.: Preparation of sintered foam materials by alkali-activated coal fly ash. J. Hazard. Mater. 174(1–3), 108–112 (2010)Google Scholar
  23. 23.
    Laney, B.E., Williams, F.T., Rutherford, R.L., Bailey, D.T.: Advanced geopolymer composites. U.S. Patent 5,244,726 (1993)Google Scholar
  24. 24.
    Chislitskaya, H.: Acoustic properties of slag alkaline foamed concretes. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine. Vol. 2, pp. 971–979. VIPOL Stock Company (1994)Google Scholar
  25. 25.
    Buchwald, A., Oesterheld, R., Hilbig, H.: Incorporation of aluminate into silicate gels and its effect on the foamability and water resistance. J. Am. Ceram. Soc. 93(10), 3370–3376 (2010)Google Scholar
  26. 26.
    Fletcher, R.A., MacKenzie, K.J.D., Nicholson, C.L., Shimada, S.: The composition range of aluminosilicate geopolymers. J. Eur. Ceram. Soc. 25(9), 1471–1477 (2005)Google Scholar
  27. 27.
    Pushkareva, E., Guziy, S., Sukhanevich, M., Borisova, A.: Influence of inorganic modifiers on structure, properties and durability of bloating geocement compositions. In: Ertl, Z. (ed.) Proceedings of the International Conference on Alkali Activated Materials – Research, Production and Utilization, Prague, Czech Republic, pp. 581–592. Česká rozvojová agentura (2007)Google Scholar
  28. 28.
    Sukhanevich, M.V., Guzii, S.G.: The effect of technological factors on properties of alkali aluminosilicate systems used for preparation of fireproof coatings. Refract. Ind. Ceram. 45(3), 217–219 (2004)Google Scholar
  29. 29.
    Temuujin, J., Minjigmaa, A., Rickard, W., Lee, M., Williams, I., van Riessen, A.: Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation. J. Hazard. Mater. 180(1–3), 748–752 (2010)Google Scholar
  30. 30.
    Zuda, L., Drchalová, J., Rovnaník, P., Bayer, P., Keršner, Z., Černý, R.: Alkali-activated aluminosilicate composite with heat-resistant lightweight aggregates exposed to high temperatures: mechanical and water transport properties. Cem. Concr. Compos. 32(2), 157–163 (2010)Google Scholar
  31. 31.
    Yang, K.H., Song, J.K., Lee, J.S.: Properties of alkali-activated mortar and concrete using lightweight aggregates. Mater. Struct. 43(3), 403–416 (2010)Google Scholar
  32. 32.
    Yang, K.-H., Mun, J.-H., Sim, J.-I., Song, J.-K.: Effect of water content on the properties of lightweight alkali-activated slag concrete. J. Mater. Civil Eng. 23(6), 886–894 (2011)Google Scholar
  33. 33.
    Tulaganov, A.A.: Structure formation and properties of the high-strength alkaline lightweight concretes. In: Krivenko, P.V. (ed.) Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, pp. 168–184. ORANTA (1999)Google Scholar
  34. 34.
    Simonovic, M.: Flexural properties and characterization of geopolymer based sandwich composite structures at room and elevated temperature. Ph.D. thesis, Rutgers, The State University of New Jersey (2007)Google Scholar
  35. 35.
    Wu, H.-C., Sun, P.: New building materials from fly ash-based lightweight inorganic polymer. Constr. Build. Mater. 21, 211–217 (2007)Google Scholar
  36. 36.
    Mallicoat, S.W., Sarin, P., Kriven, W.M.: Novel, alkali-bonded, ceramic filtration membranes. Ceram. Eng. Sci. Proc. 26(8), 37–44 (2005)Google Scholar
  37. 37.
    Sakulich, A.R., Bentz, D.P.: Mitigation of autogenous shrinkage in alkali activated slag mortars by internal curing. Mater. Struct. 46, 1355–1367 (2013)Google Scholar
  38. 38.
    Soares, P., Pinto, A.T., Ferreira, V.M., Labrincha, J.A.: Geopolymerization of lightweight aggregate waste. Mater. Constr. 59(291), 23–34 (2008)Google Scholar
  39. 39.
    Vance, E.R., Perera, D.S., Imperia, P., Cassidy, D.J., Davis, J., Gourley, J.T.: Perlite waste as a precursor for geopolymer formation. J. Aust. Ceram. Soc. 45(1), 44–49 (2009)Google Scholar
  40. 40.
    Jo, B.-W., Park, S.-K., Park, J.-B.: Properties of concrete made with alkali-activated fly ash lightweight aggregate (AFLA). Cem. Concr. Compos. 29(2), 128–135 (2007)Google Scholar
  41. 41.
    Małolepszy, J., Deja, J., Brylicki, W.: Industrial application of slag alkaline concretes. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine. Vol. 2, pp. 989–1001. VIPOL Stock Company (1994)Google Scholar
  42. 42.
    Brylicki, W., Małolepszy, J., Stryczek, S.: Industrial scale application of the alkali activated slag cementitious materials in the injection sealing works. In: Goumans, J.J.J.M., Van der Sloot, H.A., Aalbers, T.G. (eds.) Environmental Aspects of Construction with Waste Materials, Maastricht, Netherlands, pp. 841–849. Elsevier. Amsterdam, Netherlands (1994)Google Scholar
  43. 43.
    Deja, J., Brylicki, W., Małolepszy, J.: Anti-filtration screens based on alkali-activated slag binders. In: Ertl, Z. (ed.) Proceedings of the International Conference on Alkali Activated Materials – Research, Production and Utilization, Prague, Czech Republic, pp. 163–184. Česká rozvojová agentura (2007)Google Scholar
  44. 44.
    Nasvi, M.C.M., Ranjith, P.G., Sanjayan, J.: The permeability of geopolymer at down-hole stress conditions: application for carbon dioxide sequestration wells. Appl. Energy 102, 1391–1398 (2013)Google Scholar
  45. 45.
    Javanmardi, K., Flodberg, K.D., Nahm, J.J.: Mud to cement technology proven in offshore drilling project. Oil Gas J 91(7), 49–57 (1993)Google Scholar
  46. 46.
    Nahm, J.J., Javanmardi, K., Cowan, K.M., Hale, A.H.: Slag mix mud conversion cementing technology: reduction of mud disposal volumes and management of rig-site drilling wastes. J. Petroleum Sci. Eng. 11(1), 3–12 (1994)Google Scholar
  47. 47.
    Ruiz-Santaquiteria, C., Fernández-Jiménez, A., Palomo, A.: Rheological properties of alkali activated cement for oil well linings. In: Shi, C., Yu, Z., Khayat, K.H., Yan, P. (eds.) 2nd International Symposium on Design, Performance and Use of Self Consolidating Concrete, Beijing, China, pp. 878–891. RILEM. Bagneux, France (2009)Google Scholar
  48. 48.
    Wu, D., Peiyan, A., Huang, B.: Slag/mud mixtures improve cementing operations in China. Oil Gas J. 94(52), 95–100 (1996)Google Scholar
  49. 49.
    Silva, M.G.P., Miranda, C.R., D’Almeida, A.R., Campos, G., Bezerra, M.T.A.: Slag cementing versus conventional cementing: comparative bond results. In: 5th Latin American and Caribbean Petroleum Engineering Conference and Exhibition, Rio de Janeiro, Brazil. Paper SPE39005 (1997)Google Scholar
  50. 50.
    Nahm, J.J., Romero, R.N., Hale, A.A., Keedy, C.R., Wyant, R.E., Briggs, B.R., Smith, T.R., Lombardi, M.A.: Universal fluids improve cementing. World Oil 215(11), 67–72 (1994)Google Scholar
  51. 51.
    Benge, O.G., Webster, W.W.: Blast furnace slag slurries may have limits for oil field use. Oil Gas J. 92(29), 41–49 (1994)Google Scholar
  52. 52.
    Barlet-Gouedard, V., Porcherie, O., Pershikova, E.: Pumpable geopolymer formulation for oilfield application. World Patent WO/2009/103480 (2009)Google Scholar
  53. 53.
    Barlet-Gouedard, V., Zusatz-Ayache, C.M., Porcherle, O.: Geopolymer composition and application for carbon dioxide storage. U.S. Patent 7,846,250 (2010)Google Scholar
  54. 54.
    Sugama, T., Brothers, L.E.: Sodium-silicate-activated slag for acid-resistant geothermal well cements. Adv. Cem. Res. 16(2), 77–87 (2004)Google Scholar
  55. 55.
    Sugama, T., Brothers, L.E., Van de Putte, T.R.: Acid-resistant cements for geothermal wells: sodium silicate activated slag/fly ash blends. Adv. Cem. Res. 17(2), 65–75 (2005)Google Scholar
  56. 56.
    Davidovits, J.: 30 years of successes and failures in geopolymer applications. Market trends and potential breakthroughs. In: Lukey, G.C. (ed.) Geopolymers 2002. Turn Potential into Profit., Melbourne, Australia. CD-ROM Proceedings. Siloxo Pty. Ltd. (2002)Google Scholar
  57. 57.
    Xie, N., Bell, J.L., Kriven, W.M.: Fabrication of structural leucite glass-ceramics from potassium-based geopolymer precursors. J. Am. Ceram. Soc. 93(9), 2644–2649 (2010)Google Scholar
  58. 58.
    Bell, J.L., Driemeyer, P.E., Kriven, W.M.: Formation of ceramics from metakaolin-based geopolymers. Part II: K-based geopolymer. J. Am. Ceram. Soc. 92(3), 607–615 (2009)Google Scholar
  59. 59.
    Bell, J.L., Driemeyer, P.E., Kriven, W.M.: Formation of ceramics from metakaolin-based geopolymers: Part I – Cs-based geopolymer. J. Am. Ceram. Soc. 92(1), 1–8 (2009)Google Scholar
  60. 60.
    Barbosa, V.F.F., MacKenzie, K.J.D.: Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater. Res. Bull. 38(2), 319–331 (2003)Google Scholar
  61. 61.
    Talling, B.: Geopolymers give fire safety to cruise ships. In: Lukey, G.C., (ed.) Geopolymers 2002. Turn Potential into Profit., Melbourne, Australia. CD-ROM Proceedings. Siloxo Pty. Ltd. (2002)Google Scholar
  62. 62.
    Mendes, A., Sanjayan, J., Collins, F.: Phase transformations and mechanical strength of OPC/slag pastes submitted to high temperatures. Mater. Struct. 41(2), 345–350 (2008)Google Scholar
  63. 63.
    Mendes, A., Sanjayan, J., Collins, F.: Long-term progressive deterioration following fire exposure of OPC versus slag blended cement pastes. Mater. Struct. 42(1), 95–101 (2009)Google Scholar
  64. 64.
    Hertz, K.D.: Concrete strength for fire safety design. Mag. Concr. Res. 57(8), 445–453 (2005)Google Scholar
  65. 65.
    Provis, J.L., Yong, C.Z., Duxson, P., van Deventer, J.S.J.: Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers. Colloids Surf. A 336(1–3), 57–63 (2009)Google Scholar
  66. 66.
    Provis, J.L., Harrex, R.M., Bernal, S.A., Duxson, P., van Deventer, J.S.J.: Dilatometry of geopolymers as a means of selecting desirable fly ash sources. J. Non-Cryst. Solids 358(16), 1930–1937 (2012)Google Scholar
  67. 67.
    Rickard, W.D.A., Temuujin, J., van Riessen, A.: Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition. J. Non-Cryst. Solids 358(15), 1830–1839 (2012)Google Scholar
  68. 68.
    Duxson, P., Lukey, G.C., van Deventer, J.S.J.: Physical evolution of Na-geopolymer derived from metakaolin up to 1000 C. J. Mater. Sci. 42(9), 3044–3054 (2007)Google Scholar
  69. 69.
    Rickard, W.D.A., van Riessen, A., Walls, P.: Thermal character of geopolymers synthesized from class F fly ash containing high concentrations of iron and α-quartz. Int. J. Appl. Ceram. Technol. 7(1), 81–88 (2010)Google Scholar
  70. 70.
    Temuujin, J., Rickard, W., Lee, M., van Riessen, A.: Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings. J. Non-Cryst. Solids 357(5), 1399–1404 (2011)Google Scholar
  71. 71.
    Rahier, H., Wastiels, J., Biesemans, M., Willem, R., van Assche, G., van Mele, B.: Reaction mechanism, kinetics and high temperature transformations of geopolymers. J. Mater. Sci. 42(9), 2982–2996 (2007)Google Scholar
  72. 72.
    Dombrowski, K., Buchwald, A., Weil, M.: The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J. Mater. Sci. 42(9), 3033–3043 (2007)Google Scholar
  73. 73.
    Provis, J.L., Duxson, P., Harrex, R.M., Yong, C.Z., van Deventer, J.S.J.: Valorisation of fly ashes by geopolymerisation. Global NEST J. 11(2), 147–154 (2009)Google Scholar
  74. 74.
    Duxson, P., Lukey, G.C., van Deventer, J.S.J.: The thermal evolution of metakaolin geopolymers: part 2 – phase stability and structural development. J. Non-Cryst. Solids 353(22–23), 2186–2200 (2007)Google Scholar
  75. 75.
    White, C.E., Provis, J.L., Proffen, T., van Deventer, J.S.J.: The effects of temperature on the local structure of metakaolin-based geopolymer binder: a neutron pair distribution function investigation. J. Am. Ceram. Soc. 93(10), 3486–3492 (2010)Google Scholar
  76. 76.
    Duxson, P., Lukey, G.C., van Deventer, J.S.J.: Evolution of gel structure during thermal processing of Na-geopolymer gels. Langmuir 22(21), 8750–8757 (2006)Google Scholar
  77. 77.
    Subaer: Influence of aggregate on the microstructure of geopolymer. Ph.D. thesis, Curtin University of Technology (2005)Google Scholar
  78. 78.
    Zhao, R., Sanjayan, J.G.: Geopolymer and Portland cement concretes in simulated fire. Mag. Concr. Res. 63(3), 163–173 (2011)Google Scholar
  79. 79.
    Kovalchuk, G., Krivenko, P.V.: Producing fire- and heat-resistant geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structures, Processing, Properties and Industrial Applications, pp. 229–268. Woodhead, Cambridge (2009)Google Scholar
  80. 80.
    Giancaspro, J., Balaguru, P.N., Lyon, R.E.: Use of inorganic polymer to improve the fire response of balsa sandwich structures. J. Mater. Civil Eng. 18(3), 390–397 (2006)Google Scholar
  81. 81.
    Comrie, D.C., Kriven, W.M.: Composite cold ceramic geopolymer in a refractory application. Ceram. Trans. 153, 211–225 (2003)Google Scholar
  82. 82.
    Fullston, D., Sagoe-Crentsil, K.: Small footprint aluminosilicate matrix – refractory hybrid materials. J. Aust. Ceram. Soc. 45(2), 69–74 (2009)Google Scholar
  83. 83.
    Medri, V., Fabbri, S., Ruffini, A., Dedecek, J., Vaccari, A.: SiC-based refractory paints prepared with alkali aluminosilicate binders. J. Eur. Ceram. Soc. 31(12), 2155–2165 (2011)Google Scholar
  84. 84.
    Goode, M.G.: NIST GCR 04-872, Fire protection of structural steel in high-rise buildings, National Institute of Standards and Technology (2004)Google Scholar
  85. 85.
    Temuujin, J., Minjigmaa, A., Rickard, W., Lee, M., Williams, I., van Riessen, A.: Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers. Appl. Clay. Sci. 46(3), 265–270 (2009)Google Scholar
  86. 86.
    Rickard, W.D.A., Williams, R., Temuujin, J., van Riessen, A.: Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications. Mater. Sci. Eng. A 528, 3390–3397 (2011)Google Scholar
  87. 87.
    Kong, D.L.Y., Sanjayan, J.G.: Damage behaviour of geopolymer composites exposed to elevated temperatures. Cem. Concr. Compos. 30(10), 986–991 (2008)Google Scholar
  88. 88.
    Kong, D.L.Y., Sanjayan, J.G., Sagoe-Crentsil, K.: Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 37, 1583–1589 (2007)Google Scholar
  89. 89.
    Kong, D.L.Y., Sanjayan, J.G., Sagoe-Crentsil, K.: Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures. J. Mater. Sci. 43, 824–831 (2008)Google Scholar
  90. 90.
    Bakharev, T.: Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem. Concr. Res. 36, 1134–1147 (2006)Google Scholar
  91. 91.
    Bernal, S.A., Rodríguez, E.D., Mejía de Gutierrez, R., Gordillo, M., Provis, J.L.: Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46(16), 5477–5486 (2011)Google Scholar
  92. 92.
    Zuda, L., Černý, R.: Measurement of linear thermal expansion coefficient of alkali-activated aluminosilicate composites up to 1000 C. Cem. Concr. Compos. 31(4), 263–267 (2009)Google Scholar
  93. 93.
    Lin, T.S., Jia, D.C., He, P.G., Wang, M.R.: Thermo-mechanical and microstructural characterization of geopolymers with α−Al2O3 particle filler. Int. J. Thermophys. 30(5), 1568–1577 (2009)Google Scholar
  94. 94.
    Lyon, R.E., Balaguru, P.N., Foden, A., Sorathia, U., Davidovits, J., Davidovics, M.: Fire-resistant aluminosilicate composites. Fire Mater. 21(2), 67–73 (1997)Google Scholar
  95. 95.
    Pan, Z., Sanjayan, J.G.: Stress-strain behaviour and abrupt loss of stiffness of geopolymer at elevated temperatures. Cem. Concr. Compos. 32(9), 657–664 (2010)Google Scholar
  96. 96.
    Fernández-Jiménez, A., Pastor, J.Y., Martín, A., Palomo, A.: High-temperature resistance in alkali-activated cement. J. Am. Ceram. Soc. 93(10), 3411–3417 (2010)Google Scholar
  97. 97.
    Institution of Engineers: Fire engineering for building structures and safety, working party on fire engineering, The National Committee on Structural Engineering, Institution of Engineers (1989)Google Scholar
  98. 98.
    ISO: Fire resistance tests – elements of building construction – Part 1: general requirements (1999)Google Scholar
  99. 99.
    ASTM International: Standard test methods for fire tests of building construction materials (ASTM E119-12a). West Conshohocken (2005)Google Scholar
  100. 100.
    European Committee for Standardization: Eurocode 1, Actions on structures – Part 1–2: General actions – actions on structures exposed to fire (EN 1991-1-2). Brussels, Belgium (2002)Google Scholar
  101. 101.
    Vilches, L.F., Fernández-Pereira, C., Olivares del Valle, J., Vale, J.: Recycling potential of coal fly ash and titanium waste as new fireproof products. Chem. Eng. J. 95, 155–161 (2003)Google Scholar
  102. 102.
    Hertz, K.D.: Limits of spalling of fire-exposed concrete. Fire Saf. J. 38(2), 103–116 (2003)Google Scholar
  103. 103.
    Van Riessen, A., Rickard, W., Sanjayan, J.: Thermal properties of geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structures, Processing, Properties and Industrial Applications, pp. 317–344. Woodhead, Cambridge (2009)Google Scholar
  104. 104.
    Conner, J.R., Hoeffner, S.L.: A critical review of stabilization/solidification technology. Crit. Rev. Environ. Sci. Technol. 28(4), 397–462 (1998)Google Scholar
  105. 105.
    Glasser, F.P.: Fundamental aspects of cement solidification and stabilisation. J. Hazard. Mater. 52(2–3), 151–170 (1997)Google Scholar
  106. 106.
    Malviya, R., Chaudhary, R.: Factors affecting hazardous waste solidification/stabilization: a review. J. Hazard. Mater. B137, 267–276 (2006)Google Scholar
  107. 107.
    Glasser, F.P.: Progress in the immobilization of radioactive wastes in cement. Cem. Concr. Res. 22(2–3), 201–216 (1992)Google Scholar
  108. 108.
    Glasser, F.P.: Mineralogical aspects of cement in radioactive waste disposal. Miner. Mag. 65(5), 621–633 (2001)Google Scholar
  109. 109.
    Milestone, N.B.: Reactions in cement encapsulated nuclear wastes: need for toolbox of different cement types. Adv. Appl. Ceram. 105(1), 13–20 (2006)Google Scholar
  110. 110.
    Comrie, D.C., Paterson, J.H., Ritcey, D.J.: Geopolymer technologies in toxic waste management. In: Davidovits, J., Orlinski, J. (eds.) Proceedings of Geopolymer '88 – First European Conference on Soft Mineralurgy, Compeigne, France. Vol. 1, pp. 107–123. Universite de Technologie de Compeigne (1988)Google Scholar
  111. 111.
    Davidovits, J., Comrie, D.C.: Long term durability of hazardous toxic and nuclear waste disposals. In: Davidovits, J., Orlinski, J. (eds.) Proceedings of Geopolymer ‘88 – First European Conference on Soft Mineralurgy, Compeigne, France. Vol. 1, pp. 125–134. Universite de Technologie de Compeigne (1988)Google Scholar
  112. 112.
    Provis, J.L.: Immobilization of toxic waste in geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 423–442. Woodhead, Cambridge (2009)Google Scholar
  113. 113.
    Shi, C., Fernández-Jiménez, A.: Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J. Hazard. Mater. B137(3), 1656–1663 (2006)Google Scholar
  114. 114.
    van Jaarsveld, J.G.S., van Deventer, J.S.J., Lorenzen, L.: The potential use of geopolymeric materials to immobilise toxic metals. 1. Theory and applications. Miner. Eng. 10(7), 659–669 (1997)Google Scholar
  115. 115.
    van Jaarsveld, J.G.S., van Deventer, J.S.J., Schwartzman, A.: The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics. Miner. Eng. 12(1), 75–91 (1999)Google Scholar
  116. 116.
    van Deventer, J.S.J., Provis, J.L., Feng, D., Duxson, P.: The role of mineral processing in the development of cement with low carbon emissions. In: XXV International Mineral Processing Congress (IMPC), Brisbane, Australia, pp. 2771–2781. AusIMM. Melbourne, Australia (2010)Google Scholar
  117. 117.
    Vance, E.R., Perera, D.S.: Geopolymers for nuclear waste immobilisation. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 403–422. Woodhead, Cambridge (2009)Google Scholar
  118. 118.
    Hermann, E., Kunze, C., Gatzweiler, R., Kießig, G., Davidovits, J.: Solidification of various radioactive residues by Géopolymère® with special emphasis on long-term stability. In: Davidovits, J., Davidovits, R., James, C. (eds.) Proceedings of Géopolymère ‵99 – Second International Conference, Saint-Quentin, France. Vol. 1, pp. 211–228. (1999)Google Scholar
  119. 119.
    Krivenko, P.V., Skurchinskaya, J.V., Lavrinenko, L.V., Starkov, O.V., Konovalov, E.E.: Physico-chemical bases of radioactive wastes – Immobilisation in a mineral-like solidified stone. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine. Vol. 1, pp. 1095–1106. VIPOL Stock Company (1994)Google Scholar
  120. 120.
    Deja, J.: Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cem. Concr. Res. 32(12), 1971–1979 (2002)Google Scholar
  121. 121.
    Cho, J.W., Ioku, K., Goto, S.: Effect of Pb-II and Cr-VI ions on the hydration of slag alkaline cement and the immobilization of these heavy metal ions. Adv. Cem. Res. 11(3), 111–118 (1999)Google Scholar
  122. 122.
    Ahmed, Y.H., Buenfeld, N.R.: An investigation of ground granulated blastfurnace slag as a toxic waste solidification/stabilization reagent. Environ. Eng. Sci. 14(2), 113–132 (1997)Google Scholar
  123. 123.
    Zhang, D., Hou, H., He, X., Liu, W.: Research on stabilization of heavy metals by alkali activated slag cement. Urban Environ. Urban Ecol. 19(4), 44–46 (2006)Google Scholar
  124. 124.
    Omotoso, O.E., Ivey, D.G., Mikula, R.: Quantitative X-ray diffraction analysis of chromium(III) doped tricalcium silicate pastes. Cem. Concr. Res. 26(9), 1369–1379 (1996)Google Scholar
  125. 125.
    Ipatti, A.: Solidification of ion-exchange resins with alkali-activated blast-furnace slag. Cem. Concr. Res. 22(2–3), 281–286 (1992)Google Scholar
  126. 126.
    Fernández Olmo, I., Chacon, E., Irabien, A.: Influence of lead, zinc, iron (III) and chromium (III) oxides on the setting time and strength development of Portland cement. Cem. Concr. Res. 31(8), 1213–1219 (2001)Google Scholar
  127. 127.
    Qian, G., Sun, D.D., Tay, J.H.: Characterization of mercury- and zinc-doped alkali-activated slag matrix: Part II. Zinc. Cem. Concr. Res. 33(8), 1257–1262 (2003)Google Scholar
  128. 128.
    Qian, G., Sun, D.D., Tay, J.H.: Characterization of mercury- and zinc-doped alkali-activated slag matrix: Part I. Mercury. Cem. Concr. Res. 33(8), 1251–1256 (2003)Google Scholar
  129. 129.
    Shi, C., Stegemann, J., Caldwell, R.: An examination of interference in waste solidification through measurement of heat signature. Waste Manag. 17(4), 249–255 (1998)Google Scholar
  130. 130.
    Caldwell, R.J., Stegemann, J.A., Shi, C.: Effect of curing on field-solidified waste properties. Part 1: physical properties. Waste Manag. Res. 17(1), 37–43 (1999)Google Scholar
  131. 131.
    Caldwell, R.J., Stegemann, J.A., Shi, C.: Effect of curing on field-solidified waste properties. Part 2: chemical properties. Waste Manag. Res. 17(1), 44–49 (1999)Google Scholar
  132. 132.
    van Jaarsveld, J.G.S., Lukey, G.C., van Deventer, J.S.J., Graham, A.: The stabilisation of mine tailings by reactive geopolymerisation. In: MINPREX 2000 – International Congress on Mineral Processing and Extractive Metallurgy, Melbourne, Australia, pp. 363–371. Australasian Institute of Mining and Metallurgy (2000)Google Scholar
  133. 133.
    van Jaarsveld, J.G.S., van Deventer, J.S.J., Lorenzen, L.: Factors affecting the immobilization of metals in geopolymerized flyash. Metall. Mater. Trans. B 29(1), 283–291 (1998)Google Scholar
  134. 134.
    van Jaarsveld, J.G.S., van Deventer, J.S.J.: The effect of metal contaminants on the formation and properties of waste-based geopolymers. Cem. Concr. Res. 29(8), 1189–1200 (1999)Google Scholar
  135. 135.
    Palomo, A., Palacios, M.: Alkali-activated cementitious materials: alternative matrices for the immobilisation of hazardous wastes – part II. Stabilisation of chromium and lead. Cem. Concr. Res. 33(2), 289–295 (2003)Google Scholar
  136. 136.
    Palacios, M., Palomo, A.: Alkali-activated fly ash matrices for lead immobilisation: a comparison of different leaching tests. Adv. Cem. Res. 16(4), 137–144 (2004)Google Scholar
  137. 137.
    Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J.: Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. J. Hazard. Mater. 157(2–3), 587–598 (2008)Google Scholar
  138. 138.
    Bankowski, P., Zou, L., Hodges, R.: Reduction of metal leaching in brown coal fly ash using geopolymers. J. Hazard. Mater. B114(1–3), 59–67 (2004)Google Scholar
  139. 139.
    Luna Galiano, Y., Salihoglu, G., Fernández Pereira, C., Vale Parapar, J.: Study on the immobilization of Cr(VI) and Cr(III) in geopolymers based on coal combustion fly ash. In: 2011 World of Coal Ash Conference, Denver, CO. CD-ROM proceedings. ACAA/CAER. Lexington, KY (2011)Google Scholar
  140. 140.
    Provis, J.L., Rose, V., Bernal, S.A., van Deventer, J.S.J.: High resolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali activated fly ash. Langmuir 25(19), 11897–11904 (2009)Google Scholar
  141. 141.
    Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J.: The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers. Cem. Concr. Res. 38(5), 681–688 (2008)Google Scholar
  142. 142.
    Henke, K.R.: Waste treatment and remediation technologies for arsenic. In: Henke, K.R. (ed.) Arsenic: Environmental Chemistry, Health Threats and Waste Treatment, pp. 351–430. Wiley, Chichester (2009)Google Scholar
  143. 143.
    Bankowski, P., Zou, L., Hodges, R.: Using inorganic polymer to reduce leach rates of metals from brown coal fly ash. Miner. Eng. 17(2), 159–166 (2004)Google Scholar
  144. 144.
    Álvarez-Ayuso, E., Querol, X., Plana, F., Alastuey, A., Moreno, N., Izquierdo, M., Font, O., Moreno, T., Diez, S., Vázquez, E., Barra, M.: Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. J. Hazard. Mater. 154(1–3), 175–183 (2008)Google Scholar
  145. 145.
    Škvára, F., Kopecký, L., Šmilauer, V., Bittnar, Z.: Material and structural characterization of alkali activated low-calcium brown coal fly ash. J. Hazard. Mater. 168(2–3), 711–720 (2009)Google Scholar
  146. 146.
    Sansui, O., Tempest, B., Ogunro, V., Gergely, J., Daniels, J.: Effect of hydroxy ion on immobilization of oxyanions forming trace elements from fly ash-based geopolymer concrete. In: World of Coal Ash 2009, Lexington, KY. CD-ROM proceedings (2009)Google Scholar
  147. 147.
    Fernández-Jiménez, A.M., Lachowski, E.E., Palomo, A., Macphee, D.E.: Microstructural characterisation of alkali-activated PFA matrices for waste immobilisation. Cem. Concr. Compos. 26(8), 1001–1006 (2004)Google Scholar
  148. 148.
    Fernández-Jiménez, A., Palomo, A., Macphee, D.E., Lachowski, E.E.: Fixing arsenic in alkali-activated cementitious matrices. J. Am. Ceram. Soc. 88(5), 1122–1126 (2005)Google Scholar
  149. 149.
    Sherman, D.M., Randall, S.R.: Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 67(22), 4223–4230 (2003)Google Scholar
  150. 150.
    Minaříková, M., Škvára, F.: Fixation of heavy metals in geopolymeric materials based on brown coal fly ash. Ceram. Silik. 50(4), 200–207 (2006)Google Scholar
  151. 151.
    Fernández Pereira, C., Luna, Y., Querol, X., Antenucci, D., Vale, J.: Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. Fuel 88(7), 1185–1193 (2009)Google Scholar
  152. 152.
    Díez, J.M., Madrid, J., Macías, A.: Characterization of cement-stabilized Cd wastes. Cem. Concr. Res. 27(3), 337–343 (1997)Google Scholar
  153. 153.
    Pomiès, M.-P., Lequeux, N., Boch, P.: Speciation of cadmium in cement: part I. Cd2+ uptake by C-S-H. Cem. Concr. Res. 31(4), 563–569 (2001)Google Scholar
  154. 154.
    Xu, J.Z., Zhou, Y.L., Chang, Q., Qu, H.Q.: Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers. Mater. Lett. 60(6), 820–822 (2006)Google Scholar
  155. 155.
    Phair, J.W., van Deventer, J.S.J., Smith, J.D.: Effect of Al source and alkali activation on Pb and Cu immobilization in fly-ash based “geopolymers”. Appl. Geochem. 19(3), 423–434 (2004)Google Scholar
  156. 156.
    Donatello, S., Fernández-Jiménez, A., Palomo, A.: Alkaline activation as a procedure for the transformation of fly ash into new materials. Part II – An assessment of mercury immobilisation. In: 2011 World of Coal Ash Conference, Denver, CO. CD-ROM proceedings. ACAA/CAER (2011)Google Scholar
  157. 157.
    Zheng, L., Wang, W., Shi, Y.: The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 79(6), 665–671 (2010)Google Scholar
  158. 158.
    Zheng, L., Wang, C., Wang, W., Shi, Y., Gao, X.: Immobilization of MSWI fly ash through geopolymerization: effects of water-wash. Waste Manag. 31(2), 311–317 (2011)Google Scholar
  159. 159.
    Lancellotti, I., Kamseu, E., Michelazzi, M., Barbieri, L., Corradi, A., Leonelli, C.: Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Manag. 30(4), 673–679 (2010)Google Scholar
  160. 160.
    Luna Galiano, Y., Fernández Pereira, C., Vale, J.: Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. J. Hazard. Mater. 185(1), 373–381 (2011)Google Scholar
  161. 161.
    Aly, Z., Vance, E.R., Perera, D.S., Hanna, J.V., Griffith, C.S., Davis, J., Durce, D.: Aqueous leachability of metakaolin-based geopolymers with molar ratios of Si/Al = 1.5 – 4. J. Nucl. Mater. 378(2), 172–179 (2008)Google Scholar
  162. 162.
    Blackford, M.G., Hanna, J.V., Pike, K.J., Vance, E.R., Perera, D.S.: Transmission electron microscopy and nuclear magnetic resonance studies of geopolymers for radioactive waste immobilization. J. Am. Ceram. Soc. 90(4), 1193–1199 (2007)Google Scholar
  163. 163.
    Bai, Y., Collier, N.C., Milestone, N.B., Yang, C.H.: The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. J. Nucl. Mater. 413(3), 183–192 (2011)Google Scholar
  164. 164.
    Cau Dit Comes, C., Courtois, S., Nectoux, D., Leclercq, S., Bourbon, X.: Formulating a low-alkalinity, high-resistance and low-heat concrete for radioactive waste repositories. Cem. Concr. Res. 36, 2152–2163 (2006)Google Scholar
  165. 165.
    El-Kamash, A.M., El-Dakroury, A.M., Aly, H.F.: Leaching kinetics of 137Cs and 60Co radionuclides fixed in cement and cement-based materials. Cem. Concr. Res. 32(11), 1797–1803 (2002)Google Scholar
  166. 166.
    Hoyle, S.L., Grutzeck, M.W.: Incorporation of cesium by hydrating calcium aluminosilicates. J. Am. Ceram. Soc. 72(10), 1938–1947 (1989)Google Scholar
  167. 167.
    Tits, J., Wieland, E., Müller, C.J., Landesman, C., Bradbury, M.H.: Strontium binding by calcium silicate hydrates. J. Colloid Interf. Sci. 300(1), 78–87 (2006)Google Scholar
  168. 168.
    Wu, X., Yen, S., Shen, X., Tang, M., Yang, L.: Alkali-activated slag cement based radioactive waste forms. Cem. Concr. Res. 21(1), 16–20 (1991)Google Scholar
  169. 169.
    Shi, C., Day, R.L.: Alkali-slag cements for the solidification of radioactive wastes. In: Gillam, T.M., Wiles, C.C. (eds.) Stabilization and solidification of hazardous, radioactive, and mixed wastes, pp. 163–173. ASTM STP 1240, West Conshohocken (1996)Google Scholar
  170. 170.
    Shen, X., Yan, S., Wu, X., Tang, M., Yang, L.: Immobilization of stimulated high level wastes into AASC waste form. Cem. Concr. Res. 24(1), 133–138 (1994)Google Scholar
  171. 171.
    Shi, C., Shen, X., Wu, X., Tang, M.: Immobilization of radioactive wastes with Portland and alkali-slag cement pastes. Il Cemento 91(2), 97–108 (1994)Google Scholar
  172. 172.
    Qian, G., Sun, D.D., Tay, J.H.: New aluminium-rich alkali slag matrix with clay minerals for immobilizing simulated radioactive Sr and Cs waste. J. Nucl. Mater. 299(3), 199–204 (2001)Google Scholar
  173. 173.
    Zosin, A.P., Priimak, T.I., Avsaragov, K.B.: Geopolymer materials based on magnesia-iron slags for normalization and storage of radioactive wastes. At. Energy 85(1), 510–514 (1998)Google Scholar
  174. 174.
    Fernández-Jiménez, A., Macphee, D.E., Lachowski, E.E., Palomo, A.: Immobilization of cesium in alkaline activated fly ash matrix. J. Nucl. Mater. 346(2–3), 185–193 (2005)Google Scholar
  175. 175.
    Perera, D.S., Vance, E.R., Aly, Z., Davis, J., Nicholson, C.L.: Immobilization of Cs and Sr in geopolymers with Si/Al ~ 2. Ceram. Trans. 176, 91–96 (2006)Google Scholar
  176. 176.
    Chen, S., Wu, M.Q., Zhang, S.R.: Mineral phases and properties of alkali-activated metakaolin-slag hydroceramics for a disposal of simulated highly-alkaline wastes. J. Nucl. Mater. 402(2–3), 173–178 (2010)Google Scholar
  177. 177.
    Berger, S., Frizon, F., Joussot-Dubien, C.: Formulation of caesium based and caesium containing geopolymers. Adv. Appl. Ceram. 108(7), 412–417 (2009)Google Scholar
  178. 178.
    Khalil, M.Y., Merz, E.: Immobilization of intermediate-level wastes in geopolymers. J. Nucl. Mater. 211(2), 141–148 (1994)Google Scholar
  179. 179.
    Chervonnyi, A.D., Chervonnaya, N.A.: Geopolymeric agent for immobilization of radioactive ashes after biomass burning. Radiochemistry 45(2), 182–188 (2003)Google Scholar
  180. 180.
    Strzlecki, D.: Geopolymer succeeds at Chernobyl field test. Pollut. Eng. 33(10), 36 (2001)Google Scholar
  181. 181.
    Childress, P.: The use of EKORTM to stabilize fuel-containing material at Chernobyl. In: WM’01 Conference, Tucson, AZ. CD-ROM proceedings (2001)Google Scholar
  182. 182.
    Majersky, D.: Removal and solidification of the high contaminated sludges into the aluminosilicate matrix SIAL during decommissioning activities. In: CEG Workshop on Methods and Techniques for Radioactive Waste Management Applicable for Remediation of Isolated Nuclear Sites, Petten. IAEA (2004)Google Scholar
  183. 183.
    Kunze, C., Hermann, E., Griebel, I., Kießig, G., Dullies, F., Schreiter, M.: Entwicklung und praxiseinsatz eines hocheffizienten selektiven sorbens für radium. Wasser-Abwasser 143(7–8), 572–577 (2002)Google Scholar
  184. 184.
    Provis, J.L., White, C.E., Gehman, J.D., Vlachos, D.G.: Modeling silica nanoparticle dissolution in TPAOH-TEOS-H2O solutions. J. Phys. Chem. C 112(38), 14769–14775 (2008)Google Scholar
  185. 185.
    Berger, S., Frizon, F., Fournel, V., Cau-dit-Comes, C.: Immobilization of cesium in geopolymeric matrix: a formulation study. In: Beaudoin, J.J. (ed.) 12th International Congress on the Chemistry of Cement, Montreal, Canada. CD-ROM. National Research Council of Canada, Ottawa (2007)Google Scholar
  186. 186.
    He, P., Jia, D., Wang, M., Zhou, Y.: Effect of cesium substitution on the thermal evolution and ceramics formation of potassium-based geopolymer. Ceram. Int. 36(8), 2395–2400 (2010)Google Scholar
  187. 187.
    Bell, J.L., Sarin, P., Provis, J.L., Haggerty, R.P., Driemeyer, P.E., Chupas, P.J., van Deventer, J.S.J., Kriven, W.M.: Atomic structure of a cesium aluminosilicate geopolymer: a pair distribution function study. Chem. Mater. 20(14), 4768–4776 (2008)Google Scholar
  188. 188.
    McCormick, A.V., Bell, A.T., Radke, C.J.: Evidence from alkali-metal NMR spectroscopy for ion pairing in alkaline silicate solutions. J. Phys. Chem. 93(5), 1733–1737 (1989)Google Scholar
  189. 189.
    Brough, A.R., Katz, A., Sun, G.K., Struble, L.J., Kirkpatrick, R.J., Young, J.F.: Adiabatically cured, alkali-activated cement-based wasteforms containing high levels of fly ash: formation of zeolites and Al-substituted C-S-H. Cem. Concr. Res. 31(10), 1437–1447 (2001)Google Scholar
  190. 190.
    Brough, A.R., Katz, A., Bakharev, T., Sun, G.-K., Kirkpatrick, R.J., Struble, L.J., Young, J.F.: Microstructural aspects of zeolite formation in alkali activated cements containing high levels of fly ash. In: Diamond, S., Mindess, S., Glasser, F.P., Roberts, L.W., Skalny, J.P., Wakely, L.D. (eds.) Microstructure of Cement-Based Systems/Bonding and Interfaces in Cementitious Materials. Materials Research Society Symposium Proceedings 370, pp. 197–208. Materials Research Society, Pittsburgh, PA. (1995)Google Scholar
  191. 191.
    Siemer, D.D.: Hydroceramics, a “new” cementitious waste form material for US defense-type reprocessing waste. Mater. Res. Innov. 6(3), 96–104 (2002)Google Scholar
  192. 192.
    Bao, Y., Kwan, S., Siemer, D.D., Grutzeck, M.W.: Binders for radioactive waste forms made from pretreated calcined sodium bearing waste. J. Mater. Sci. 39(2), 481–488 (2003)Google Scholar
  193. 193.
    Bao, Y., Grutzeck, M.W., Jantzen, C.M.: Preparation and properties of hydroceramic waste forms made with simulated Hanford low-activity waste. J. Am. Ceram. Soc. 88(12), 3287–3302 (2005)Google Scholar
  194. 194.
    Olanrewaju, J.: Hydrothermal transformation and dissolution of hydroceramic waste forms for the INEEL calcined high-level nuclear waste. Ph.D. thesis, Pennsylvania State University (2002)Google Scholar
  195. 195.
    Cozzi, A.D., Bannochie, C.J., Burket, P.R., Crawford, C.L., Jantzen, C.M.: Immobilization of radioactive waste in fly ash based geopolymers. In: 2011 World of Coal Ash Conference, Denver, CO. CD-ROM proceedings. ACAA/CAER (2011)Google Scholar
  196. 196.
    Hanzlíček, T., Steinerova, M., Straka, P.: Radioactive metal isotopes stabilized in a geopolymer matrix: determination of a leaching extract by a radiotracer method. J. Am. Ceram. Soc. 89(11), 3541–3543 (2006)Google Scholar
  197. 197.
    Pierce, E.M., Cantrell, K.J., Westsik, J.H., Parker, K.E., Um, W., Valenta, M.M., Serne, R.J.: Report PNNL-19505: Secondary waste form screening test results – cast stone and alkali alumino-silicate geopolymer (2010)Google Scholar
  198. 198.
    Gong, W., Lutze, W., Pegg, I.L.: Low-temperature solidification of radioactive and hazardous wastes. U.S. Patent 7,855,313 (2010)Google Scholar
  199. 199.
    Davidovits, J.: Geopolymer chemistry and properties. In: Davidovits, J., Orlinski, J. (eds.) Proceedings of Geopolymer '88 – First European Conference on Soft Mineralurgy, Compeigne, France. Vol. 1, pp. 25–48. Universite de Technologie de Compeigne (1988)Google Scholar
  200. 200.
    Puertas, F., Amat, T., Fernández-Jiménez, A., Vázquez, T.: Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem. Concr. Res. 33(12), 2031–2036 (2003)Google Scholar
  201. 201.
    Zhang, Z.-H., Yao, X., Zhu, H.-J., Hua, S.-D., Chen, Y.: Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. J. Cent. South Univ. Technol. 16, 49–52 (2009)Google Scholar
  202. 202.
    Wimpenny, D., Duxson, P., Cooper, T., Provis, J.L., Zeuschner, R.: Fibre reinforced geopolymer concrete products for underground infrastructure. In: Concrete 2011, Perth, Australia. CD-ROM proceedings. Concrete Institute of Australia (2011)Google Scholar
  203. 203.
    Puertas, F., Gil-Maroto, A., Palacios, M., Amat, T.: Alkali-activated slag mortars reinforced with AR glassfibre. Performance and properties. Mater. Constr. 56(283), 79–90 (2006)Google Scholar
  204. 204.
    Alcaide, J.S., Alcocel, E.G., Puertas, F., Lapuente, R., Garces, P.: Carbon fibre-reinforced, alkali-activated slag mortars. Mater. Constr. 57(288), 33–48 (2007)Google Scholar
  205. 205.
    Bernal, S., Esguerra, J., Galindo, J., Mejía de Gutiérrez, R., Rodríguez, E., Gordillo, M., Delvasto, S.: Morteros geopolimericos reforzados con fibras de carbono basados en un sistema binario de un subproducto industrial. Rev. Lat. Metal. Mater. S1(2), 587–592 (2009)Google Scholar
  206. 206.
    Tran, D.H., Kroisová, D., Louda, P., Bortnovsky, O., Bezucha, P.: Effect of curing temperature on flexural properties of silica-based geopolymer-carbon reinforced composite. J. Achiev. Mater. Manuf. Eng. 37(2), 492–495 (2009)Google Scholar
  207. 207.
    He, P., Jia, D., Lin, T., Wang, M., Zhou, Y.: Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram. Int. 36(4), 1447–1453 (2010)Google Scholar
  208. 208.
    He, P., Jia, D., Wang, M., Zhou, Y.: Improvement of high-temperature mechanical properties of heat treated Cf/geopolymer composites by sol-SiO2 impregnation. J. Eur. Ceram. Soc. 30(15), 3053–3061 (2010)Google Scholar
  209. 209.
    Lin, T., Jia, D., He, P., Wang, M., Liang, D.: Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites. Mater. Sci. Eng. A 497(1–2), 181–185 (2008)Google Scholar
  210. 210.
    Penteado Dias, D., Thaumaturgo, C.: Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem. Concr. Compos. 27(1), 49–54 (2005)Google Scholar
  211. 211.
    Li, W., Xu, J.: Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading. Mater. Sci. Eng. A 505, 178–186 (2009)Google Scholar
  212. 212.
    Li, W., Xu, J.: Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Mater. Sci. Eng. A 513–514, 145–153 (2009)Google Scholar
  213. 213.
    Zhang, Y., Wei, S., Li, Z.: Impact behavior and microstructural characteristics of PVA fiber reinforced fly ash-geopolymer boards prepared by extrusion technique. J. Mater. Sci. 41, 2787–2794 (2006)Google Scholar
  214. 214.
    Silva, F.J., Thaumaturgo, C.: Fibre reinforcement and fracture response in geopolymeric mortars. Fatigue Fract. Eng. Mater. Struct. 26(2), 167–172 (2003)Google Scholar
  215. 215.
    Bernal, S., de Gutierrez, R., Delvasto, S., Rodriguez, E.: Performance of an alkali-activated slag concrete reinforced with steel fibers. Constr. Build. Mater. 24(2), 208–214 (2010)Google Scholar
  216. 216.
    Bernal, S., Mejía de Gutierrez, R., Rodriguez, E., Delvasto, S., Puertas, F.: Mechanical behaviour of steel fibre-reinforced alkali activated slag concrete. Mater. Constr. 59(293), 53–62 (2009)Google Scholar
  217. 217.
    Zhao, Q., Nair, B.G., Rahimian, T., Balaguru, P.: Novel geopolymer based composites with enhanced ductility. J. Mater. Sci. 42(9), 3131–3137 (2007)Google Scholar
  218. 218.
    Sakulich, A.R.: Reinforced geopolymer composites for enhanced material greenness and durability. Sustain. Cities Soc. 1, 195–210 (2011)Google Scholar
  219. 219.
    MacKenzie, K.J.D., Bolton, M.J.: Electrical and mechanical properties of aluminosilicate inorganic polymer composites with carbon nanotubes. J. Mater. Sci. 44, 2851–2857 (2009)Google Scholar
  220. 220.
    Hussain, M., Varley, R.J., Cheng, Y.B., Simon, G.P.: Investigation of thermal and fire performance of novel hybrid geopolymer composites. J. Mater. Sci. 39(14), 4721–4726 (2004)Google Scholar
  221. 221.
    Hammell, J.A., Balaguru, P.N., Lyon, R.E.: Strength retention of fire resistant aluminosilicate–carbon composites under wet–dry conditions. Compos. B 31(2), 107–111 (2000)Google Scholar
  222. 222.
    Kriven, W.M., Bell, J.L., Gordon, M.: Geopolymer refractories for the glass manufacturing industry. Ceram. Eng. Sci. Proc. 25(1), 57–79 (2004)Google Scholar
  223. 223.
    Perera, D.S., Trautman, R.L.: Geopolymers with the potential for use as refractory castables. Adv. Technol. Mater. Mater. Proc. 7(2), 187–190 (2005)Google Scholar
  224. 224.
    Papakonstantinou, C.G., Balaguru, P., Lyon, R.E.: Comparative study of high temperature composites. Compos. B 32(8), 637–649 (2001)Google Scholar

Copyright information

© RILEM 2014

Authors and Affiliations

  • Susan A. Bernal
    • 1
    • 2
  • Pavel V. Krivenko
    • 3
  • John L. Provis
    • 1
    • 2
  • Francisca Puertas
    • 4
  • William D. A. Rickard
    • 5
  • Caijun Shi
    • 6
  • Arie van Riessen
    • 5
  1. 1.Department of Materials Science and EngineeringUniversity of SheffieldSheffieldUK
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of MelbourneMelbourneAustralia
  3. 3.V.D. Glukhovskii Scientific Research Institute for Binders and MaterialsKiev National University of Civil Engineering and ArchitectureKievUkraine
  4. 4.Department of Cements and Materials RecyclingInstituto de Ciencias de la Construcción Eduardo Torroja (IETcc-CSIC)MadridSpain
  5. 5.Centre for Materials ResearchCurtin UniversityPerthAustralia
  6. 6.College of Civil EngineeringHunan UniversityChangshaChina

Personalised recommendations