Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 47))

  • 1407 Accesses

Abstract

The first part of this Chapter is devoted to a general study of CHC degradation in pMOSFETs, which is relevant for novel Ge-based devices but suffers of a lack of literature due to the reduced relevance in standard Si technologies. First, an experimental methodology to study the interplay of HC and NBTI is discussed. The study is performed firstly on standard Si/SiON/poly-Si devices and then validated on a more recent high-k/metal gate technology. The learning is consequently used for interpreting the experimental observation on the novel SiGe pMOSFETs. Next, the HC degradation in pure Ge channel devices is investigated, with particular focus on the junction engineering which is expected to have an impact on the device reliability. The second part of this Chapter briefly discusses the impact of other reliability mechanisms, namely 1/f noise and Time Dependent Dielectric Breakdown (TDDB), on (Si)Ge channel devices as compared to standard Si reference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Vuillaume, Hot carrier injections in SiO2 and related instabilities in submicrometer mosfets, in Instabilities in Silicon Devices, ed. by G. Barbottin, A. Vapaille, vol. 3 (Elsevier, Amsterdam, 1999), pp. 265–339

    Google Scholar 

  2. V. Huard, M. Denais, C. Parthasarathy, NBTI degradation: from physical mechanism to modeling. Microlectron. Reliab. 46(1), 1–23 (2006)

    Google Scholar 

  3. T. Grasser et al., The paradigm shift in understanding the bias temperature instability: from reaction-diffusion to switching oxide traps. IEEE Trans. Electron Dev. 58(11), 3652–3666 (2011)

    Article  ADS  Google Scholar 

  4. W.-Y Loh et al., The effects of Ge composition and Si cap thickness on hot carrier reliability of Si/Si1-xGex/Si p-MOSFETs with high-K/metal gate, in Proceedings of the symposium on VLSI Technology, pp. 56–57 (2008)

    Google Scholar 

  5. D. Maji et al., Understanding and optimization of hot-carrier reliability in Germanium-on-Silicon pMOSFETs. IEEE Trans. Electron Dev. 56(5), 1063–1069 (2009)

    Article  ADS  Google Scholar 

  6. E. Amat et al., Channel Hot-Carrier degradation under static stress in short channel transistors with high-k/metal gate stacks, in IEEE Proc. ULIS, pp. 103–106 (2008)

    Google Scholar 

  7. B. Kaczer et al., Ubiquitous relaxation in BTI stressing—new evaluation and insights, in IEEE Proceedings of the IRPS, pp. 20–27 (2008)

    Google Scholar 

  8. T. Grasser et al., Simultaneous extraction of recoverable and permanent components contributing to Bias-Temperature Instability. in IEEE Proceedings of the IEDM, pp. 801–804 (2007)

    Google Scholar 

  9. A. Lacaita, Why the effective temperature of the hot electron tail approaches the lattice temperature. App. Phys. Lett. 59(13), 1623–1625 (1991)

    Article  ADS  Google Scholar 

  10. S.E. Tyaginov et al., Hot-carrier degradation modeling using full-band Monte-Carlo simulations, in IEEE Proceedings of the international symposium on the physical and failure analysis of integrated circuits (IPFA), pp. 1–5 (2010)

    Google Scholar 

  11. A. Teramoto, R. Kuroda, T. Ohmi, NBTI mechanism based on hole-injection for accurate lifetime prediction. ECS Trans. 6(3), 229–243 (2007)

    Article  Google Scholar 

  12. M.G. Ancona, N.S. Saks, D. McCarthy, Lateral distribution of hot-carrier-induced interface traps in MOSFETs. IEEE Trans. Electron Dev. 35(12), 2221–2228 (1988)

    Google Scholar 

  13. C. Guerin et al., Combined effect of NBTI and channel hot carrier effects in pMOSFETs, in IEEE Proceedings of the IIRW, pp. 10–16 (2005)

    Google Scholar 

  14. C.-H. Jeon, S.-Y. Kim, C.-B. Rim, The impact of NBTI and HCI on deep sub-micron pMOSFETs’ lifetime, in IEEE Proceedings of the IIRW, pp. 130–132 (2002)

    Google Scholar 

  15. R. Mishra et al., On the interaction of ESD, NBTI and HCI in 65 nm Technology, in IEEE Proceedings of the IRPS, pp. 17–22 (2007)

    Google Scholar 

  16. B. De Jaeger, G. Nicholas, D.P. Brunco, G. Eneman, M. Meuris, M. Heyns, High performance high-k/Metal Gate Ge pMOSFETs with Gate Lengths down to 125 nm and Halo implant. in Proceedings of the ESSDERC, 2007

    Google Scholar 

  17. G. Enema et al., Impact of donor concentration, electric field, and temperature effects on the leakage current in Germanium p+/n Junctions. IEEE Trans. Electron Devices, 55(9) (2008)

    Google Scholar 

  18. G. Eneman et al., Quantification of drain extension leakage in a scaled bulk Germanium PMOS Technology. IEEE Trans. Electron Dev. 56(12) (2009)

    Google Scholar 

  19. C. Hu, S.C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, K.W. Terrill, Hot-electron-induced MOSFET degradation—model, monitor, and improvement. IEEE J. Solid-State Circ. sc-20(1) (1985)

    Google Scholar 

  20. Sentaurus Process Reference Manual, 2006. X-2006.06 ed

    Google Scholar 

  21. Taurus Medici User Guide, 2007. A-2007.12 ed

    Google Scholar 

  22. B. Kaczer et al., NBTI from the perspective of defect states with widely distributed time scales, in IEEE Proceedings of the IRPS, pp. 55–60 (2009)

    Google Scholar 

  23. A.K. Raychaudhuri, Measurement of 1/f noise and its application in materials science. Solid State Mater. Sci. 6 (2002)

    Google Scholar 

  24. B. Kaczer et al., Electrical and reliability characterization of metal-gate/HfO2/Ge FET’s with Si passivation. Microelectron. Eng. 84(9–10), 2067–2070 (2007)

    Article  Google Scholar 

  25. S. Sahhaf et al., A new TDDB reliability prediction methodology accounting for multiple SBD and wear out. IEEE Trans. Electron Dev. 56(7), 1424–1432 (2009)

    Article  ADS  Google Scholar 

  26. T. Kauerauf et al., “Methodologies for sub-1 nm EOT evaluation”, in IEEE Proc. IRPS, pp. 2A.2.1-10, 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Franco .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Franco, J., Kaczer, B., Groeseneken, G. (2014). Channel Hot Carriers and Other Reliability Mechanisms. In: Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications. Springer Series in Advanced Microelectronics, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7663-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7663-0_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7662-3

  • Online ISBN: 978-94-007-7663-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics