The History and Philosophy of Science and Their Relationship to the Teaching of Sciences in Mexico

  • Ana Barahona
  • José Antonio Chamizo
  • Andoni Garritz
  • Josip Slisko


Science is one of the main attributes of the contemporary world and, more than any other human activity, characterizes the current period from previous centuries. Great advances in the field of science and technology deeply influence natural and social processes. There has been a worldwide recognition of the role of science in modern societies, along with an urgent need to move towards more and better scientific education, particularly in developing countries. It becomes fundamental to modify the current education system regarding science and technology in countries like Mexico, where a cornerstone has been the inclusion of the reflections that historical and philosophical studies have produced in the last three decades.

This article discusses the importance of recent history and philosophy of science studies for science education in Mexico. The educational reforms in 1993 and 2006 acknowledge the advances in science teaching in basic education (elementary and junior high schools) as well as the inclusion of history and philosophy of science in official curricula.


Science Education Scientific Knowledge Junior High School Basic Education National Curriculum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This paper was supported by the projects Ciencia Básica 2012 SEP-CONACyT 178031 ‘La enseñanza de la evolución en el contexto de la historia y la filosofía de la ciencia en México’; SEP-CONACyT 49281 ‘La enseñanza de los modelos y el modelaje en la enseñanza de las ciencias naturales’; and DGAPA/UNAM, IN403513 ‘El tema de la evolución en los libro de texto de secundaria en México desde la historia y la filosofía de la ciencia, 1974–2012’. The authors also want to thank M. A. Alicia Villela González for her research assistance and the comments and suggestions of the four anonymous reviewers on an earlier version of this manuscript.


  1. AAAS (2001). Atlas of Science Literacy, Project 2061, Washington D. C., USA: American Association for the Advancement of Science.Google Scholar
  2. Aikenhead G. (2003). STS education. A rose by any other name, in Roger Cross (ed.), A vision for science education. Responding to the work of Peter Fensham. New York, USA: RoutledgeFalmer.Google Scholar
  3. Ayala, F. J. (1977). Nothing in Biology Makes Sense Except in the Light of Evolution. Theodosius Dobzhansky 1900–1975. Journal of Heredity, 68, 3–10.Google Scholar
  4. Ayala, F. J. (1994). La Teoría de la Evolución [The Theory of Evolution] Madrid: Ediciones Temas de Hoy.Google Scholar
  5. Ayala, F. J. (1994b). On the Scientific Method, Its Practice and Pitfalls. History and Philosophy of the Life Sciences, 16, 205–240.Google Scholar
  6. Barahona, A. & Bonilla, E. (2009). Teaching Evolution: Challenges for Mexican Primary Schools. ReVista. Harvard Review of Latin America, 3(3), 16–17.Google Scholar
  7. Barraza, L. (2001). Environmental Education in Mexican Schools: the Primary Level. The Journal of Environmental Education, 32(3), 31–36.CrossRefGoogle Scholar
  8. Böhme, G. (1988). Copying with science. Graduate Faculty Philosophy Journal, 12, 1–47.CrossRefGoogle Scholar
  9. Bonilla E., Sánchez A., Rojano T. & Chamizo J.A. (1997a). Mexique. Démographie scolaire et réforme de l´enseignement, Revue internationales d´education, 14, 10–15.Google Scholar
  10. Bonilla E., Rojano T., Sánchez A. & Chamizo J.A. (1997b) Curriculum scientifique et innovation, Revue Internationale, d´education, 14, 53–61.Google Scholar
  11. Chamizo J. A. (1988). Proyectos de investigación como una alternativa a la enseñanza de la química en el bachillerato [Research Projects as an Alternative to High School Chemistry Teaching], Contactos, 3, 26–29.Google Scholar
  12. Chamizo J. A. (1992). La química en secundaria, o por qué la enseñanza moderna de la química no es la enseñanza de la química moderna [Chemistry in Junior High School, or why Modern Teaching of Chemistry is not Modern Chemistry Teaching], Información científica y tecnológica, 14, 49–51.Google Scholar
  13. Chamizo J. A & Garritz A. (1993). La enseñanza de la química en secundaria [Junior High School Teaching of Chemistry], Educación Química, 4(3), 134–139.Google Scholar
  14. Chamizo J. A. (1994). Hacia una revolución en la educación científica [Towards a revolution in Science Education], Ciencia, 45, 67–79.Google Scholar
  15. Chamizo J. A. (2001). El currículo oculto en la enseñanza de la química [The Hidden Curriculum in Chemistry Teaching], Educación Química, 12(4), 194–198.Google Scholar
  16. Chamizo J. A. (2005). The teaching of Natural Sciences in Mexico: New Programs and textbooks for elementary School, Science Education International, 16, 271–279.Google Scholar
  17. Chamizo, J. A, Sánchez, A. & Hernández, M. E. (2006). La enseñanza de la química en secundaria. El caso de México [Chemistry teaching in secondary school. The case of Mexico], en Quintanilla M. y Adúriz-Bravo A. (eds) Enseñar ciencias en el nuevo milenio. Retos y propuestas [Teaching sciences in the new millenium. Challenges and proposals], Santiago: Universidad Católica de Chile.Google Scholar
  18. Chamizo J. A. (2007). La historia de la ciencia: un tema pendiente en la educación latinoamericana [History of science: a matter still pending in Latinoamerica’s Education], in Quintanilla M.(ed). Historia de la ciencia. Aportes para la formación del profesorado. Santiago de Chile, Chile: Arrayan editores.Google Scholar
  19. Chamizo J. A. & Garritz A. (2008). Reseña sobre la enseñanza escolar de la ciencia (1990–2006). El caso de México. Editorial [Review on Scholar Science Teaching (1990–2006). The Mexican case. Editorial], Educación Química, 19(3), 174–179.Google Scholar
  20. Chamizo, J. A. & García, A. (Eds.). (2010). Modelos y modelaje en la enseñanza de las ciencias naturales. [Models and Modelling in Natural Sciences Teaching]México: Universidad Nacional Autónoma de México. Available in the URL
  21. Chamizo, J. A. (2011 on line). A new definition of models and modelling in chemistry’ teaching. Science & Education, published Online 31th OctoberGoogle Scholar
  22. Chinn, C. A. & Malhorta, B. A. (2002), Epistemologically Authentic Inquiry in Schools: A Theoretical Framework for Evaluating Tasks. Science Education 86, 175 – 218,CrossRefGoogle Scholar
  23. Fensham, P. J. (1985). Science for all: A reflective essay. Journal of Curriculum Studies, 17(4), 415–435.CrossRefGoogle Scholar
  24. Fensham, P. J. (1995). Science for all: Theory into Practice. Educacion Quimica, 6(1), 50–54.Google Scholar
  25. Flores, F. & Barahona, A. (2003). El Currículo de Educación Básica: Contenidos y Prácticas Pedagógicas [Elementary and Junior High School Education Curriculum: Contents and Pedagogical Practices]. In G. Waldegg, Barahona, A. Macedo, B. & Sánchez, A. (Eds.), Retos y Perspectivas de las Ciencias Naturales en la Escuela Secundaria [Challenges and perspectives of Natural Sciences in Secondary School], (pp. 13–35). México: SEP/OREALC/UNESCO.Google Scholar
  26. Gallagher, J. (1971). A broader base for science education. Science Education, 55, 329–338.CrossRefGoogle Scholar
  27. Garritz A. (1994) Ciencia–Tecnología–Sociedad. A diez años de iniciada la corriente [Science-Technology-Society. Ten years after this dimension began], Educación Química, 5(4), 217–223.Google Scholar
  28. Gilbert, D. (1997). Rewritting History: Salinas, Zedillo and the 1992 Textbook Controversy. Mexican Studies/Estudios Mexicanos, 13(2), 271–297.CrossRefGoogle Scholar
  29. Gilbert, J. & Boulter, C. (1998). Learning science through models and modeling. In B. Fraser & K. Tobin (Eds.), The international handbook of science education. Dordrecht: Kluwer.Google Scholar
  30. Golinski, J. (1998). Making Natural Knowledge. Constructivism and the History of Science. Cambridge: Cambridge University Press.Google Scholar
  31. Gooday, G., Lynch, J. M., Wilson, K. & Barsky, C. K. (2008). Does Science Education Need the History of Science? Isis, 99, 322–330.CrossRefGoogle Scholar
  32. Hacking, I. (1983). Representing and Intervening. Introductory Topics in the Philosophy of Natural Science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  33. Hirschhorn, L. (1986). Beyond Mechanization: work and technology in a postindustrial age. Cambridge: MIT Press.Google Scholar
  34. ICASE (1993) Project 2000+: Scientific and Technological Literacy for All, Paris, International Council of Associations for Science Education.Google Scholar
  35. Jenkins, E. (1989). Why the History of Science? In M. Shortland & Warwick, A. (Eds.), Teaching the History of Science (pp. 19–29). Oxford: Basil Blackwell Ltd.Google Scholar
  36. Jensen, W. B. (1998). Logic, History, and the Chemistry Textbook.I. Does Chemistry Have a Logical Structure? Journal of Chemical Education, 75(6), 679–687; II. Can We Unmuddle the Chemistry Textbook? 75(7), 817–828; III. One Chemical Revolution or Three? 75(8), 961–969.Google Scholar
  37. Justi R., Chamizo J.A., Figueiredo C. & García A. (2011) Experiencia de formación de profesores de ciencias latinoamericanos en modelos y modelaje [Experience of Latino-American Science Teachers’ Training in Models and Modelling], Enseñanza de las Ciencias, 29, 413–426.Google Scholar
  38. Latapí, P. (2003). El debate sobre los valores en la escuela Mexicana [Discussion over values in the Mexican school]. México: Fondo de Cultura Económica.Google Scholar
  39. Longino, H. (1990). Science as Social Knowledge. Princeton: Princeton University Press.Google Scholar
  40. Martínez, S. (1993). Método, Evolución y Progreso en la Ciencia, 1ª. Parte [Method, Evolution and Progress in Science, 1st. Part]. Crítica, 25(73), 37–39.Google Scholar
  41. Matthews, M. R. (1994/2014). Science Teaching. The Role of History and Philosophy of Science. New York: Routledge.Google Scholar
  42. Miguel Garzón, I, & Slisko, J (2010). Uso de la historia en la enseñanza de la física en los libros de texto de Ciencias 2 para segundo de secundaria [Use of History in Physics Teaching through Science Textbooks for Junior High School Second Degree], Latin American Journal of Physics Education, 4, Supplement 1, 987 – 993.Google Scholar
  43. Osborne, J. (2010). Arguing to Learn in Science: the Role of Collaborative, Critical Discourse. Science, 328, 463–466.CrossRefGoogle Scholar
  44. Robitaille, D. F., Schmidt, W. H., Raizen, S. A., McKnight, C. C., Britton, E. D. & Nicol, C. (1993).Curriculum frameworks for mathematics and science (Vol. TIMSS Monograph No.1). Vancouver: Pacific Educational Press.Google Scholar
  45. Ruse, M. (1979). The Darwinian Revolution. Science in Red and Tooth and Claw. Chicago: The University of Chicago Press.Google Scholar
  46. Ruse, M. (1996). Monad to Man. The Concept of Progress in Evolutionary Biology. Cambridge, Mass: Harvard University press.Google Scholar
  47. SATIS (Science and Technology in Society, 1986). Herts, UK: Association for Science Education.Google Scholar
  48. Secretaría de Educación Pública, SEP. (1993). Educación Básica. Secundaria. Plan y Programas de Estudio 1993. México, D. F.: Secretaría de Educación Pública.Google Scholar
  49. Secretaría de Educación Pública, SEP. (2006). Educación Básica. Secundaria. Plan de Estudios 2006 [Junior High School Curriculum 2006]. México: Dirección General de Desarrollo Curricular, Subsecretaría de Educación Básica de la Secretaría de Educación Pública. Accessed June 2008.
  50. Secretaría de Educación Pública, SEP. (2011). Plan de Estudios 2011. Educación Básica. [Basic Education School Curriculum 2011], México: Secretaría de Educación Pública.Google Scholar
  51. Shortland, M. & Warwick, A. (1989). Introduction. In M. Shortland & Warwick, A. (Eds.), Teaching the History of Science (pp. 42–53). Oxford: Basil Blackwell Ltd.Google Scholar
  52. Solomon, J. (1989). Teaching the History of Science: Is Nothing Sacred? In M. Sorthland & Warwick, A. (Eds.), Teaching the History of Science (pp. 1–16). Oxford: Basil Blackwell Ltd.Google Scholar
  53. Stehr, N. (1994). Knowledge Societies. London: Sage.Google Scholar
  54. Stone R.H. & Tripp D.W.H. (1981). Projects in Chemistry, London: Routledge & Kegan Paul.Google Scholar
  55. Tirado F., Chamizo J. A., Rodríguez F. & Pérez A. (2001). La enseñanza de la química. Conocimientos, actitudes y perfiles [Chemistry teaching. Knowledge, attitudes and profiles], Ciencia y Desarrollo, 159, julio-agosto 2001, 59–71.Google Scholar
  56. Valverde, G. A., Bianchi, L. J., Wolfe, R. G., Schmidt, W. H. & Houang, R. T. (2002). According to the Book. Using TIMSS to investigate the translation of policy into practice through the world of textbooks. Dordrecht: Kluwer Academic Publishers.Google Scholar
  57. UNESCO (1999). Declaration on science and the use of scientific knowledge. Accessed 18 March 2011.
  58. Wilson, K. G. & Barsky, C. (1998). Applied Research and Development: Support for Continuing Improvement in Education. Daedalus, 127, 233–258.Google Scholar
  59. Wuest Silva, T., Jiménez Silva, M. P., et al. (1997). Formación, representación, ética y valores [Training, representation, ethics and values]. México: Coordinación de Humanidades, Centro de Estudios sobre la Universidad, UNAM.Google Scholar
  60. Ziman, J. (1980). Teaching and Learning about Science and Society, Cambridge, UK: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ana Barahona
    • 1
  • José Antonio Chamizo
    • 2
  • Andoni Garritz
    • 2
  • Josip Slisko
    • 3
  1. 1.Departamento de Biología Evolutiva, Facultad de CienciasUniversidad Nacional Autónoma de México, UNAMCoyoacánMéxico
  2. 2.Seminario de Investigación Educativa en Química, Facultad de QuímicaUniversidad Nacional Autónoma de México, UNAMCoyoacánMéxico
  3. 3.Facultad de Ciencias Físico MatemáticasBenemérita Universidad Autónoma de PueblaCoyoacánMéxico

Personalised recommendations