Advertisement

Revisiting School Scientific Argumentation from the Perspective of the History and Philosophy of Science

  • Agustín Adúriz-Bravo
Chapter

Abstract

This chapter aims to revisit the notion of argumentation that is currently used in science education. After acknowledging a consolidated tendency of linguistics-based approaches to the study of ‘school scientific argumentation’, the chapter proposes to shift the interest towards an examination of the epistemic aspects of argumentation, i.e. those that derive from its central participation in science as a process and as a product. The premise of the chapter is that the contributions of the philosophy and history of science and of other science studies and metatheoretical perspectives –which are here collectively called ‘HPS’– constitute a fruitful theoretical background to understand scientific arguments and arguing in educational settings. Based on this premise, five possible ‘bridges’ between argumentation and HPS are proposed; such bridges are identified through a ‘theory-directed’ literature review.

Keywords

Science Education School Science Science Classroom Knowledge Claim Argumentation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. AAAS [American Association for the Advancement of Science] (1993). Project 2061: Benchmarks for science literacy. Washington, DC: American Association for the Advancement of Science.Google Scholar
  2. Abell, S.K., Anderson, G. & Chezem, J. (2000). Science as argument and explanation: Exploring concepts of sound in third grade. In Minstrell, J. & Van Zee, E.H. (Eds.). Inquiry into inquiry learning and teaching in science (pp. 100–119). Washington, D.C.: American Association for the Advancement of Science.Google Scholar
  3. Adúriz-Bravo, A. (2005). Una introducción a la naturaleza de la ciencia: La epistemología en la enseñanza de las ciencias naturales. Buenos Aires: Fondo de Cultura Económica.Google Scholar
  4. Adúriz-Bravo, A. (2010). Argumentación científica escolar: Herramientas para su análisis y su enseñanza. Plenary lecture presented at the Seminario Internacional sobre Enseñanza de las Ciencias, Cali, Colombia, June.Google Scholar
  5. Adúriz-Bravo, A. (2011). Fostering model-based school scientific argumentation among prospective science teachers. US-China Education Review, 8(5), 718–723.Google Scholar
  6. Adúriz-Bravo, A., Bonan, L., González Galli, L., Revel Chion, A. & Meinardi, E. (2005). Scientific argumentation in pre-service biology teacher education. Eurasia Journal of Mathematics, Science and Technology Education, 1(1), 76–83.Google Scholar
  7. Aliseda, A. (2006). Abductive reasoning: Logical investigations into discovery and explanation. Dordrecht: Springer.Google Scholar
  8. Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95(3), 518–542.Google Scholar
  9. Archila, P.A. (2012). La investigación en argumentación y sus implicaciones en la formación inicial de profesores de ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(3), 361–375.Google Scholar
  10. Asti Vera, C. & Ambrosini, C. (2010). Argumentos y teorías: Aproximación a la epistemología. Buenos Aires: CCC Educando.Google Scholar
  11. Atkins, L.J. (2008). The roles of evidence in scientific argument. In AIP Conference Proceedings: 2008 Physics Education Research Conference, Volume 1064 (pp. 63–66). Edmonton: American Institute of Physics.Google Scholar
  12. Bar-Hillel, Y. (1970). Aspects of language: Essays and lectures on philosophy of language, linguistic philosophy and methodology of linguistics. Jerusalem: The Magnes Press.Google Scholar
  13. Bell, P. & Linn, M.C. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797–817.Google Scholar
  14. Bex, F.J. & Walton, D.N. (2012). Burdens and standards of proof for inference to the best explanation: Three case studies. Law, Probability & Risk, 11(2–3), 113–133.Google Scholar
  15. Böttcher, F. & Meisert, A. (2011). Argumentation in science education: A model-based framework. Science & Education, 20(2), 103–140.Google Scholar
  16. Bravo-Torija, B. & Jiménez-Aleixandre, M.P. (2011). A learning progression for using evidence in argumentation: An initial framework. Paper presented at the 9th ESERA Conference, Lyon, France, September.Google Scholar
  17. Bricker, L.A. & Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92(3), 473–498.Google Scholar
  18. Buty, C. & Plantin, C. (Eds.) (2008a). Argumenter en classe de sciences: Du débat à l’apprentissage. Paris: Institut National de Recherche Pédagogique.Google Scholar
  19. Buty, C. & Plantin, C. (2008b). Introduction: L’argumentation à l’épreuve dans l’enseignement des sciences et vice-versa. In Buty, C. & Plantin, C. (Eds.). Argumenter en classe de sciences: Du débat à l’apprentissage (pp. 17–41). Paris: Institut National de Recherche Pédagogique.Google Scholar
  20. Cademártori, Y. & Parra, D. (2000). Reforma educativa y teoría de la argumentación. Revista Signos, 33(48), 69–85.Google Scholar
  21. Candela, A. (1999). Ciencia en el aula: Los alumnos entre la argumentación y el consenso. Mexico: Paidós.Google Scholar
  22. Cavagnetto, A.R. (2010). Argument to foster scientific literacy: A review of argument interventions in K-12 science contexts. Review of Education Research, 80(3), 336–371.Google Scholar
  23. Chevallard, Y. (1991). La transposition didactique: Du savoir savant au savoir enseigné. Grenoble: La Pensée Sauvage Éditions.Google Scholar
  24. Clark, D.B., Sampson, V.D., Stegmann, K., Marttunen, M., Kollar, I., Janssen, J., Weinberger, A., Menekse, M., Erkens, G. & Laurinen, L. (2010). Scaffolding scientific argumentation between multiple students in online learning environments to support the development of 21st century skills. In Ertl, B. (Ed.). E-collaborative knowledge construction: Learning from computer-supported and virtual environments (pp. 1–39). New York: IGI Global.Google Scholar
  25. Diéguez Lucena, A. (2005). Filosofía de la ciencia. Madrid: Biblioteca Nueva.Google Scholar
  26. Driver, R.A., Newton, P. & Osborne, J.F. (2000). Establishing the norms of scientific argument in classrooms. Science Education, 84(3), 287–312.Google Scholar
  27. Duschl, R.A. (1990). Restructuring science education: The importance of theories and their development. New York: Teachers College Press.Google Scholar
  28. Duschl, R.A. (1998). La valoración de argumentaciones y explicaciones: Promover estrategias de retroalimentación. Enseñanza de las Ciencias, 16(1), 3–20.Google Scholar
  29. Duschl, R.A. (2008). Quality argumentation and epistemic criteria. In Erduran, S. & Jiménez-Aleixandre, M.P. (Eds.). Argumentation in science education: Perspectives from classroom-based research (pp. 159–175). Dordrecht: Springer.Google Scholar
  30. Duschl, R.A., Ellenbogen, K. & Erduran, S. (1999). Understanding dialogic argumentation among middle school science students. Paper presented at the American Educational Research Association Annual Conference, Montreal, Canada, April.Google Scholar
  31. Duschl, R.A & Grandy, R. (Eds.) (2008). Teaching scientific inquiry: Recommendations for research and implementation. Rotterdam: Sense Publishers.Google Scholar
  32. Duschl, R.A. & Osborne, J.F. (2002). Supporting and promoting argumentation discourse. Studies in Science Education, 38(1), 39–72.Google Scholar
  33. Erduran, S. & Jiménez-Aleixandre, M.P. (Eds.) (2008). Argumentation in science education: Perspectives from classroom-based research. Dordrecht: Springer.Google Scholar
  34. Erduran, S., Simon, S. & Osborne, J.F. (2004). TAPping into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88(6), 915–933.Google Scholar
  35. Fagúndez Zambrano, T.J. & Castells Llavanera, M. (2009). La enseñanza universitaria de la física: Los objetos materiales y la construcción de significados científicos. Actualidades Investigativas en Educación, 9(2), 1–27.Google Scholar
  36. Føllesdal, D. & Walløe, L. (1986). Rationale Argumentation: Ein Grundkurs in Argumentations- und Wissenschaftstheorie. Berlin: Walter de Gruyter. (Norwegian original from 1977.)Google Scholar
  37. Galagovsky, L. (Ed.) (2008). ¿Qué tienen de “naturales” las ciencias naturales? Buenos Aires: Biblos.Google Scholar
  38. García Romano, L. & Valeiras, N. (2010). Lectura y escritura en el aula de ciencias: Una propuesta para reflexionar sobre la argumentación. Alambique, 63, 57–64.Google Scholar
  39. Giere, R.N. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press.Google Scholar
  40. Giere, R.N., Bickle, J. & Mauldin, R.F. (2005). Understanding scientific reasoning (5th edition). Belmont: Wadsworth Publishing Company.Google Scholar
  41. Harpine, W.D. (1985). Can rhetoric and dialectic serve the purposes of logic? Philosophy and Rhetoric, 18(2), 96–112.Google Scholar
  42. Henao, B.L. & Stipcich, M.S. (2008). Educación en ciencias y argumentación: La perspectiva de Toulmin como posible respuesta a las demandas y desafíos contemporáneos para la enseñanza de las ciencias experimentales. Revista Electrónica de Enseñanza de las Ciencias, 7(1), 47–62.Google Scholar
  43. Hodson, D. (2009). Teaching and learning about science: Language, theories, methods, history, traditions and values. Rotterdam: Sense Publishers.Google Scholar
  44. Islas, S.M., Sgro, M.R. & Pesa, M.A. (2009). La argumentación en la comunidad científica y en la formación de profesores de física. Ciência & Educação, 15(2), 291–304.Google Scholar
  45. Izquierdo-Aymerich, M. (2005). Hacia una teoría de los contenidos escolares. Enseñanza de las Ciencias, 23(1), 111–122.Google Scholar
  46. Izquierdo-Aymerich, M. & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. Science & Education, 12(1), 27–43.Google Scholar
  47. Izquierdo-Aymerich, M., Sanmartí, N., Espinet, M., García, M.P. & Pujol, R.M. (1999). Caracterización y fundamentación de la ciencia escolar. Enseñanza de las Ciencias, extra issue, 79–92.Google Scholar
  48. Jiménez-Aleixandre, M.P. (2010). 10 ideas clave: Competencias en argumentación y uso de pruebas. Barcelona: Graó.Google Scholar
  49. Jiménez-Aleixandre, M.P., Bugallo Rodríguez, A. & Duschl, R.A. (2000). “Doing the lesson” or “doing science”: Arguments in high school genetics. Science Education, 84, 757–792.Google Scholar
  50. Jiménez-Aleixandre, M.P. & Díaz de Bustamante, J. (2003). Discurso de aula y argumentación en la clase de ciencias: Cuestiones teóricas y metodológicas. Enseñanza de las Ciencias, 21(3), 359–370.Google Scholar
  51. Jiménez-Aleixandre, M.P. & Erduran, S. (2008). Argumentation in science education: An overview. In Erduran, S. & Jiménez-Aleixandre, M.P. (Eds.) Argumentation in science education: Perspectives from classroom-based research (pp. 3–27). Dordrecht: Springer.Google Scholar
  52. Jiménez-Aleixandre, M.P. & Federico-Agraso, M. (2009). Justification and persuasion about cloning: Arguments in Hwang’s paper and journalistic reported versions. Research in Science Education, 39(3), 331–347.Google Scholar
  53. Kelly, G.J. & Bazerman, C. (2003). How students argue scientific claims: A rhetorical-semantic analysis. Applied Linguistics, 24(1), 28–55.Google Scholar
  54. Kelly, G.J. & Chen, C. (1999). The sound of music: Constructing science as sociocultural practices through oral and written discourse. Journal of Research in Science Teaching, 36(8), 883–915.Google Scholar
  55. Kelly, G.J. & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86(3), 314–342.Google Scholar
  56. Khine, M.S. (Ed.) (2012). Perspectives on scientific argumentation: Theory, practice and research. Dordrecht: Springer.Google Scholar
  57. Kirschner, P.A., Sweller, J. & Clark, R.E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.Google Scholar
  58. Konstantinidou, A., Cerveró, J.M. & Castells, M. (2010). Argumentation and scientific reasoning: The “double hierarchy” argument. In Taşar, M.F. & Çakmakci, G. (Eds.). Contemporary science education research: Scientific literacy and social aspects of science (pp. 61–70). Ankara: Pegem Akademi.Google Scholar
  59. Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62(2), 155–179.Google Scholar
  60. Kuhn, D (1993). Science as argument. Science Education, 77(3), 319–337.Google Scholar
  61. Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810–824.Google Scholar
  62. Kuhn Berland, L. & Reiser, B. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26–55.Google Scholar
  63. Kuhn Berland, L. & Reiser, B. (2011). Classroom communities’ adaptation of the practice of scientific argumentation. Science Education, 95(2), 191–216.Google Scholar
  64. Lawson, A.E. (2003). The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education, 25(11), 1387–1408.Google Scholar
  65. Lawson, A.E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry? Journal of Research in Science Teaching, 42(6), 716–740.Google Scholar
  66. Lawson, A.E. (2009). Basic inferences of scientific reasoning, argumentation, and discovery. Science Education, 94(2), 336–364.Google Scholar
  67. Lehrer, R. & Schauble, L. (2006). Cultivating model-based reasoning in science education. In Sawyer, R.K. (Ed.). Cambridge handbook of the learning sciences (pp. 371–387). Cambridge: Cambridge University Press.Google Scholar
  68. Lemke, J. (1990). Talking science: Language, learning, and values. Norwood: Ablex.Google Scholar
  69. Linhares Queiroz, S. & Passos Sá, L. (2009). O espaço para a argumentação no ensino superior de química. Educación Química, 20(2), 104–110.Google Scholar
  70. Martins, I. (2009). Argumentation in texts from a teacher education journal: An exercise of analysis based upon the Bakhtinian concepts of genre and social language. Educación Química, 20(2), 26–36.Google Scholar
  71. Mason, L. & Scirica, F. (2006). Prediction of students’ argumentation skills about controversial topics by epistemological understanding. Learning and Instruction, 16, 492–509.Google Scholar
  72. Matthews, M. (1994/2014). Science teaching: The role of history and philosophy of science, New York: Routledge.Google Scholar
  73. Matthews, M. (2000). Time for science education: How teaching the history and philosophy of pendulum motion can contribute to science literacy. New York: Plenum Publishers.Google Scholar
  74. McDonald, C. (2010). The influence of explicit nature of science and argumentation instruction on preservice primary teachers’ views on nature of science. Journal of Research in Science Teaching, 47(9), 1137–1164.Google Scholar
  75. Monk, M. & Osborne, J.F. (1997). Placing the history and philosophy of science on the curriculum: A model for the development of pedagogy. Science Education, 81(4), 405–424.Google Scholar
  76. Newton, P., Driver, R. & Osborne, J.F. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576.Google Scholar
  77. Nielsen, J.A. (2011). Dialectical features of students’ argumentation: A critical review of argumentation studies in science education. Research in Science Education, on-line first.Google Scholar
  78. NRC [National Research Council] (1995). National science education standards. Washington, DC: National Academy Press.Google Scholar
  79. Nussbaum, E.M., Sinatra, G.M. & Owens, M.C. (2012). The two faces of scientific argumentation: Applications to global climate change. In Khine, M.S. (Ed.) Perspectives on scientific argumentation: Theory, practice and research (pp. 17–37). Dordrecht: Springer.Google Scholar
  80. Ogunniyi, M.B. (2007). Teachers’ stances and practical arguments regarding a science-indigenous knowledge curriculum: Part 1. International Journal of Science Education, 29(8), 963–986.Google Scholar
  81. Ogunniyi, M.B. & Hewson, M.G. (2008). Effect of an argumentation-based course on teachers’ disposition towards a science-indigenous knowledge curriculum. International Journal of Environmental and Science Education, 3(4), 159–177.Google Scholar
  82. Osborne, J. (2005). The role of argument in science education. In Boersma, K. Goedhart, M., de Jong, O. & Eijkelhof, H. (Eds.). Research and the quality of science education (pp. 367–380). Dordrecht: Springer.Google Scholar
  83. Osborne, J.F. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328, 463–466.Google Scholar
  84. Osborne, J.F., Erduran, S., Simon, S. & Monk, M. (2001). Enhancing the quality of argument in school science. School Science Review, 82(301), 63–70.Google Scholar
  85. Osborne, J.F., MacPherson, A., Patterson, A. & Szu, E. (2012). Introduction. In Khine, M.S. (Ed.). Perspectives on scientific argumentation: Theory, practice and research (pp. 3–16). Dordrecht: SpringerGoogle Scholar
  86. Osborne, J.F. & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95(4), 627–638.Google Scholar
  87. Padilla, C. (2012). Escritura y argumentación académica: Trayectorias estudiantiles, factores docentes y contextuales. Magis, 5(10), 31–57.Google Scholar
  88. Plantin, C. (2005). L’argumentation: Histoire, théories et perspectives. Paris: PUF.Google Scholar
  89. Plantin, C. (2011). “No se trata de convencer sino de convivir”: L’ère post-persuasion. Rétor, 1(1), 59–83.Google Scholar
  90. Pontecorvo, C. & Girardet, H. (1993). Arguing and reasoning in understanding historical topics. Cognition and Instruction, 11(3 & 4), 365–395.Google Scholar
  91. Revel Chion, A., Adúriz-Bravo, A. & Meinardi, E. (2009). Análisis histórico-epistemológico de las concepciones de salud desde una perspectiva didáctica: Narrando la “historia” de la peste negra medieval. Enseñanza de las Ciencias, extra issue, 168–172.Google Scholar
  92. Revel Chion, A., Couló, A., Erduran, S., Furman, M., Iglesia, P. & Adúriz-Bravo, A. (2005). Estudios sobre la enseñanza de la argumentación científica escolar. Enseñanza de las Ciencias, extra issue VII Congreso Internacional sobre Investigación en la Didáctica de las Ciencias, Oral presentations, Section 4.1., n/pp.Google Scholar
  93. Reygadas, P. & Haidar, J. (2001). Hacia una teoría integrada de la argumentación. Estudios sobre las Culturas Contemporáneas, VII(13), 107–139.Google Scholar
  94. Ruiz, F.J., Márquez, C. & Tamayo, O.E. (2011). Teachers’ change of conceptions on argumentation and its teaching. In E-book ESERA 2011, Strand 6, pp. 86–92. doi: http://lsg.ucy.ac.cy/esera/e_book/base/ebook/strand6/ebook-esera2011_RUIZ-06.pdf
  95. Sadler, T.D. (Ed.) (2011). Socioscientific issues in the classroom: Teaching, learning and research. Dordrecht: Springer.Google Scholar
  96. Salmon, M.H. (1995). Introduction to logic and critical thinking. Fort Worth: Harcourt Brace.Google Scholar
  97. Samaja, J. (1999). Epistemología y metodología: Elementos para una teoría de la investigación científica (3rd edition). Buenos Aires: EUDEBA.Google Scholar
  98. Sampson, V.D, & Clark, D.B. (2006). Assessment of argument in science education: A critical review of the literature. In Barab, A., Hay, K.E. & Hickey, D.T. (Eds.). Proceedings of the Seventh International Conference of the Learning of Science: Making a difference (pp. 655–661). Mahwah: Lawrence Erlbaum.Google Scholar
  99. Sampson, V.D. & Clark, D.B. (2007). Incorporating scientific argumentation into inquiry-based activities with online personally-seeded discussions. The Science Scope, 30(6), 43–47.Google Scholar
  100. Sampson, V.D. & Clark, D.B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447–472.Google Scholar
  101. Sandoval, W.A. (2003). Conceptual and epistemic aspects of students’ scientific explanations. Journal of the Learning Sciences, 12(1), 5–51.Google Scholar
  102. Sandoval, W.A. & Millwood, K.A. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23–55.Google Scholar
  103. Sandoval, W.A. & Millwood, K.A. (2008). What can argumentation tell us about epistemology. In Erduran, S. & Jiménez-Aleixandre, M.P. (Eds.). Argumentation in science education: Perspectives from classroom-based research (pp. 71–88). Dordrecht: Springer.Google Scholar
  104. Sandoval, W.A. & Reiser, B. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345–372.Google Scholar
  105. Sanmartí, N. (Ed.) (2003). Aprendre ciències tot aprenent a escriure ciència. Barcelona: Edicions 62.Google Scholar
  106. Santibáñez, C. (2012). Teoría de la argumentación como epistemología aplicada. Cinta de Moebio, 43, 24–39.Google Scholar
  107. Sasseron, L.H. & Carvalho, A.M.P. (2011). Construindo argumentação na sala de aula: A presença do ciclo argumentativo, os indicadores de alfabetização científica e o padrão de Toulmin. Ciência & Educação, 17(1), 97–114.Google Scholar
  108. Schwarz, B.B., Neuman, Y., Gil, J. & Ilya, M. (2003). Construction of collective and individual knowledge in argumentative activity: An empirical study. The Journal of the Learning Sciences, 12(2), 221–258.Google Scholar
  109. Siegel, H. (1995). Why should educators care about argumentation. Informal Logic, 17(2), 159–176.Google Scholar
  110. Smith, P. (2003). An introduction to formal logic. Cambridge: Cambridge University Press.Google Scholar
  111. Stadler, F. (Ed.) (2004). Induction and deduction in the sciences. Dordrecht: Kluwer.Google Scholar
  112. Sutton, C. (1996). Beliefs about science and beliefs about language. International Journal of Science Education, 18(1), 1–18.Google Scholar
  113. Tiberghien, A. (2008). Preface. In Erduran, S. & Jiménez-Aleixandre, M.P. (Eds.). Argumentation in science education: Perspectives from classroom-based research (pp. ix-xv). Dordrecht: Springer.Google Scholar
  114. Tindale, C.W. (1999). Acts of arguing: A rhetorical model of argument. Albany: State University of New York Press.Google Scholar
  115. Toulmin, S.E. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  116. Toulmin, S.E. (2001). Return to reason. Cambridge: Harvard University Press.Google Scholar
  117. Toulmin, S.E. (2003). The uses of argument (updated edition). Cambridge: Cambridge University Press.Google Scholar
  118. van Eemeren, F.H. & Houtlosser, P. (2003). The development of the pragma-dialectical approach to argumentation. Argumentation, 17, 387–403.Google Scholar
  119. von Aufschnaiter, C., Erduran, S., Osborne, J.F. & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101–131.Google Scholar
  120. Walton, D.N. (1996). Argumentation schemes for presumptive reasoning. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  121. Westbury, I., Hopmann, S. & Riquarts, K. (Eds.) (2000). Teaching as a reflective practice: The German Didaktik tradition. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  122. Windschitl, M., Thompson, J. & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967.Google Scholar
  123. Wolpert, L. (1992). The unnatural nature of science: Why science does not make common sense. London: Faber and Faber.Google Scholar
  124. Zeidler, D.L. (Ed.) (2003). The role of moral reasoning on socioscientific issues and discourse in science educationn Dordrecht: Kluwer.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.GEHyD-Grupo de Epistemología, Historia y Didáctica de las Ciencias Naturales, CeFIEC-Instituto de Investigaciones Centro de Formación e Investigación en Enseñanza de las CienciasUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations