Advertisement

The Role of History and Philosophy in University Mathematics Education

  • Tinne Hoff Kjeldsen
  • Jessica Carter
Chapter

Abstract

University level mathematics is organised differently in different universities. In this paper we consider mathematics programmes leading to a graduate degree in mathematics. We briefly introduce a multiple perspective approach to the history of mathematics from its practices, reflections about uses of history and the research direction in philosophy of mathematics denoted ‘Philosophy of Mathematical Practice’. We link history and philosophy of mathematical practices to recent ideas in mathematics education in order to identify different roles history and philosophy can play in the learning of mathematics at university level. We present, analyse and discuss different examples of inclusions of history and philosophy in university programmes in mathematics. These presentations are divided into courses in history and philosophy, respectively, since this is the main way they are organised at the universities. We shall see, however, that the history courses address philosophical questions and that the philosophy courses employ historical material. The chapter ends with comments on how mathematics educations at university level can benefit from history and philosophy of mathematics.

Keywords

Mathematics Education Mathematical Object Project Work Mathematical Practice Philosophical Question 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abraham, T.H. (2004). Nicolas Rashevsky’s Mathematical Biophysics. Journal of the History of Biology, 37, 333–385.CrossRefGoogle Scholar
  2. Andersen, L. D., Jørgensen, D. R., Larsen, L. F. and Pedersen, M. L. (2003). Rashevsky’s pride and prejudice (in Danish). Report, 3rd semester, Nat-Bas, Roskilde University.Google Scholar
  3. Ashton, P. & Kean, H. (eds.) (2009). People and their Pasts. Public History Today. Houndsmills: Palgrave Macmillan.Google Scholar
  4. Awodey, S. (1996). Structures in mathematics and logic: A categorical perspective. Philos. Math., 4, 29–237.Google Scholar
  5. Barnett, J. (2012). Bottled at the Source: The Design and Implementation of Classroom Projects for Learning Mathematics via Primary Historical Sources. Plenary address. Proceedings from the HPM International Congress in Korea, 2012. http://www.hpm2012.org/Proceeding/Plenary/PL3.pdf
  6. Barnett, J., Lodder, J., Pengelley, D., Pivkina, I. and Ranjan, D. (2011). Designing student projects for teaching and learning discrete mathematics and computer science via primary historical sources. In V. Katz and C. Tzanakis (eds.). Recent developments on introducing a historical dimension in mathematics education, Washington, DC: Mathematical Association of America, 2011.Google Scholar
  7. Beckmann, A. (2009). A Conceptual Framework for Cross-Curricular Teaching. The Montana Mathematics Enthusiast, 6, Supplement 1.Google Scholar
  8. Benacerraf, P. (1973). Mathematical Truth. The Journal of Philosophy, 70, 661–679.CrossRefGoogle Scholar
  9. Benacerraf, P. (1965). What numbers could not be. The Philosophical Review, 74, 47–73.CrossRefGoogle Scholar
  10. Benacerraf, P & Putnam H. (1983). Philosophy of Mathematics Selected Readings. Cambridge University Press, (2. ed.), NY.Google Scholar
  11. Blomhøj, M. & Kjeldsen, T.H. (2009). Project organised science studies at university level: exemplarity and interdisciplinarity. ZDM – International Journal on Mathematics Education, 41 (1–2), 2009, 183–198.Google Scholar
  12. Bloor, D. (1994). What can the sociologist say about 2 + 2 = 4? In Ernest (1994), pp. 21–32.Google Scholar
  13. Blumenthal, O. (1935). Lebensgeschichte. In D. Hilbert. Gesammelte Abhandlungen vol. 3, (pp. 388–435), Berlin: Springer.Google Scholar
  14. Burton, L (2004). Confidence is Everything - Perspectives of Teachers and Students on Learning Mathematics. Journal of Mathematics Teacher Education, 7, 357–381CrossRefGoogle Scholar
  15. Carter, J. (2004). Ontology and mathematical practice. Philos. Math., 12, 244–267.CrossRefGoogle Scholar
  16. Carter, J. (2006). A less radical constructivism. Nomad 11, 5–28.Google Scholar
  17. Carter, J. (2008). Categories for the working mathematician. Making the impossible possible. Synthese, 162, 1–13.Google Scholar
  18. Carter, J. (2013). Mathematical Objects: Representations and context. Synthese. doi:  10.1007/s11229-012-0241-5.
  19. Chassapis, D. (2007). Integrating the Philosophy of Mathematics in Teacher Training Courses. In: François & Van Bendegem (eds.) (2007), pp. 61–80.Google Scholar
  20. Colyvan, M. (2001). The indispensability of mathematics. New York: Oxford University Press.CrossRefGoogle Scholar
  21. Corfield, D. (2003). Towards a Philosophy of Real Mathematics. Cambridge University Press.Google Scholar
  22. Epple, M. (1999). Die Entstehung der Knotentheorie: Kontexte und Konstruktionen einer modernen mathematischen Theorie. Wiesbaden: Vieweg.CrossRefGoogle Scholar
  23. Epple, M. (2004). Knot Invariants in Vienna and Princeton during the 1920s: Epistemic Configurations of Mathematical Research. Science in Context, 17, 131–164.CrossRefGoogle Scholar
  24. Epple, M. (2011). Between Timelessness and Historiality. On the Dynamics of the Epistemic Objects of Mathematics. Isis, 102, 481–493.Google Scholar
  25. Ernest, P. (ed.) (1994). Mathematics, Education and Philosophy, London: Falmer Press.Google Scholar
  26. Ernest, P. (1998). Social Constructivism as a Philosophy of Mathematics, Albany, New York: SUNY Press.Google Scholar
  27. Ernest, P. (2004). What is the Philosophy of Mathematics Education? Philosophy of mathematics Education Journal 18, http://people.exeter.ac.uk/PErnest/pome18/PhoM_%20for_ICME_04.htm Accessed 1 July 2012.
  28. Ernest, P. (2009). What is first philosophy in mathematics education? In: M. Tzekaki et al. (eds.) Proceedings of the 33rd Conference of the International Group for the PME, Vol 1, 25–42.Google Scholar
  29. Ferreirós, J. and Gray, J. (eds.) (2006). The Architecture of Modern Mathematics. Oxford: Oxford University Press.Google Scholar
  30. Field, H. (1980). Science Without Numbers, Princeton: Princeton University Press.Google Scholar
  31. Fink, H. (2001). Fra Filosofikum til Studium Generale. http://udd.uvm.dk/200103/udd03-10.htm Accessed 28 June 2012.
  32. François, K. & Van Bendegem, JP. (eds.) (2007). Philosophical Dimensions in Mathematics Education. Springer Science and Business Media.Google Scholar
  33. François, K. & Van Bendegem, JP. (2010). Philosophy of mathematics in the mathematics curriculum, questions and problems raised by a case study of secondary education in Flanders. Contribution to Mathematics Education and Society 6. http://www.ewi-psy.fu-berlin.de/en/v/mes6/documents/research_papers/Francois_VanBendegem_MES6.pdf?1286354771. Accessed 1 July 2012.
  34. Godiksen, R.B., Jørgensen, C., Hanberg, T.M. & Toldbod, B. (2003). Fourier and the concept of a function – the transition from Euler’s to Dirichlet’s concept of a function. (In Danish). IMFUFA, text 416, Roskilde University.Google Scholar
  35. Gray, J. (2008). Plato’s Ghost: The Modernist Transformation of Mathematics. Princeton: Princeton University Press.Google Scholar
  36. Grattan-Guinness, I. (2008). Solving Wigner’s mystery: The Reasonable (Though Perhaps Limited) Effectiveness of Mathematics in the Natural Sciences. The mathematical intelligencer, 30, 7–17.CrossRefGoogle Scholar
  37. Heinz, B. (2000). Die innenwelt der mathematik. Zur kultur und Praxis einer beweisenden disziplin. Wien: Springer-Verlag.Google Scholar
  38. Hellmann, G. (1996). Structuralism without structures. Philos. Math., 4, 129–157.Google Scholar
  39. Hersh, R, (1979). Some proposals for revising the philosophy of mathematics. Advances in Mathematics, 31, 31–50.CrossRefGoogle Scholar
  40. Hilbert, D. (1899). Grundlagen der Geometrie. B.G. Täubner.Google Scholar
  41. Hilbert, D. (1902). Mathematical Problems, Bulletin of the American Mathematical Society, 8, no. 10 (1902), 437–479.Google Scholar
  42. Jensen, B.E. (2003). Historie – livsverden og fag. Copenhagen: Gyldendal.Google Scholar
  43. Jensen, B.E. (2010). Hvad er historie (in Danish). Copenhagen: Akademisk Forlag.Google Scholar
  44. Katz, V.J. (2009). A History of Mathematics. An Introduction. Boston: Addison-Wesley.Google Scholar
  45. Keller, E.F. (2002). Making Sense of Life. Cambridge Massachusetts: Harvard University Press.Google Scholar
  46. Kitcher, P. (1984). The Nature of Mathematical Knowledge. Oxford: Oxford University Press.Google Scholar
  47. Kjeldsen, T.H. (2009). Egg-forms and Measure Bodies: Different Mathematical Practices in the Early History of the Development of the Modern Theory of Convexity. Science in Context, 22(01), 85–113.CrossRefGoogle Scholar
  48. Kjeldsen, T.H. (2010). History in mathematics education - why bother? Interdisciplinarity, mathematical competence and the learning of mathematics. In B. Sriraman, and V. Freiman (eds.): Interdisciplinarity for the 21st Century: Proceedings of the 3rd International Symposium on Mathematics and its Connections to Arts and Sciences (pp. 17–48). Information Age Publishing, incorporated.Google Scholar
  49. Kjeldsen, T.H. (2011a). History in a competency based mathematics education: a means for the learning of differential equations. In Katz, V., & Tzanakis, C. (eds.). Recent developments on introducing a historical dimension in mathematics education, Washington, DC: Mathematical Association of America, 2011, 165–173.Google Scholar
  50. Kjeldsen, T.H. (2011b). Hvad er matematik? Copenhagen: Akademisk forlag.Google Scholar
  51. Kjeldsen, T.H. (2012). Uses of History for the Learning of and about Mathematics. Towards a theoretical framework for integrating history of mathematics in mathematics education. Plenary address. Proceedings from the HPM International Congress in Korea, 2012. http://www.hpm2012.org/Proceeding/Plenary/PL1.pdf
  52. Kjeldsen, T.H. & Blomhøj, M. (2009). Integrating history and philosophy in mathematics education at university level through problem-oriented project work. ZDM Mathematics Education, Zentralblatt für Didaktik der Mathematik, 41(1–2), 2009, 87–103.Google Scholar
  53. Kjeldsen, T.H. & Blomhøj, M. (2012). Beyond Motivation - History as a method for the learning of meta-discursive rules in mathematics. Educational Studies in Mathematics, 80 (3), 2012, 327–349.Google Scholar
  54. Kjeldsen, T.H. & Blomhøj, M. (2013). Developing Students’ Reflections about the Function and Status of Mathematical Modeling in Different Scientific Practices: History as a Provider of Cases. Science & Education, 22 (9), 2013, 2157–2171.Google Scholar
  55. Kjeldsen, T.H. & Carter, J. (2012). The growth of mathematical knowledge - introduction of convex bodies. Studies in History and Philosophy of Science Part A, 43, 359–36.CrossRefGoogle Scholar
  56. Kjeldsen, T.H. & Petersen, P.H. (forthcoming). Bridging History of the Concept of a Function with Learning of Mathematics: Students’ meta-discursive rules, concept formation and historical awareness. Science & Education doi:  10.1007/s11191-013-9641-2.
  57. Knoebel, A., Laubenbacher, R., Lodder, J. & Pengelley, D. (2007). Mathematical Masterpieces: Further Chronicles by the Explorers. Springer.Google Scholar
  58. Kragh Sørensen, H. (2012). Making philosophy of science relevant for science students. RePoSS: Research Publications on Science Studies 18. Aarhus: Centre for Science Studies, University of Aarhus, Jan. 2012. URL: http://www.ivs.au.dk/reposs
  59. Lakatos, I. (1970). History of science and its rational reconstructions. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, Vol. 1970, 91–136.Google Scholar
  60. Lakatos, I. (1976). Proofs and Refutations. Cambridge University Press.Google Scholar
  61. Landry, E. & Marquis, J-P. (2005). Categories in context: Historical, Foundational and Philosophical. Philos. Math., 13, 1–43.Google Scholar
  62. Laubenbacher, R. & Pengelley, D. (1992). Great problems of mathematics: A course based on original sources. American Mathematical Monthly, 99, 313–317.CrossRefGoogle Scholar
  63. Laubenbacher, R., Pengelley, D. and Siddoway, M. (1994). Recovering motivation in mathematics: Teaching with original sources. Undergraduate Mathematics Education Trends 6, No. 4.Google Scholar
  64. Laubenbacher, R., & Pengelley, D. (1999). Mathematical Expeditions: Chronicles by the Explorers. Springer.Google Scholar
  65. Lerman (1990). Alternative Perspectives on the Nature of Mathematics and their Influence on the Teaching of Mathematics. British Educational Research Journal 16 (1), 53–61.Google Scholar
  66. Lützen, J. & Purkert, W. (1989). Conflicting Tendencies in the Historiography of Mathematics: M. Cantor and H. G. Zeuthen. In D. E. Rowe, J. McCleary, and E. Knobloch (eds.): The History of Modern Mathematics. Vol. 3. Proceedings of the Symposium on the History of Modern Mathematics (pp. 1–42), Vassar College, Poughkeepsie, New York, June 20–24, 1989. 3 volumes. Academic Press.Google Scholar
  67. Lützen, J. & Ramskov, K. (1999). Kilder til matematikkens historie. Department of Mathematics, Copenhagen University.Google Scholar
  68. Maddy, P. (1990). Realism in Mathematics. Oxford: Oxford University Press.Google Scholar
  69. Mancosu, P. (1998): From Brouwer to Hilbert. The debate on the Foundations of mathematics in the 1920's. New York: Oxford University Press.Google Scholar
  70. Mancosu, P. (ed.) (2008). The Philosophy of Mathematical Practice. Oxford University Press.Google Scholar
  71. McLarty, C. (2005). Mathematical Platonism’ Versus Gathering the Dead: What Socrates teaches Glaucon. Philosophia Mathematica 13, 115–134.CrossRefGoogle Scholar
  72. Niss, M. (2001). University mathematics based on problem-oriented student projects: 25 years of experience with the Roskilde model. In D. Holton (Ed.), The teaching and learning of mathematics at University level: An ICMI study (pp. 153–165). Dordrecht: Kluwer.Google Scholar
  73. Niss, M. (2004). The Danish “KOM” Project and possible consequences for teacher education. In Strässer, R., Brandell, G., Grevholm, B., & Helenius, O. (eds.). Educating for the Future: Proceedings of an International Symposium on Mathematics Teacher Education: Preparation of Mathematics Teachers for the Future. Malmö University, Sweden, 5–7 May 2003 (pp. 179–190). Göteborg: The Royal Swedish Academy of Sciences.Google Scholar
  74. Niss, M. & Højgaard, T. (2011). Competencies and Mathematical Learning. Ideas and inspiration for the development of mathematics teaching and learning in Denmark. IMFUFA-text 485. http://milne.ruc.dk/ImfufaTekster/
  75. Otte, M. (2007). Mathematical history, philosophy and education. Educational Studies of Mathematics, 66, 243–255.CrossRefGoogle Scholar
  76. Poulsen, E. T. (2001). Matematikken og virkeligheden. In Niss (ed.) Matematikken og Verden. Fremads debatbøger — Videnskaben til debat (pp. 19–36). København: Fremad.Google Scholar
  77. Pengelley, D. (2002). The Bridge between the continuous and the discrete via original sources. In O. Bekken et al. (eds.) Study the Masters: The Abel-Fauvel Conference. National Center for Mathematics Education, University of Gothenburg, Sweden.Google Scholar
  78. Prediger, S. (2007). Philosophical reflections in mathematics classrooms. In K. François & JP. Van Bendegem (eds.) (2007), 43–59.Google Scholar
  79. Restivo, S. (1993). The social life of mathematics. In Restivo et al. (eds.); Math worlds. Philosophical and Social Studies of Mathematics and Mathematics Education. Albany: State University of New York Press.Google Scholar
  80. Rashevsky, N. (1934). Physico-mathematical aspects of cellular multiplication and development. Cold Spring Harbor symposia on quantitative biology, II (pp. 188–198). Long Island, New York: Cold Spring Harbor.Google Scholar
  81. Resnik, M. (1999). Mathematics as a Science of Patterns. Oxford: Oxford University Press.CrossRefGoogle Scholar
  82. Rheinberger, H-J. (1997). Towards a History of Epistemic Things: Synthesizing Proteins in the Test Tube. Standford: Standford University Press.Google Scholar
  83. Salling Olesen, H. & Højgaard Jensen, J. (1999). Can ‘the university’ be revived in ‘late modernity’? In H. Salling Olesen and J. Højgaard Jensen (Eds.), Project studies: A late modern university reform? (pp. 9–24). Roskilde: Roskilde University Press.Google Scholar
  84. Sannino (2009). Universe’s Bright and Dark Side. http://cp3-origins.dk/content/uploads/2009/09/Bright-Dark-Article-060920091.pdf Accessed 1 July 2012.
  85. Sfard, A. (2000). On reform movement and the limits of mathematical discourse. Mathematical Thinking and Learning, 2(3), 157–189.CrossRefGoogle Scholar
  86. Sfard, A. (2008). Thinking as Communication. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  87. Shapiro, S. (1997). Philosophy of Mathematics. Structure and Ontology. Oxford: Oxford University Press.Google Scholar
  88. Shapiro, S. (2000). Thinking about mathematics. Oxford: Oxford University Press.Google Scholar
  89. Skovmose, O. (2004). Critical mathematics education for the future. Regular lecture at ICME 10. http://www.icme10.dk/proceedings/pages/regular_pdf/RL_Ole_Skovsmose.pdf Accessed 1 July 2012.
  90. Tappenden, J. (2006). The Riemannian Background to Frege’s Philosophy. In Ferreirós & Gray (2008), 97–132.Google Scholar
  91. Timmermann, S. & Uhre, E. (2001). Generalizations in the theory of integration – an investigation of the Lebesgue integral, the Radon integral and the Perron integral. (In Danish). IMFUFA, text 403, Roskilde University.Google Scholar
  92. Thurston, W. (1994). On Proof and progress in mathematics. Bulletin of the American Mathematical Society 30, 161–177.CrossRefGoogle Scholar
  93. Toft, B. (2001). Matematik løser problemer. In: M. Niss (Ed.) Matematikken og Verden. Fremads debatbøger — Videnskaben til debat (pp. 158–179). København: Fremad.Google Scholar
  94. Tymoczko, T. (ed.) (1985). New Directions in the Philosophy of Mathematics. Boston: Birkhäuser.Google Scholar
  95. van Heijenoort, J. (1967): From Frege to Gödel. A source book in mathematical logic 1879–1931. Harvard University Press.Google Scholar
  96. Van Kerkhove, B. & Van Bendegem, J.P. (2007). Perspectives on mathematical practices. Bringing Together Philosophy of Mathematics, Sociology of Mathematics, and Mathematics Education. Logic, Epistemology, and the Unity of Science Vol. 5, Springer-Verlag, Dordrecht.Google Scholar
  97. Van Kerkhove, B., De Vuyst & Van Bendegem (2010). Philosophical Perspectives on Mathematical Practices. Texts in Philosophy 12, College Publications, London.Google Scholar
  98. Wigner, E. (1960). The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Communications in Pure and Applied Mathematics 13, 1–14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Science, Systems and ModelsIMFUFA, Roskilde UniversityRoskildeDenmark
  2. 2.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations