Advertisement

The Contribution of History and Philosophy to the Problem of Hybrid Views About Genes in Genetics Teaching

  • Charbel N. El-HaniEmail author
  • Ana Maria R. de Almeida
  • Gilberto C. Bomfim
  • Leyla M. Joaquim
  • João Carlos M. Magalhães
  • Lia M. N. Meyer
  • Maiana A. Pitombo
  • Vanessa C. dos Santos
Chapter

Abstract

Currently there are persistent doubts about the meaning and contributions of the gene concept, mostly related to its interpretation as a stretch of DNA encoding a single functional product, i.e., the classical molecular gene concept. There is, however, much conceptual variation around genes, leading to important difficulties in genetics teaching. We investigated whether and how conceptual variation related to the gene concept and gene function models is present in school science and what potential problems it may bring to genetics teaching and learning. Here, we report results on how ideas about genes and gene function are treated in textbooks and appear in students’ views and, also, about a teaching strategy for improving higher education students’ understanding of scientific models and conceptual variation around genes and their functions.

Keywords

Retention Test Teaching Sequence Historical Model Conceptual Variation Genetic Determinism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are thankful to the Brazilian National Council for Scientific and Technological Development (CNPq) and the Research Support Foundation of the State of Bahia (FAPESB) for support during the development of the research reported in this paper.

References

  1. Abd-El-Khalick, F. & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22, 665–701.CrossRefGoogle Scholar
  2. Adami, C. (2004). Information theory in molecular biology. Physics of Life Reviews, 1, 3–22.CrossRefGoogle Scholar
  3. Arthur, W. (2011). Evolution: A developmental approach. Chichester: Wiley-Blackwell.Google Scholar
  4. Artigue, M. (1988). Ingéniérie didactique. Recherches en didactique des mathemátiques, 9, 281–308.Google Scholar
  5. Barab, S. & Squire, K. (2004). Design-based research: putting a stake in the ground. Journal of the Learning Sciences, 13, 1–14.CrossRefGoogle Scholar
  6. Bardin, L. (2000). Análise de conteúdo (Content analysis). Lisboa: Edições 70.Google Scholar
  7. Baumgartner, E., Bell, P., Bophy, S. et al. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32, 5–8.Google Scholar
  8. Benzer, S. (1957). The elementary units of heredity. In W. McElroy and B. Glass (Eds.), The chemical basis of heredity (pp. 70–93). Baltimore, MD: John Hopkins Press.Google Scholar
  9. Black, D. L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry, 72, 291–336.CrossRefGoogle Scholar
  10. Black, M. (1962). Models and metaphors: Studies in language and philosophy. Ithaca, NY: Cornell University Press.Google Scholar
  11. Brown, A. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2, 141–178.CrossRefGoogle Scholar
  12. Burian, R. M. (1985). On conceptual change in biology: The case of the gene. In D. J. Depew & B. H. Weber (Eds.), Evolution at a crossroads: The new biology and the new philosophy of science (pp. 21–24). Cambridge, MA: The MIT Press.Google Scholar
  13. Burian, R. M. (2004). Molecular epigenesis, molecular pleiotropy, and molecular gene definitions. History and Philosophy of Life Sciences, 26, 59–80.CrossRefGoogle Scholar
  14. Carlson, A. E. (1966). The gene. A critical history. Philadelphia, PA: W. B. Saunders.Google Scholar
  15. Carver, R., Waldahl, R. & Breivik, J. (2008). Frame that gene – A tool for analyzing and classifying the communication of genetics to the public. EMBO reports, 9, 943–947.CrossRefGoogle Scholar
  16. Celotto, A. & Graveley, B. (2001). Alternative splicing of the Drosophila DSCAM pre-mRNA is both temporally and spatially regulated. Genetics, 159, 599–608.Google Scholar
  17. Chevallard, Y. (1989). On didactic transposition theory: Some introductory notes. Paper presented at the International symposium on selected domains of research and development in mathematics education, Proceedings (pp. 51–62). Bratislava, Slovakia. Retrieved October 29, 2011 from: http://yves.chevallard.free.fr/spip/spip/article.php3?id_article=122
  18. Chinn, A. C. & Samarapungavan, A. (2008). Learning to use scientific models: Multiple dimensions of conceptual change. In R.A. Duschl & R.E. Grandy (Eds.), Teaching scientific inquiry (pp. 191–225). Rotterdam: Sense Publishers.Google Scholar
  19. Condit, C.M., Ofulue, N. & Sheedy, K.M. (1998). Determinism and mass-media portrayals of genetics. American Journal of Human Genetics, 62, 979–984.CrossRefGoogle Scholar
  20. Condit, C. M., Ferguson, A., Kassel, R., Tadhani, C., Gooding, H. C. & Parrot, R. (2001). An explanatory study of the impact of news headlines on genetic determinism. Science Communication, 22, 379–395.CrossRefGoogle Scholar
  21. Cooper, M. D. & Alder, M. N. (2006). The evolution of adaptive immune systems. Cell, 124, 815–822.CrossRefGoogle Scholar
  22. Daston, L. & Galison, P. (2010). Objectivity. Brooklyn, NY: Zone Books.Google Scholar
  23. Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programs. Science & Education, 16 (7–8), 725–749.CrossRefGoogle Scholar
  24. El-Hani, C. N. (2007). Between the cross and the sword: The crisis of the gene concept. Genetics and Molecular Biology, 30, 297–307.CrossRefGoogle Scholar
  25. El-Hani, C. N., Queiroz, J. & Emmeche, C. (2006). A semiotic analysis of the genetic information system. Semiotica, 160, 1–68.CrossRefGoogle Scholar
  26. El-Hani, C. N., Queiroz, J. & Emmeche, C. (2009). Genes, Information, and Semiosis. Tartu: Tartu University Press, Tartu Semiotics Library.Google Scholar
  27. El-Hani, C. N., Roque, N. & Rocha, P. B. (2007). Brazilian high school biology textbooks: Results from a national program. In: Proceedings of the IOSTE International Meeting on Critical Analysis of School Science Textbook (pp. 505–516). Hammamet, Tunisia: University of Tunis.Google Scholar
  28. El-Hani, C. N., Roque, N. & Rocha, P. L. B. (2011). Livros didáticos de Biologia do ensino médio: Resultados do PNLEM/2007. Educação em Revista, 27, 211–240.CrossRefGoogle Scholar
  29. Falk, R. (1986). What is a gene? Studies in the History and Philosophy of Science, 17, 133–173.CrossRefGoogle Scholar
  30. Fleck, L. (1979/1935). Genesis and development of a scientific fact. Chicago, IL: The University of Chicago Press.Google Scholar
  31. Fogle, T. (1990). Are genes units of inheritance? Biology and Philosophy, 5, 349–371.CrossRefGoogle Scholar
  32. Fogle, T. (2000). The dissolution of protein coding genes. In P. Beurton, R. Falk & H-J. Rheinberger (Eds.), The concept of the gene in development and evolution (pp. 3–25). Cambridge: Cambridge University Press.Google Scholar
  33. Gelbart, W. (1998). Databases in genomic research. Science, 282, 659–661.CrossRefGoogle Scholar
  34. Gericke, N. M. & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understandings of genetics. Science & Education, 16, 849–881.CrossRefGoogle Scholar
  35. Gericke, N. M. & Hagberg, M. (2010a). Conceptual incoherence as a result of the use of multiple historical models in school textbooks. Research in Science Education, 40, 605–623.CrossRefGoogle Scholar
  36. Gericke, N. M. & Hagberg, M. (2010b). Conceptual variation in the depiction of gene function in upper secondary school textbooks. Science & Education, 19, 963–994.CrossRefGoogle Scholar
  37. Gericke, N. M., Hagberg, M., Santos, V. C., Joaquim, L. M. & El-Hani, C. N. (in press). Conceptual variation or Incoherence? Textbook discourse on genes in six countries. Science & Education.Google Scholar
  38. Gerstein, M. B., Bruce, C., Rozowsky, J. S., Zheng, D., Du, J., Korbel, J. O., Emanuelsson, O., Zhang, Z. D., Weissman, S., & Snyder, M. (2007). What is a gene, post-ENCODE? History and updated definition. Genome Research, 17, 669–681.CrossRefGoogle Scholar
  39. Grandy, R. E. (2003). What are models and why do we need them? Science & Education, 12(8), 773–777.CrossRefGoogle Scholar
  40. Graveley, B. R. (2001). Alternative splicing: Increasing diversity in the proteomic world. Trends in Genetics, 17, 100–107.CrossRefGoogle Scholar
  41. Griffiths, P. E. (2001). Genetic information: A metaphor in search of a theory. Philosophy of Science, 68, 394–403.CrossRefGoogle Scholar
  42. Griffiths, P.E. & Knight, R.D. (1998). What is the developmental challenge? Philosophy of Science, 65, 2, 253–258.CrossRefGoogle Scholar
  43. Griffiths, P. E. & Neumann-Held, E. (1999). The many faces of the gene. BioScience, 49, 656–662.CrossRefGoogle Scholar
  44. Hall, B. K. (2001). The gene is not dead, merely orphaned and seeking a home. Evolution and Development, 3, 225–228.CrossRefGoogle Scholar
  45. Halloun, I. A. (2004). Modeling theory in science education. Dordrecht: Kluwer Academic Publishers.Google Scholar
  46. Halloun, I. A. (2007). Mediated modeling in science education. Science & Education, 16, 653–697.CrossRefGoogle Scholar
  47. Hanson, M. R. (1996). Protein products of incompletely edited transcripts are detected in plant mitochondria. The Plant Cell, 8(1), 1–3.CrossRefGoogle Scholar
  48. Hesse, M. B. (1963). Models and analogies in science. London: Seed and Ward.Google Scholar
  49. Hoffmeyer, J. & Emmeche, C. (1991). Code-duality and the semiotics of nature. In M. Anderson & F. Merrell (Eds.), On semiotic modeling (pp. 117–166). Berlin: Mouton de Gruyter.Google Scholar
  50. Holmes, F. L. (2006). Reconceiving the gene: Seymour Benzer’s adventures in phage genetics. New Haven, CT: Yale University Press.Google Scholar
  51. Hull, D. L. (1974). Philosophy of biological science. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  52. Jablonka, E. (2002). Information: Its interpretation, its inheritance, and its sharing. Philosophy of Science, 69, 578–605.CrossRefGoogle Scholar
  53. Johannsen, W. (1909). Elemente der exakten erblichkeitslehre. Jena: Gustav Fischer. Retrieved August 23, 2012 from: http://caliban.mpiz-koeln.mpg.de/johannsen/elemente/johannsen_elemente_der_exakten_erblichkeitslehre_2.pdf.
  54. Justi, R. S. & Gilbert, J. K., (1999). A cause of ahistorical science teaching: Use of hybrid models. Science Education, 83, 163–177.CrossRefGoogle Scholar
  55. Kampa, D., Cheng, J., Kapranov, P., Yamanaka, M., Brubaker, S., Cawley, S., Drenkow, J., Piccolboni, A., Bekiranov, S., Helt, G., Tammana, H. & Gingeras, T. R. (2004). Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Research, 14, 331–342.CrossRefGoogle Scholar
  56. Kay, L. E. (2000). Who wrote the book of life? A history of the genetic code. Stanford, CA: Stanford University Press.Google Scholar
  57. Keller, E. F. (2000). The century of the gene. Cambridge, MA: Harvard University Press.Google Scholar
  58. Keller, E. F. (2005). The century beyond the gene. Journal of Biosciences, 30, 3–10.CrossRefGoogle Scholar
  59. Keller, E. F. & Harel, D. (2007). Beyond the gene. PLoS One, 2, e1231.CrossRefGoogle Scholar
  60. Kitcher, P. (1982). Genes. British Journal for the Philosophy of Science, 33, 337–359.Google Scholar
  61. Knight, R. (2007). Reports of the death of the gene are greatly exaggerated. Biology and Philosophy, 22, 293–306.CrossRefGoogle Scholar
  62. Larsson, S. (2009). A pluralist view of generalization in qualitative research. International Journal of Research & Method in Education, 32, 25–38.CrossRefGoogle Scholar
  63. Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  64. LeCompte, M. & Goetz, J. (1982). Problems of reliability and validity in ethnographic research. Review of Educational Research, 52(1), 31–60.CrossRefGoogle Scholar
  65. Lev-Maor, G., Sorek, R., Levanon, E. Y., Paz, N., Eisenberg, E. & Ast, G. (2007). RNA-editing-mediated exon evolution. Genome Biology, 8, R29.CrossRefGoogle Scholar
  66. Matthews, M. R. (1998). In defense of modest goals when teaching about the nature of science. Journal of Research in Science Teaching, 35, 161–174.CrossRefGoogle Scholar
  67. Mayr, E. (1982). The growth of biological thought: Diversity, evolution and inheritance. Cambridge, MA: Harvard University Press.Google Scholar
  68. Méheut, M. (2005). Teaching-learning sequences tools for learning and/or research. In K. Boersma, M. Goedhart, O. De Jong & H. Eijkelhof (Eds.), Research and the quality of science education (pp. 195–207. Dordrecht: Springer.CrossRefGoogle Scholar
  69. Meyer, L. M. N., Bomfim, G. C. & El-Hani, C. N. (2013). How to understand the gene in the 21st century. Science & Education, 22, 345–374.CrossRefGoogle Scholar
  70. Mortimer, E. F. & Scott, P. H. (2003). Meaning making in secondary science classrooms. Maidenhead: Open University Press.Google Scholar
  71. Moss, L. (2001). Deconstructing the gene and reconstructing molecular developmental systems. In S. Oyama, P. E. Griffiths & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 85–97). Cambridge, MA: MIT Press.Google Scholar
  72. Moss, L. (2003). What genes can’t do. Cambridge, MA: The MIT Press.Google Scholar
  73. Murre, C. (2007). Epigenetics of Antigen-receptor gene assembly. Current Opinion in Genetics & Development, 17, 415–421.CrossRefGoogle Scholar
  74. Nelkin, D. & Lindee, S. M. (1995). The DNA mystique: The gene as a cultural icon. New York, NY: Freeman.Google Scholar
  75. Neumann-Held, E. (1999). The Gene is dead – Long live the gene: Conceptualizing genes the constructionist way. In P. Koslowski (Ed.). Sociobiology and bioeconomics: The theory of evolution in biological and economic thinking (pp. 105–137). Berlin: Springer.CrossRefGoogle Scholar
  76. Neumann-Held, E. (2001). Let’s talk about genes: The process molecular gene concept and its context. In S. Oyama, P. E. Griffiths & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 69–84). Cambridge, MA: MIT Press.Google Scholar
  77. Nieveen, N., McKenney, S. & Van den Akker, J. (2006). Educational design research: The value of variety. In J. Van den Akker; K. Gravemeijer; S. McKenney & N. Nieveen (Eds). Educational design research (pp. 151–158). London: Routledge.Google Scholar
  78. Oyama, S. (2000/1985). The ontogeny of information: Developmental systems and evolution (2nd ed). Cambridge: Cambridge University Press.Google Scholar
  79. Pardini, M. I. M. C. & Guimarães, R. C. (1992). A systemic concept of the gene. Genetics and Molecular Biology, 15, 713–721.Google Scholar
  80. Pearson, H. (2006). What is a gene? Nature, 441, 399–401.Google Scholar
  81. Pitombo, M. A., Almeida, A. M. R., & El-Hani, C. N. (2008). Gene concepts in higher education cell and molecular biology textbooks. Science Education International, 19(2), 219–234.Google Scholar
  82. Plomp, T. (2009). Educational design research: An introduction. In: T. Plomp & N. Nieveen (Eds.). An introduction to educational design research (pp. 9–35). Enschede: SLO – Netherlands Institute for Curriculum Development.Google Scholar
  83. Portin, P. (1993). The concept of the gene: Short history and present status. Quarterly Review of Biology, 56, 173–223.CrossRefGoogle Scholar
  84. Reeves, T. C. (2006). Design research from a technology perspective. In J. Van den Akker, K. Gravemeijer, S. McKenney & N. Nieveen (Eds.). Educational design research (pp. 52–66). London, Routledge.Google Scholar
  85. Rheinberger, H.-J. (2000). Gene concepts: Fragments from the perspective of molecular biology. In: P. Beurton, R. Falk & H.-J. Rheinberger (Eds.). The concept of the gene in development and evolution (pp. 219–239). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  86. Sadler, T. D. (Ed.). (2011). Socioscientific issues in the classroom: Teaching, learning and research. Dordrecht: Springer.Google Scholar
  87. Sadler, T. D. & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89, 71–93.CrossRefGoogle Scholar
  88. Santos, V. C., Joaquim, L. M. & El-Hani, C. N. (2012). Hybrid deterministic views about genes in biology textbooks: A key problem in genetics teaching. Science & Education, 21, 543–578.CrossRefGoogle Scholar
  89. Santos, W. L. P. & Mortimer, E. F. (2001). Tomada de decisão para ação social responsável no ensino de ciências (decision making for responsible social action in science teaching). Ciência e Educação, 7, 95–111.Google Scholar
  90. Scherrer, K. & Jost, J. (2007a). The gene and the genon concept: A functional and information-theoretic analysis. Molecular System Biology, 3, 1–11.CrossRefGoogle Scholar
  91. Scherrer, K. & Jost, J. (2007b). The gene and the genon concept: Coding versus regulation. A conceptual and information-theoretic analysis of genetic storage and expression in the light of modern molecular biology. Theory in Biosciences, 126, 65–113.CrossRefGoogle Scholar
  92. Schwab, J. (1964). Structure of the disciplines: Meaning & significances. In G. W. Ford & L. Pugno (eds.), The structure of knowledge & the curriculum (pp. 6–30). Chicago, IL: Rand, McNally & Co.Google Scholar
  93. Shannon, C. E. & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press.Google Scholar
  94. Simons, H.; Kushner, S.; Jones, K. & James, D. (2003). From evidence-based practice to practice-based evidence: the idea of situated generalization. Research Papers in Education, 18, 347–364.CrossRefGoogle Scholar
  95. Smith, M. U. & Adkison, L. R. (2010). Updating the model definition of the gene in the modern genomic era with implications for instruction. Science & Education, 19, 1–20.CrossRefGoogle Scholar
  96. Stotz, K., Griffiths, P. E. & Knight, R. (2004). How biologists conceptualize genes: An empirical study. Studies in the History and Philosophy of Biological & Biomedical Sciences, 35, 647–673.CrossRefGoogle Scholar
  97. Suppe, F. (1977). The structure of scientific theories. Urbana, IL: University of Illinois Press.Google Scholar
  98. The ENCODE Project Consortium (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306, 636–640.CrossRefGoogle Scholar
  99. van den Akker, J., Gravemeijer, K., McKenney, S. & Nieveen, N. (2006). Educational design research. London, Routledge.Google Scholar
  100. van Fraassen, B. (1980). The scientific image. Oxford: Clarendon Press.CrossRefGoogle Scholar
  101. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G. et. al. (2001). The sequence of the human genome. Science, 291, 1305–1351.CrossRefGoogle Scholar
  102. Wang, W., Zhang, J., Alvarez, C., Llopart, A. & Long, M. (2000). The origin of the jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Molecular Biology and Evolution, 17, 1294–1301.CrossRefGoogle Scholar
  103. Wanscher, J. H. (1975). The history of Wilhelm Johannsen’s genetical terms and concepts from the period 1903 to 1926. Centaurus, 19(2), 125–147.CrossRefGoogle Scholar
  104. Watson, J. D. & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature, 171, 737–738.CrossRefGoogle Scholar
  105. Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. New York, NY: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Charbel N. El-Hani
    • 1
    • 2
    Email author
  • Ana Maria R. de Almeida
    • 1
    • 3
  • Gilberto C. Bomfim
    • 1
  • Leyla M. Joaquim
    • 1
  • João Carlos M. Magalhães
    • 4
  • Lia M. N. Meyer
    • 1
    • 5
  • Maiana A. Pitombo
    • 1
  • Vanessa C. dos Santos
    • 1
  1. 1.History, Philosophy and Biology Teaching Lab (LEFHBio)Institute of Biology, Federal University of BahiaSalvadorBrazil
  2. 2.Department of General BiologyInstitute of Biology, Universidade Federal da BahiaOndina, Salvador-BABrazil
  3. 3.Graduate Studies Program in Plant BiologyUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of GeneticsFederal University of ParanáCuritibaBrazil
  5. 5.Department of BiosciencesFederal University of SergipeItabaianaBrazil

Personalised recommendations