History and Philosophy of Science and the Teaching of Macroevolution

  • Ross H. Nehm
  • Kostas Kampourakis


Although macroevolution has been the subject of sustained attention in the history and philosophy of science (HPS) community, only in recent years have science educators begun to more fully engage with the topic. This chapter first explores how science educators have conceptualized macroevolution and how their perspectives align with the views from HPS. Second, it illustrates how science educators’ limited engagement with HPS scholarship on macroevolution has influenced construct delineation, measurement instrument development, and educational arguments about which aspects of macroevolution are most important for students to learn. Third, it discusses how scientific debates about the causal factors responsible for macroevolutionary patterns have been exploited by creationists and have impacted the teaching of evolution. Finally, it emphasizes that the rich perspectives that HPS has to offer on the important topic of macroevolution have yet to be integrated into science education scholarship.


Natural Selection Science Education Fossil Record Mass Extinction Species Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the anonymous reviewers for thoughtful ideas about how to improve the manuscript, Liz P. Beggrow for helpful suggestions, and Minsu Ha for help with references.


  1. AERA (American Educational Research Association), APA (American Psychological Association), & NCME (National Council on Measurement in Education). (1999). Standards for Educational and Psychological Testing. Washington, D.C.: AERA.Google Scholar
  2. Alters, B. J., & McComas, W. F. (1994). Punctuated equilibrium: The missing link in evolution education. The American Biology Teacher, 56(6), 334–340CrossRefGoogle Scholar
  3. Arthur, W. (2004). Biased embryos and evolution. Cambridge (United Kingdom): Cambridge University Press.CrossRefGoogle Scholar
  4. Ayala, F. J. & Arp, R. (2010). Contemporary debates in philosophy of biology. UK: Wiley-Blackwell.Google Scholar
  5. Bateson, P., & Gluckman, P. (2011). Plasticity, robustness, and evolution. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  6. Baum, D. A., & Offner, S. (2008). Phylogenies & tree-thinking. The American Biology Teacher, 70(4), 222–229.CrossRefGoogle Scholar
  7. Burian, R. (1988). Challenges to the evolutionary synthesis. Evolutionary Biology, 23, 247–269.Google Scholar
  8. Carroll. S. B. (2005a). Endless forms most beautiful: The new science of evodevo and the making of the animal kingdom. New York: W.W. Norton.Google Scholar
  9. Carroll, S. B. (2005b). Evolution at two levels: on genes and form. PLoS Biology, 3, 1159–1166.Google Scholar
  10. Catley, K. M. (2006). Darwin’s missing link: A novel paradigm for evolution education. Science Education, 90, 767–783.CrossRefGoogle Scholar
  11. Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Associates.Google Scholar
  12. Coyne, J. A., & Orr, H.A. (1998). The evolutionary genetics of speciation. Philosophical Transactions of the Royal Society of London B, 353, 287–305.CrossRefGoogle Scholar
  13. Cretzinger, J. I. (1941). An analysis of principles or generalities appearing in biological textbooks used in the secondary schools of the United States from 1800 to 1933. Science Education, 25(6), 310–313.CrossRefGoogle Scholar
  14. Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.Google Scholar
  15. Darwin (1860). See: John van Wyhe, ed. 2002- The Complete Work of Charles Darwin Online.
  16. Depew, D. J., & Weber, B. H. (1995). Darwinism evolving: Systems dynamics and the genealogy of natural selection. Cambridge: MIT Press.Google Scholar
  17. Dietrich, M. R. (2010). Microevolution and macroevolution are governed by the same processes. In F.J. Ayala & R. Arp (Eds.). Contemporary debates in the philosophy of biology (pp. 169–179).Maden, MA: Wiley-Blackwell.Google Scholar
  18. Dodick, J., & Orion, N. (2003). Cognitive factors affecting student understanding of geologic time. Journal of Research in Science Teaching, 40(4), 415–442.CrossRefGoogle Scholar
  19. Eldredge, N. (1989). Macroevolutionary Dynamics: Species, Niches, and Adaptive Peaks. McGraw-HillGoogle Scholar
  20. Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In T. J. M. Schopf (ed.). Models in paleobiology (pp. 82–115). San Francisco: Freeman, Cooper.Google Scholar
  21. Erwin, D. H. (2010). Microevolution and macroevolution are not governed by the same processes. In F. J. Ayala & R. Arp (Eds). Contemporary debates in the philosophy of biology (pp. 180–193). Malden: Wiley-Blackwell.Google Scholar
  22. Filipchenko, J. (1927). Variabilität und Variation. Berlin: Gebruder Borntraeger.Google Scholar
  23. Futuyma, D. J. (1998). Evolutionary biology, 3rd ed. Sunderland, MA: Sinauer.Google Scholar
  24. Futuyma, D. J. (2005). Evolution. Sunderland, MA: Sinauer Associates.Google Scholar
  25. Ghiselin, M. T. (1974). A radical solution to the species problem. Systematic Biology, 23(4), 536–544.CrossRefGoogle Scholar
  26. Goldschmidt, R. (1940). The material basis of evolution. New Haven CT: Yale Univ. Press.Google Scholar
  27. Goodwin, B. (2009). Beyond the Darwinian paradigm: Understanding biological forms. In M. Ruse & J. Travis (Eds.), Evolution: The first four billion years (pp. 299–312). Cambridge, MA: Harvard University Press.Google Scholar
  28. Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Belknap Press.Google Scholar
  29. Gould, S. J. (1981). What happens to bodies if genes act for themselves? Natural History. November.Google Scholar
  30. Gould, S. J. (1985). The Paradox of the first tier: An agenda for paleobiology. Paleobiology, 11(1), 2–12.Google Scholar
  31. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
  32. Haeckel, E. (1868). The History of creation, translated by E. Ray Lankester. London: Kegan Paul, Trench & Co.Google Scholar
  33. Hennig, W. (1999). Phylogenetic systematics (3rd Ed.). Champaign, IL: University of Illinois Press.Google Scholar
  34. Hillis, D. (2010). Phylogenetic progress and applications of the tree of life. In M. A. Bell, D. J. Futuyma, W. F. Eanes, & J. S. Levinton (Eds.). Evolution since Darwin: The first 150 years (pp. 421–450), Sunderland (MA): Sinauer Associates, Inc.Google Scholar
  35. Hull, D. L. (1980). Individuality and selection. Annual Review of Ecology and Systematics, 11, 311–332.CrossRefGoogle Scholar
  36. Hull, D. L. (1988). Science as a process: An evolutionary account of the social and conceptual development of science. The University of Chicago Press, Chicago and London.CrossRefGoogle Scholar
  37. Jablonski, D. (1986). Background and mass extinctions: The alternation of macroevolutionary regimes. Science, 231(4734), 129–133.CrossRefGoogle Scholar
  38. Jablonski, D., & Hunt, G. (2006). Larval ecology, geographic ranges and species survivorship in Cretaceous molluscs: Organismic versus species-level explanations. The American Naturalist, 168(4), 556–564CrossRefGoogle Scholar
  39. Kirschner, M., & Gerhart, J. (1998). Evolvability. Proceedings of the National Academy of Sciences, 95(15), 8420–8427.CrossRefGoogle Scholar
  40. Lloyd, E. & Gould, S. J. (1993). Species selection on variability. Proceedings of the National Academy of Sciences, 96, 11904–11909.Google Scholar
  41. Love, A. C. (2013). Interdisciplinary lessons for the teaching of biology from the practice of evo-devo. Science & Education.Google Scholar
  42. Love, A. C. (2007). Morphological and paleontological perspectives for a history of evo-devo. In M. Laubichler & J. Maienschein (eds.), From embryology to evo-devo: A history of developmental evolution (pp. 267–307). Cambridge, MA: MIT Press.Google Scholar
  43. Marco, Ó. B., & López, V. S. (1993). A simple model to think about the evolutionary rate in macroevolution. The American Biology Teacher, 424–429.Google Scholar
  44. Mayr, E. (1988). Toward a new philosophy of biology: Observations of and evolutionist (No. 211). Cambridge, MA: Harvard University Press.Google Scholar
  45. Minelli, A. (2009). Forms of becoming: The evolutionary biology of development. Princeton, Oxford: Princeton University Press.Google Scholar
  46. Minelli, A., & Fusco, G. (2012). On the evolutionary developmental biology of speciation. Evolutionary Biology, 39(2), 242–254.CrossRefGoogle Scholar
  47. Moody, D. E. (1996). Evolution and the textbook structure of biology. Science Education, 80(4), 395–418.CrossRefGoogle Scholar
  48. Müller, G. B. (2007) Six memos for evodevo. In M.D. Laubichler & J. Maienschein (Eds.), From embryology to evodevo: A history of developmental evolution (pp. 499–524). Cambridge, MA: MIT Press.Google Scholar
  49. Nadelson, L. S., & Southerland, S. A. (2010a). Development and preliminary evaluation of the measure of understanding of macroevolution: Introducing the MUM. The Journal of Experimental Education, 78(2), 151–190.CrossRefGoogle Scholar
  50. Nadelson, L. S., & Southerland, S. A. (2010b). Examining the interaction of acceptance and understanding: How does the relationship change with a focus on macroevolution? Evolution Education & Outreach, 3(1), 82–88.CrossRefGoogle Scholar
  51. National Academy of Sciences (NAS) (2012). Macroevolution. Accessed February 6, 2012 at:
  52. National Research Council (NRC). (1996). National science education standards. Washington, DC: National Academy Press.Google Scholar
  53. Nehm, R. H. (2006). Faith-based evolution education? BioScience, 56, 638–639.CrossRefGoogle Scholar
  54. Nehm, R. H., & Budd, A. F. (Eds.) (2008). Evolutionary Stasis and Change in the Dominican Republic Neogene. Netherlands: Springer.Google Scholar
  55. Nehm, R. H., Poole, T. M., Lyford, M. E., Hoskins, S. G., Carruth, L., Ewers, B. E., & Colberg, P. J. S. (2009). Does the Segregation of Evolution in Biology Textbooks and Introductory Courses Reinforce Students’ Faulty Mental Models of Biology and Evolution? Evolution: Education and Outreach, 2(3), 527–532.Google Scholar
  56. Neumann, I., Neumann, K., & Nehm, R. H. (2011). Evaluating instrument quality in science education: Rasch based analyses of a nature of science test. International Journal of Science Education, 33, 1373–1405.CrossRefGoogle Scholar
  57. Nicholas, C. H. (1965). Analysis of the course content of the Biological Sciences Curriculum Study as a basis for recommendations concerning teacher preparation in biology. Unpublished doctoral dissertation, Stanford University School of Education.Google Scholar
  58. Novick, L. R. & Catley, K. M. (2012). Assessing students’ understanding of macroevolution: Concerns regarding the validity of the MUM. International Journal of Science Education, 34(17), 2679–2703.CrossRefGoogle Scholar
  59. Padian, K. (2010). How to win the evolution war: Teach macroevolution! Evolution Education & Outreach, 3, 206–214.CrossRefGoogle Scholar
  60. Platt, J. E. (2006). Macroevolution: Alive & well in sticklebacks. The American Biology Teacher, 68(1), 5–6.CrossRefGoogle Scholar
  61. Raff, R. A. (1998). Evo-devo: The evolution of a new discipline. Genome, 280, 1540–1542.Google Scholar
  62. Raff, R. A. (2000). Evo-devo: The evolution of a new discipline. Nature Reviews: Genetics 1, 74–79.CrossRefGoogle Scholar
  63. Raup, D. M. (1994). The role of extinction in evolution, Proceedings of the National Academy of Sciences, 91, 6758–6763.CrossRefGoogle Scholar
  64. Raup, D., & Stanley, S. M. (1978). Principles of Paleontology (2nd ed.). San Francisco, CA: W. H. FreemanGoogle Scholar
  65. Rosenthal, D. B. (1985). Evolution in high school biology textbooks: 1963–1983. Science Education, 69(5), 637–648.CrossRefGoogle Scholar
  66. Ruse, M. (1997). Monad to Man: The Concept of Progress in Evolutionary Biology. Harvard University Press.Google Scholar
  67. Sansom, R., & Brandon, R. N. (2007). Integrating evolution and development: From theory to practice. Cambridge, MA: MIT Press.Google Scholar
  68. Schindewolf, O. H. (1950). Grundlagen und methoden der palaeontologischenchronologie, Teil 3. Berlin: Borntraeger.Google Scholar
  69. Schindewolf, O. H. (1950/1993). Basic questions in paleontology. Chicago: University of Chicago Press.Google Scholar
  70. Sepkoski, D. (2008). Macroevolution. In M. Ruse (Ed.), The Oxford. Handbook of the Philosophy of Biology (pp. 211–237). New York: Oxford University Press.Google Scholar
  71. Sepkoski, D., & Ruse, M. (2009). The paleobiological revolution: Essays on the growth of modern paleontology. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  72. Settlage, J., & Odom, A. L. (1995). Natural selection conceptions assessment: Development of the two-tier test “Understanding Biological Change.” Paper presented at the National Association of Research in Science Teaching Annual Meeting, San Francisco, CA.Google Scholar
  73. Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.Google Scholar
  74. Simpson, G. G. (1953). The major features of evolution. New York: Columbia University Press.Google Scholar
  75. Skoog, G. (1969). The topic of evolution in secondary school biology textbooks, 1900–1968. Unpublished doctoral dissertation, University of Nebraska.Google Scholar
  76. Skoog, G. (1984). The coverage of evolution in high school biology textbooks published in the 1980s. Science Education, 68, 117–128.CrossRefGoogle Scholar
  77. Smith, M. U. (2010). Current status of research in teaching and learning evolution: II. Pedagogical issues. Science & Education, 19, 539–571.CrossRefGoogle Scholar
  78. Stanley, S. M. (1980). Macroevolution: Pattern and process. San Francisco, CA: W. H. Freeman and Co.Google Scholar
  79. Sterelny, K. (2009). Novelty, plasticity and niche construction: the influence of phenotypic variation on evolution. Mapping the Future of Biology, 93–110.Google Scholar
  80. Swarts, F. A., Roger Anderson, O., & Swetz, F. J. (1994). Evolution in secondary school biology textbooks of the PRC, the USA, and the latter stages of the USSR. Journal of Research in Science Teaching, 31(5), 475–505.CrossRefGoogle Scholar
  81. Travis, J., & Reznick, D. (2009). Adaptation. In M. Ruse & J. Travis (Eds.) Evolution: The first four billion years (pp. 105–131). Cambridge, MA: Harvard University Press.Google Scholar
  82. von Baer, K. E. (1828). Entwicklungsgeschichte der thiere: Beobachtung und reflexion. Konigsberg: Bomtrager.Google Scholar
  83. Vrba, E. S., & Gould, S. J. (1986). The hierarchical expansion of sorting and selection: Sorting and selection cannot be equated. Paleobiology, 12(2), 217–228.Google Scholar
  84. Waddington, C. H. (1970) Towards a theoretical biology. Vol. 3. Chicago, IL: Aldine Publishing Company.Google Scholar
  85. Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the world. Journal of Science Education and Technology, 8(1), 3–19.CrossRefGoogle Scholar
  86. Zelditch, M. L. (2001). Beyond heterochrony: The evolution of development. New York: Wiley-Liss.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Ecology and Evolution and Ph.D. Program in Science EducationStony Brook UniversityStony BrookUSA
  2. 2.Biology Section and IUFEUniversity of GenevaGeneva 4Switzerland

Personalised recommendations