Skip to main content

The Structure of the Learner’s Knowledge

  • Chapter
  • First Online:
Modelling Learners and Learning in Science Education
  • 1442 Accesses

Abstract

This chapter considers how we might understand a learner’s knowledge to be structured, and the challenges in building models of such structure. The chapter considers the affordances and limitations of concept mapping as a way of presenting student knowledge. The chapter discusses the importance of conceptual integration both within science, and within science learning. The notion of knowledge domains, and their possible relevance as a constraint on learning, are considered. Research studies that have explored learners' thinking in depth or across topics offer tentative indications of the ways in which learners do, and do not, make links in their science learning, providing some suggestions of the kinds of models that will do justice to the complexity of learners’ knowledge structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ault, C. R., Novak, J. D., & Gowin, D. B. (1984). Constructing vee maps for clinical interviews on molecule concepts. Science Education, 68(4), 441–462.

    Article  Google Scholar 

  • Billingsley, B. (2004). Ways of approaching the apparent contradictions between science and religion. Ph.D. thesis, University of Tasmania.

    Google Scholar 

  • Bruillard, E., & Baron, G.-L. (2000). Computer-based concept mapping: A review of a cognitive tool for students. In D. Benzie & D. Passey (Eds.), Proceedings of conference on educational uses of information and communication technologies (pp. 331–338). Beijing, China: Publishing House of Electronics Industry.

    Google Scholar 

  • Camacho, F. F., & Cazares, L. G. (1998). Partial possible models: An approach to interpret students’ physical representations. Science Education, 82(1), 15–29.

    Article  Google Scholar 

  • Cheng, M. M. W. (2011). Students’ visualization of scientific ideas: Case studies of a physical science and a biological science topic. Ph.D., King’s College, University of London, London.

    Google Scholar 

  • Chomsky, N. (1999). Form and meaning in natural languages. In M. Baghramian (Ed.), Modern philosophy of language (pp. 294–308). Washington, DC: Counterpoint.

    Google Scholar 

  • Claxton, G. (1986). The alternative conceivers’ conceptions. Studies in Science Education, 13, 123–130. doi:10.1080/03057268608559934.

    Article  Google Scholar 

  • Claxton, G. (1993). Minitheories: A preliminary model for learning science. In P. J. Black & A. M. Lucas (Eds.), Children’s informal ideas in science (pp. 45–61). London: Routledge.

    Google Scholar 

  • Gardner, H. (1998). Extraordinary minds. London: Phoenix.

    Google Scholar 

  • Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10(1), 61–98.

    Article  Google Scholar 

  • Gilbert, J. K., & Zylbersztajn, A. (1985). A conceptual framework for science education: The case study of force and movement. European Journal of Science Education, 7(2), 107–120.

    Article  Google Scholar 

  • Gould, S. J. (2001). Rocks of ages: Science and religion in the fullness of life. London: Jonathan Cape.

    Google Scholar 

  • Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. P. Mestre (Ed.), Transfer of learning: From a modern multidisciplinary perspective (pp. 89–119). Greenwich, CT: Information Age Publishing.

    Google Scholar 

  • Herron, J. D., Cantu, L., Ward, R., & Srinivasan, V. (1977). Problems associated with concept analysis. Science Education, 61(2), 185–199.

    Article  Google Scholar 

  • Hirschfeld, L., & Gelman, S. A. (1994a). Towards a topography of mind: An introduction to domain specificity. In L. Hirschfeld & S. A. Gelman (Eds.), Mapping the mind: Domain specificity in cognition and culture (pp. 3–35). Cambridge, MA: Cambridge University Press.

    Chapter  Google Scholar 

  • Hirschfeld, L., & Gelman, S. A. (Eds.). (1994b). Mapping the mind: Domain specificity in cognition and culture. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Kosso, P. (2010). And yet it moves: The observability of the rotation of the earth. Foundations of Science, 15(3), 213–225. doi:10.1007/s10699-010-9175-x.

    Article  Google Scholar 

  • Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5(11), 831–843. doi:10.1038/nrn1533.

    Article  Google Scholar 

  • Kuhn, T. S. (Ed.). (1977). The essential tension: Selected studies in scientific tradition and change. Chicago: University of Chicago Press.

    Google Scholar 

  • Kuhn, T. S. (1996). The structure of scientific revolutions (3rd ed.). Chicago: University of Chicago.

    Book  Google Scholar 

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrove (Eds.), Criticism and the growth of knowledge (pp. 91–196). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Lobato, J. (2006). Alternative perspectives on the transfer of learning: History, issues, and challenges for future research. The Journal of the Learning Sciences, 15(4), 431–449. doi:10.1207/s15327809jls1504_1.

    Article  Google Scholar 

  • Long, D. E. (2011). Evolution and religion in American education: An ethnography. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Novak, J. D. (1990b). Concept maps and Vee diagrams: Two metacognitive tools to facilitate meaningful learning. Instructional Science, 19(1), 29–52. doi:10.1007/bf00377984.

    Article  Google Scholar 

  • Petruccioli, S. (1993). Atoms, metaphors and paradoxes: Niels Bohr and the construction of a new physics (I. McGilvray, Trans.). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Pope, M. L., & Denicolo, P. (1986). Intuitive theories – A researcher’s dilemma: Some practical methodological implications. British Educational Research Journal, 12(2), 153–166.

    Article  Google Scholar 

  • Przełęcki, M. (1974). A set theoretic versus a model theoretic approach to the logical structure of physical theories. Studia Logica, 33(1), 91–105. doi:10.1007/bf02120870.

    Article  Google Scholar 

  • Solomon, J. (1983). Learning about energy: How pupils think in two domains. European Journal of Science Education, 5(1), 49–59. doi:10.1080/0140528830050105.

    Article  Google Scholar 

  • Sperber, D. (1994). The modularity of thought and the epidemiology of representations. In L. Hirschfeld & S. A. Gelman (Eds.), Mapping the mind: Domain specificity in cognition and culture (pp. 39–67). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Taber, K. S. (1994). Student reaction on being introduced to concept mapping. Physics Education, 29(5), 276–281.

    Article  Google Scholar 

  • Taber, K. S. (1998a). An alternative conceptual framework from chemistry education. International Journal of Science Education, 20(5), 597–608.

    Article  Google Scholar 

  • Taber, K. S. (1998b). The sharing-out of nuclear attraction: Or I can’t think about physics in chemistry. International Journal of Science Education, 20(8), 1001–1014.

    Article  Google Scholar 

  • Taber, K. S. (2000b). Multiple frameworks?: Evidence of manifold conceptions in individual cognitive structure. International Journal of Science Education, 22(4), 399–417.

    Article  Google Scholar 

  • Taber, K. S. (2002a). Chemical misconceptions – Prevention, diagnosis and cure: theoretical background (Vol. 1). London: Royal Society of Chemistry.

    Google Scholar 

  • Taber, K. S. (2002b). Conceptualizing quanta – Illuminating the ground state of student understanding of atomic orbitals. Chemistry Education: Research and Practice in Europe, 3(2), 145–158.

    Google Scholar 

  • Taber, K. S. (2006b). Conceptual integration: A demarcation criterion for science education? Physics Education, 41(4), 286–287.

    Article  Google Scholar 

  • Taber, K. S. (2008a). Exploring conceptual integration in student thinking: Evidence from a case study. International Journal of Science Education, 30(14), 1915–1943. doi:10.1080/09500690701589404.

    Article  Google Scholar 

  • Taber, K. S. (2009b). Progressing science education: Constructing the scientific research programme into the contingent nature of learning science. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Taber, K. S., Billingsley, B., Riga, F., & Newdick, H. (2011). Secondary students’ responses to perceptions of the relationship between science and religion: Stances identified from an interview study. Science Education, 95(6), 1000–1025. doi:10.1002/sce.20459.

    Article  Google Scholar 

  • Vygotsky, L. S. (1934/1986). Thought and language. London: MIT Press.

    Google Scholar 

  • Wolpert, L., & Richards, A. (1988). A passion for science. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Ziman, J. (1978/1991). Reliable knowledge: An exploration of the grounds for belief in science. Cambridge, UK: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taber, K.S. (2013). The Structure of the Learner’s Knowledge. In: Modelling Learners and Learning in Science Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7648-7_12

Download citation

Publish with us

Policies and ethics