Skip to main content

Components of Personal Knowledge: Characterising the Learner’s Conceptual Resources

  • Chapter
  • First Online:
Modelling Learners and Learning in Science Education
  • 1451 Accesses

Abstract

This chapter explores the many different terms used in the science education literature to refer to potential features of learners’ knowledge - terms such as alternative conceptions and p-prims. The analysis earlier in the book is used to consider to what extent the range of different labels for different types of knowledge components are justified. A model is presented of a typology of the major types of knowledge component represented in a learner’s cognitive structure. Major divisions include that between implicit and explicit knowledge components, and that between propositional and iconic knowledge. A distinction is made between terms used to refer to system resources and terms better used to refer to the subjective experience of accessing those resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderberg, E. (2000). Word meaning and conceptions. An empirical study of relationships between students’ thinking and use of language when reasoning about a problem. Instructional Science, 28, 89–113.

    Article  Google Scholar 

  • Andersson, B. (1986). The experiential gestalt of causation: A common core to pupils’ preconceptions in science. European Journal of Science Education, 8(2), 155–171.

    Article  Google Scholar 

  • Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annual Review of Psychology, 56, 149–178.

    Article  Google Scholar 

  • Bhaskar, R. (1975/2008). A realist theory of science. Abingdon, VA: Routledge.

    Google Scholar 

  • Bruner, J. S. (1964). The course of cognitive growth. American Psychologist, 19(1), 1–15.

    Article  Google Scholar 

  • Carey, S., & Spelke, E. (1996). Science and core knowledge. Philosophy of Science, 63(4), 515–533.

    Article  Google Scholar 

  • Cheng, M. M. W. (2011). Students’ visualization of scientific ideas: Case studies of a physical science and a biological science topic. Ph.D., King’s College, University of London, London.

    Google Scholar 

  • diSessa, A. A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10(2&3), 105–225.

    Article  Google Scholar 

  • Duit, R. (2009). Bibliography – Students’ and teachers’ conceptions and science education. Kiel: http://www.ipn.uni-kiel.de/aktuell/stcse/stcse.html

  • Ezcurdia, M. (1998). The concept-conception distinction. Philosophical Issues, 9, 187–192. doi:10.2307/1522969.

    Article  Google Scholar 

  • Fodor, J. A. (1985). Précis of the modularity of mind. The Behavioral and Brain Sciences, 8(01), 1–5. doi:10.1017/S0140525X0001921X.

    Google Scholar 

  • Gelman, S. A. (2009). Learning from others: Children’s construction of concepts. Annual Review of Psychology, 60(1), 115–140. doi:10.1146/annurev.psych.59.103006.093659.

    Article  Google Scholar 

  • Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10(1), 61–98.

    Article  Google Scholar 

  • Gilbert, J. K., & Zylbersztajn, A. (1985). A conceptual framework for science education: The case study of force and movement. European Journal of Science Education, 7(2), 107–120.

    Article  Google Scholar 

  • Johnson-Laird, P. N. (2003a). Illusions of understanding. In A. J. Sanford (Ed.), The nature and limits of human understanding (pp. 3–25). London: T&T Clark Ltd.

    Google Scholar 

  • Johnson-Laird, P. N. (2003b). Models, causation, and explanation. In A. J. Sanford (Ed.), The nature and limits of human understanding (pp. 26–46). London: T&T Clark Ltd.

    Google Scholar 

  • Jungmann, K. (2001). Muon physics possibilities at a Muon-Neutrino factory. Hyperfine Interactions, 138(1), 463–473. doi:10.1023/a:1020826729142.

    Article  Google Scholar 

  • Kaiser, M. K., McCloskey, M., & Proffitt, D. R. (1986). Development of intuitive theories of motion: Curvilinear motion in the absence of external forces. Developmental Psychology, 22(1), 67–71. doi:10.1037/0012-1649.22.1.67.

    Article  Google Scholar 

  • Kelly, G. (1963). A theory of personality: The psychology of personal constructs. New York: W W Norton & Company.

    Google Scholar 

  • Koffka, K. (1967). Principles of Gestalt psychology. In J. A. Dyal (Ed.), Readings in psychology: Understanding human behavior (2nd ed., pp. 9–13). New York: McGraw-Hill Book Company.

    Google Scholar 

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrove (Eds.), Criticism and the growth of knowledge (pp. 91–196). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1980a). Conceptual metaphor in everyday language. The Journal of Philosophy, 77(8), 453–486.

    Article  Google Scholar 

  • Marton, F. (1981). Phenomenography – Describing conceptions of the world around us. Instructional Science, 10, 177–200.

    Article  Google Scholar 

  • McClary, L., & Talanquer, V. (2011). College chemistry students’ mental models of acids and acid strength. Journal of Research in Science Teaching, 48(4), 396–413. doi:10.1002/tea.20407.

    Article  Google Scholar 

  • McCloskey, M. (1983). Intuitive physics. Scientific American, 248(4), 114–122.

    Article  Google Scholar 

  • Merrill, M. D. (2000, December 4–6). Knowledge objects and mental models. Paper presented at the International Workshop on Advanced Learning Technologies 2000: Advanced Learning Technology: Design and Development Issues, Massey University, Palmerston North, New Zealand.

    Google Scholar 

  • Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 7–14). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Patomäki, H., & Wight, C. (2000). After postpositivism? The promises of critical realism. International Studies Quarterly, 44(2), 213–237. doi:10.1111/0020-8833.00156.

    Article  Google Scholar 

  • Polanyi, M. (1970). The logic of tacit inference. In F. J. Crosson (Ed.), Human and artificial intelligence (pp. 219–240). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Pope, M. L., & Denicolo, P. (1986). Intuitive theories – A researcher’s dilemma: Some practical methodological implications. British Educational Research Journal, 12(2), 153–166.

    Article  Google Scholar 

  • Pope, M. L., & Gilbert, J. K. (1983). Personal experience and the construction of knowledge in science. Science Education, 67(2), 193–203.

    Article  Google Scholar 

  • Schutz, A., & Luckmann, T. (1973). The structures of the life-world (R. M. Zaner & H. T. Engelhardt, Trans.). Evanston, IL: Northwest University Press.

    Google Scholar 

  • Seger, C. A., & Miller, E. K. (2010). Category learning in the brain. Annual Review of Neuroscience, 33(1), 203–219. doi:10.1146/annurev.neuro.051508.135546.

    Article  Google Scholar 

  • Shepardson, D. P., Wee, B., Priddy, M., & Harbor, J. (2007). Students’ mental models of the environment. Journal of Research in Science Teaching, 44(2), 327–348. doi:10.1002/tea.20161.

    Article  Google Scholar 

  • Stavy, R., & Tirosh, D. (2000). How students (mis)understand science and mathematics: Intuitive rules. New York: Teachers College Press.

    Google Scholar 

  • Taber, K. S. (2002a). Chemical misconceptions – Prevention, diagnosis and cure: theoretical background (Vol. 1). London: Royal Society of Chemistry.

    Google Scholar 

  • Taber, K. S. (2009b). Progressing science education: Constructing the scientific research programme into the contingent nature of learning science. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Taber, K. S., & Bricheno, P. A. (2009). Coordinating procedural and conceptual knowledge to make sense of word equations: Understanding the complexity of a ‘simple’ completion task at the learner’s resolution. International Journal of Science Education, 31(15), 2021–2055. doi:10.1080/09500690802326243.

    Article  Google Scholar 

  • Taber, K. S., & García Franco, A. (2010). Learning processes in chemistry: Drawing upon cognitive resources to learn about the particulate structure of matter. The Journal of the Learning Sciences, 19(1), 99–142.

    Article  Google Scholar 

  • Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10(2), 159–169. doi:10.1080/0950069880100204.

    Article  Google Scholar 

  • Van Dyck, D., & Op de Beeck, M. (1996). A simple intuitive theory for electron diffraction. Ultramicroscopy, 64(1–4), 99–107. doi:10.1016/0304-3991(96)00008-3.

    Article  Google Scholar 

  • Vygotsky, L. S. (1934/1986). Thought and language. London: MIT Press.

    Google Scholar 

  • Vygotsky, L. S. (1934/1994). The development of academic concepts in school aged children. In R. van der Veer & J. Valsiner (Eds.), The Vygotsky reader (pp. 355–370). Oxford, UK: Blackwell.

    Google Scholar 

  • Watts, M., & Taber, K. S. (1996). An explanatory gestalt of essence: Students’ conceptions of the ‘natural’ in physical phenomena. International Journal of Science Education, 18(8), 939–954.

    Article  Google Scholar 

  • Watts, M., & Zylbersztajn, A. (1981). A survey of some children’s ideas about force. Physics Education, 16(6), 360–365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taber, K.S. (2013). Components of Personal Knowledge: Characterising the Learner’s Conceptual Resources. In: Modelling Learners and Learning in Science Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7648-7_11

Download citation

Publish with us

Policies and ethics