Skip to main content

Detection Methods for Laboratory Diagnosis of Diphtheria

  • Chapter
  • First Online:

Abstract

Although diphtheria has to be diagnosed primarily on clinical symptoms, the rapid and reliable detection and identification of the potentially toxigenic Corynebacterium species, C. diphtheriae, C. ulcerans and C. pseudotuberculosis, is essential for the definite diagnosis and management of diphtheria with respect to both the individual patient and the public health measures to be undertaken. Laboratory confirmation of suspected diphtheria has to aim for the isolation of the etiologic pathogen (including species identification and antibiotic susceptibility testing) as well as for differentiation of toxigenic from non-toxigenic strains (by using tox gene detection and toxigenicity testing). The recent introduction of the Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) into the microbiological algorithm of laboratory diagnosis of diphtheria allows the specific and escalating identification of the three potentially toxigenic Corynebacterium species from growing colonies. Finally, molecular typing techniques may be applied to explore the clonal relatedness of clinical isolates and their potential routes of transmission. The most relevant laboratory procedures fulfilling these requirements (microbiological culture, conventional biochemical tests, molecular methods for species identification and toxigenicity testing) will be presented here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Typing methods are beyond the scope of this article and will therefore only briefly be addressed here.

  2. 2.

    The test was historically named Elek-Ouchterlony test. Due to the easier performance of Elek’s method using antitoxin-drenched filter strips this assay was continuously improved by different laboratories. Although Ouchterlony evaluated his assay on much more isolates than Elek in the respective seminal papers, the test is now known as Elek test by most authors. Curiously, many authors consider Elek as an acronym wrongly writing the test’s name with capital letters as ELEK.

  3. 3.

    Therefore, the alternative name immunodiffusion assay is coined.

  4. 4.

    Therefore, the alternative name immunoprecipitation assay is coined.

  5. 5.

    Notably, the first published PCR system (Pallen 1991) was later found to give negative results in other laboratories (Hauser et al. 1993); therefore, a new first primer was designed by the same author to overcome these difficulties (Pallen et al. 1994).

References

  • Adderson EE, Boudreaux JW, Cummings JR, Pounds S, Wilson DA, Procop GW, Hayden RT (2008) Identification of clinical coryneform bacterial isolates: comparison of biochemical methods and sequence analysis of 16S rRNA and rpoB genes. J Clin Microbiol 46(3):921–927

    PubMed  CAS  Google Scholar 

  • Alatoom AA, Cazanave CJ, Cunningham SA, Ihde SM, Patel R (2012) Identification of non-diphtheriae Corynebacterium by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50(1):160–163

    PubMed  CAS  Google Scholar 

  • Almuzara MN, De Mier C, Rodríguez CR, Famiglietti AMR, Vay CA (2006) Evaluación del sistema API Coryne, versión 2.0, para la identificación de bacilos gram-positivos difteroides de importancia clínica. Rev Argent Microbiol 48(4):197–201

    Google Scholar 

  • Andre J, Audebaud G, Chambon L (1960) Diagnostic de la diphtérie sur cultures de tissu. Ann Inst Pasteur 99(1):179–187

    CAS  Google Scholar 

  • Aravena-Román M, Bowman R, O’Neill G (1995) Polymerase chain reaction for the detection of toxigenic Corynebacterium diphtheria. Pathology 27(1):71–73

    PubMed  Google Scholar 

  • Barksdale L, Linder R, Sulea IT, Pollice M (1981) Phospholipase D activity of Corynebacterium pseudotuberculosis (Corynebacterium ovis) and Corynebacterium ulcerans, a distinctive marker within the genus Corynebacterium. J Clin Microbiol 13(2):335–343

    PubMed  CAS  Google Scholar 

  • Berger A, Huber I, Merbecks SS, Ehrhard I, Konrad R, Hörmansdorfer S, Hogardt M, Sing A (2011a) Toxigenic Corynebacterium ulcerans in woman and cat. Emerg Infect Dis 17(9):1767–1769

    Google Scholar 

  • Berger A, Schmidt-Wieland T, Huber I, Sing A (2011b) Human diphtheria infection from a cat bite. Ann Intern Med 155(9):646–648

    Google Scholar 

  • Bickham ST, Jones WL (1972) Problems in the use of the in vitro toxigenicity test for Corynebacterium diphtheria. Am J Clin Pathol 57(2):244–246

    PubMed  CAS  Google Scholar 

  • Bolt F, Cassiday P, Tondella ML, Dezoysa A, Efstratiou A, Sing A, Zasada A, Bernard K, Guiso N, Badell E, Rosso ML, Baldwin A, Dowson C (2010) Multilocus sequence typing identifies evidence for recombination and two distinct lineages of Corynebacterium diphtheriae. J Clin Microbiol 48(11):4177–4185

    PubMed  CAS  Google Scholar 

  • Bonmarin I, Guiso N, Le Flèche-Matéos A, Patey O, Patrick AD, Levy-Bruhl D (2009) Diphtheria: a zoonotic disease in France? Vaccine 27(31):4196–4200

    PubMed  Google Scholar 

  • Bostock AD, Gilbert FR, Lewis D, Smith DC (1984) Corynebacterium ulcerans infection associated with untreated milk. J Infect 9(3):286–288

    PubMed  CAS  Google Scholar 

  • Butterworth A, Abbott JD, Simmons LE, Ironside AG, Williams RF, Mandal BK, Brennard J, Mann NM, Simon S (1974) Diphtheria in the Manchester area, 1967–1971. Lancet 304(7896):1558–1561

    Google Scholar 

  • Carter HS, Wilson W (1949) Note on the recognition of toxigenic strains of C. diphtheriae in vitro. Glasgow Med J 30(1):43–48

    PubMed  CAS  Google Scholar 

  • Cassiday PK, Pawloski LC, Tiwari T, Sanden GN, Wilkins PP (2008) Analysis of toxigenic Corynebacterium ulcerans strains revealing potential for false-negative real-time PCR results. J Clin Microbiol 46(1):331–333

    PubMed  CAS  Google Scholar 

  • Cetinkaya B, Karahan M, Atil E, Kalin R, De Baere T, Vaneechoutte M (2002) Identification of Corynebacterium pseudotuberculosis isolates from sheep and goats by PCR. Vet Microbiol 88(1):75–83

    PubMed  CAS  Google Scholar 

  • Chang DN, Laughren GS, Chalvardjian NE (1978) Three variants of Corynebacterium diphtheriae subsp. mitis (Belfanti) isolated from a throat specimen. J Clin Microbiol 8(6):767–768

    PubMed  CAS  Google Scholar 

  • Colman G, Weaver E, Efstratiou A (1992) Screening tests for pathogenic corynebacteria. J Clin Pathol 45(1):46–48

    PubMed  CAS  Google Scholar 

  • Coyle MB, Minshew BH, Bland JA, Hsu PC (1979) Erythromycin and clindamycin resistance in Corynebacterium diphtheriae from skin lesions. Antimicrob Agents Chemother 16(4):525–527

    PubMed  CAS  Google Scholar 

  • Coyle MB, Nowowiejski DJ, Russell JQ, Groman NB (1993) Laboratory review of reference strains of Corynebacterium diphtheriae indicates mistyped intermedius strains. J Clin Microbiol 31(11):3060–3062

    PubMed  CAS  Google Scholar 

  • De Zoysa AS, Efstratiou A (1999) PCR typing of Corynebacterium diphtheriae by random amplification of polymorphic DNA. J Med Microbiol 48(4):335–340

    PubMed  CAS  Google Scholar 

  • De Zoysa AS, Efstratiou A (2000) Use of amplified fragment length polymorphisms for typing Corynebacterium diphtheriae. J Clin Microbiol 38(10):3843–3845

    PubMed  CAS  Google Scholar 

  • De Zoysa AS, Efstratiou A, George RC, Jahkola M, Vuopio-Varkila J, Deshevoi S, Tseneva G, Rikushin Y (1995) Molecular epidemiology of Corynebacterium diphtheriae from northwestern Russia and surrounding countries studied by using ribotyping and pulsed-field gel electrophoresis. J Clin Microbiol 33(5):1080–1083

    PubMed  CAS  Google Scholar 

  • De Zoysa A, Hawkey PM, Engler K, George R, Mann G, Reilly W, Taylor D, Efstratiou A (2005) Characterization of toxigenic Corynebacterium ulcerans strains isolated from humans and domestic cats in the United Kingdom. J Clin Microbiol 43(9):4377–4381

    PubMed  CAS  Google Scholar 

  • De Zoysa A, Hawkey P, Charlett A, Efstratiou A (2008) Comparison of four molecular typing methods for characterization of Corynebacterium diphtheriae and determination of transcontinental spread of C. diphtheriae based on BstEII rRNA gene profiles. J Clin Microbiol 46(11):3626–3635

    PubMed  CAS  Google Scholar 

  • Dias AA, Santos LS, Sabbadini PS, Santos CS, Silva FC Jr, Napoleão F, Nagao PE, Villas-Bôas MH, Hirata R Jr, Guaraldi AL (2011) Corynebacterium ulcerans diphtheria: an emerging zoonosis in Brazil and worldwide. Rev Saude Publica 45(6):1176–1191

    PubMed  Google Scholar 

  • Dixon JMS (1984) Diphtheria in North America. J Hyg 93(3):419–432

    PubMed  CAS  Google Scholar 

  • Dorella FA, Pacheco LG, Oliveira SC, Miyoshi A, Azevedo V (2006) Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res 37(2):201–218

    PubMed  CAS  Google Scholar 

  • Efstratiou A, George RC (1996) Microbiology and epidemiology of diphtheria. Rev Med Microbiol 7(1):31–42

    Google Scholar 

  • Efstratiou A, George RC (1999) Laboratory guidelines for the diagnosis of infections caused by Corynebacterium diphtheriae and C. ulcerans. Commun Dis Public Health 2(4):250–257

    PubMed  CAS  Google Scholar 

  • Efstratiou A, Maple PAC (1994) Manual for the Laboratory Diagnosis of Diphtheria. The Expanded Programme on Immunisation in the European Region of WHO. ICP/EPI 038(C)

    Google Scholar 

  • Efstratiou A, Engler KH, Dawes CS, Sesardic D (1998) Comparison of phenotypic and genotypic methods for detection of diphtheria toxin among isolates of pathogenic corynebacteria. J Clin Microbiol 36(11):3173–3177

    PubMed  CAS  Google Scholar 

  • Elek SD (1948) The recognition of toxigenic bacterial strains in vitro. Br Med J 1(4549):493–496

    PubMed  CAS  Google Scholar 

  • Elek SD (1949) The plate virulence test for diphtheria. J Clin Pathol 2(4):250–258

    PubMed  CAS  Google Scholar 

  • Engler KH, Efstratiou A (2000) Rapid enzyme immunoassay for determination of toxigenicity among clinical isolates of corynebacteria. J Clin Microbiol 38(4):1385–1389

    PubMed  CAS  Google Scholar 

  • Engler KH, Glushkevich T, Mazurova IK, George RC, Efstratiou A (1997) A modified Elek test for detection of toxigenic corynebacteria in the diagnostic laboratory. J Clin Microbiol 35(2):495–498

    PubMed  CAS  Google Scholar 

  • Engler KH, Kozlov RS, Copping SJ, Efstratiou A (2001a) International external quality assessment scheme for the laboratory diagnosis of diphtheria. J Med Microbiol 50(11):1006–1012

    CAS  Google Scholar 

  • Engler KH, Warner M, George RC (2001b) In vitro activity of ketolides HMR 3004 and HMR 3647 and seven other antimicrobial agents against Corynebacterium diphtheriae. J Antimicrob Chemother 47(1):27–31

    CAS  Google Scholar 

  • Engler KH, Efstratiou A, Norn D, Kozlov RS, Selga I, Glushkevich TG, Tam M, Melnikov VG, Mazurova IK, Kim VE, Tseneva GY, Titov LP, George RC (2002) Immuno-chromatographic strip test for rapid detection of diphtheria toxin: description and multicenter evaluation in areas of low and high prevalence of diphtheria. J Clin Microbiol 40(1):80–83

    PubMed  CAS  Google Scholar 

  • European Centre for Disease Prevention and Control (2011) External quality assurance scheme for diphtheria diagnostics 2010. As part of the European Diphtheria Surveillance Network (EDSN). ECDC; 2011, Stockholm

    Google Scholar 

  • Fraser DT (1931) The technique of a method for quantitative determination of diphtheria antitoxin by skin test in rabbits. Trans R Soc Can (Sec V) 25 (2):175–181

    Google Scholar 

  • Fraser DT (1937) The intracutaneous virulence test for Corynebacterium diphtheriae. Am J Public Health 27(3):121–124

    Google Scholar 

  • Fraser DT, Weld CB (1926) The intracutaneous virulence test for Corynebacterium diphtheriae. Trans R Soc Can (Sec V) 20:343

    Google Scholar 

  • Freeman VJ (1950) Influence of type and concentration of antitoxin on the in vitro toxigenicity test for C. diphtheria. Public Health Rep 65(28):875–882

    PubMed  CAS  Google Scholar 

  • Freney J, Duperron MT, Courtier C, Hansen W, Allard F, Boeufgras JM, Monget D, Fleurette J (1991) Evaluation of API Coryne in comparison with conventional methods for identifying coryneform bacteria. J Clin Microbiol 29(1):38–41

    PubMed  CAS  Google Scholar 

  • Frobisher M Jr, King EO, Parsons EI (1951) A test in vitro for virulence of Corynebacterium diphtheriae. Am J Clin Pathol 21(3):282–285

    PubMed  Google Scholar 

  • Funke G, Bernard KA (2007) Coryneform gram-positive rods. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML (eds). Manual of Clinical Microbiology. American Society of Microbiology Press, 9th ed. Washington, DC, pp 485–514

    Google Scholar 

  • Funke G, von Graevenitz A, Clarridge JE 3rd, Bernard KA (1997a) Clinical microbiology of coryneform bacteria. Clin Microbiol Rev 10(1):125–159

    CAS  Google Scholar 

  • Funke G, Renaud FN, Freney J, Riegel P (1997b) Multicenter evaluation of the updated and extended API (RAPID) Coryne database 2.0. J Clin Microbiol 35(12):3122–3126

    CAS  Google Scholar 

  • Funke G, Peters K, Aravena-Roman M (1998) Evaluation of the RapID CB Plus System for identification of coryneform bacteria and Listeria spp. J Clin Microbiol 36(9):2439–2442

    PubMed  CAS  Google Scholar 

  • Gavin SE, Leonard RB, Briselden AM, Coyle MB (1992) Evaluation of the rapid CORYNE identification system for Corynebacterium species and other coryneforms. J Clin Microbiol 30(7):1692–1695

    PubMed  CAS  Google Scholar 

  • Grimont PA, Grimont F, Efstratiou A, De Zoysa A, Mazurova I, Ruckly C, Lejay-Collin M, Martin-Delautre S, Regnault B (2004) International nomenclature for Corynebacterium diphtheriae ribotypes. Res Microbiol 155(3):162–166

    PubMed  CAS  Google Scholar 

  • Groman N, Schiller J, Russell J (1984) Corynebacterium ulcerans and Corynebacterium pseudotuberculosis responses to DNA probes derived from corynephage beta and Corynebacterium diphtheriae. Infect Immun 45(2):511–517

    PubMed  CAS  Google Scholar 

  • Hall AJ, Cassiday PK, Bernard KA, Bolt F, Steigerwalt AG, Bixler D, Pawloski LC, Whitney AM, Iwaki M, Baldwin A, Dowson CG, Komiya T, Takahashi M, Hinrikson HP, Tondella ML (2010) Novel Corynebacterium diphtheriae in domestic cats. Emerg Infect Dis 16(4):688–691

    PubMed  Google Scholar 

  • Hallas G, Harrison TG, Samuel D, Colman G (1990) Detection of diphtheria toxin in culture supernates of Corynebacterium diphtheriae and C. ulcerans by immunoassay with monoclonal antibody. J Med Microbiol 32(4):247–253

    PubMed  CAS  Google Scholar 

  • Hatanaka A, Tsunoda A, Okamoto M, Ooe K, Nakamura A, Miyakoshi M, Komiya T, Takahashi M (2003) Corynebacterium ulcerans diphtheria in Japan. Emerg Infect Dis 9(6):752–753

    PubMed  Google Scholar 

  • Hauser D, Popoff MR, Kiredjian M, Boquet P, Bimet F (1993) Polymerase chain reaction assay for diagnosis of potentially toxinogenic Corynebacterium diphtheriae strains: correlation with ADP-ribosylation activity assay. J Clin Microbiol 31(10):2720–2723

    PubMed  CAS  Google Scholar 

  • Health Protection Agency (2008) National Standard Method: Identification of Corynebacterium species, BSOP ID2i3. www.evaluations-standards.org.uk

  • Hoy CS, Sesardic D (1994) In vitro assays for detection of diphtheria toxin. Toxicol In Vitro 8(4):693–695

    PubMed  CAS  Google Scholar 

  • Hudspeth MK, Hunt Gerardo S, Citron DM, Goldstein EJ (1998) Evaluation of the RapID CB Plus system for identification of Corynebacterium species and other gram-positive rods. J Clin Microbiol 36(2):543–547

    PubMed  CAS  Google Scholar 

  • Jalgaonkar SV, Saoji AM (1993) Coagglutination for rapid testing of toxin producing Corynebacterium diphtheriae. Indian J Med Res 97:35–36

    PubMed  CAS  Google Scholar 

  • Janda MW (1999) The corynebacteria revisited: new species, identification kits, and antimicrobial susceptibility testing. Clinical Microbiological Newsletter 21(22):175–182

    Google Scholar 

  • Jellard CH (1971) Comparison of Hoyle’s medium and Billings’ modification of Tinsdale’s medium for the bacteriological diagnosis of diphtheria. J Med Microbiol 4(3):366–369

    PubMed  CAS  Google Scholar 

  • Jellard CH (1980) Toxigenic and non-toxigenic Corynebacterium diphtheriae. Lancet 315(8169):650

    Google Scholar 

  • Katsukawa C, Kawahara R, Inoue K, Ishii A, Yamagishi H, Kida K, Nishino S, Nagahama S, Komiya T, Iwaki M, Takahashi M (2009) Toxigenic Corynebacterium ulcerans isolated from the domestic dog for the first time in Japan. Jpn J Infect Dis 62(2):171–172

    PubMed  Google Scholar 

  • Katsukawa C, Komiya T, Yamagishi H, Ishii A, Nishino S, Nagahama S, Iwaki M, Yamamoto A, Takahashi M (2012) Prevalence of Corynebacterium ulcerans in dogs in Osaka, Japan. J Med Microbiol 61:266–273

    PubMed  Google Scholar 

  • Khamis A, Raoult D, La Scola B (2004) rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol 42(9):3925–3931

    PubMed  CAS  Google Scholar 

  • Khamis A, Raoult D, La Scola B (2005) Comparison between rpoB and 16S rRNA gene sequencing for molecular identification of 168 clinical isolates of Corynebacterium. J Clin Microbiol 43(4):1934–1936

    PubMed  CAS  Google Scholar 

  • Kneen R, Pham NG, Solomon T, Tran TM, Nguyen TT, Tran BL, Wain J, Day NP, Tran TH, Parry CM, White NJ (1998) Penicillin vs. erythromycin in the treatment of diphtheria. Clin Infect Dis 27(4):845–450

    PubMed  CAS  Google Scholar 

  • Kobaidze K, Popovic T, Nakao H, Quick L (2000) Direct polymerase chain reaction for detection of toxigenic Corynebacterium diphtheriae strains from the Republic of Georgia after prolonged storage. J Infect Dis 181(Suppl 1):S152–S155

    PubMed  Google Scholar 

  • Komiya T, Seto Y, De Zoysa A, Iwaki M, Hatanaka A, Tsunoda A, Arakawa Y, Kozaki S, Takahashi M (2010) Two Japanese Corynebacterium ulcerans isolates from the same hospital: ribotype, toxigenicity and serum antitoxin titre. J Med Microbiol 59(12):1497–1504

    PubMed  CAS  Google Scholar 

  • Konrad R, Berger A, Huber H, Boschert V, Hörmansdorfer S, Busch U, Hogardt M, Schubert S, Sing A (2010) Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria. Euro Surveill 15(43):pii=19699

    Google Scholar 

  • Krech T (1994) Epidemiological typing of Corynebacterium diphtheriae. Med Microbiol Lett 3(1):1–8

    Google Scholar 

  • Krech T, Wittelsbürger C (1987) Immunologische Methoden zum Nachweis von Diphtherietoxin (Passive Haemagglutination und ELISA zum Toxinnachweis aus Kulturen und im Serum). Zentralbl Bakteriol Mikrobiol Hyg A 265(1–2):124–135

    PubMed  CAS  Google Scholar 

  • Laird W, Groman N (1973) Rapid, direct tissue culture test for toxigenicity of Corynebacterium diphtheriae. Appl Microbiol 25(2):709–712

    PubMed  CAS  Google Scholar 

  • Lennox ES, Kaplan AS (1957) Action of diphtheria toxin on cells cultivated in vitro. Proc Soc Exp Biol Med 95(4):700–702

    PubMed  CAS  Google Scholar 

  • Lindenmann K, von Graevenitz A, Funke G (1995) Evaluation of the Biolog system for the identification of asporogenous, aerobic gram-positive rods. Med Microbiol Lett 4(6):287–296

    Google Scholar 

  • Lucchini GM, Gruner E, Altwegg M (1992) Rapid detection of diphtheria toxin by the polymerase chain reaction. Med Microbiol Lett 1:276–283

    Google Scholar 

  • Martínez-Martínez L, Ortega MC, Suárez AI (1995) Comparison of E-test with broth microdilution and disk diffusion for susceptibility testing of coryneform bacteria. J Clin Microbiol 33(5):1318–1321

    PubMed  Google Scholar 

  • Mattos-Guaraldi AL, Sampaio JL, Santos CS, Pimenta FP, Pereira GA, Pacheco LG, Miyoshi A, Azevedo V, Moreira LO, Gutierrez FL, Costa JL, Costa-Filho R, Damasco PV, Camello TC, Hirata Jr R (2008) First detection of Corynebacterium ulcerans producing a diphtheria-like toxin in a case of human with pulmonary infection in the Rio de Janeiro metropolitan area Brazil. Mem Inst Oswaldo Cruz 103(4):396–400

    PubMed  CAS  Google Scholar 

  • Maximescu P, Fîciu S (1980) Slide agglutination assay in the C. diphtheriae identification. Arch Roum Pathol Exp Microbiol 39(3):205–212

    PubMed  CAS  Google Scholar 

  • Maximescu P, Oprişan A, Pop A, Potorac E (1974) Further studies on Corynebacterium species capable of producing diphtheria toxin (C. diphtheriae, C. ulcerans, C. ovis). J Gen Microbiol 82(1):49–56

    PubMed  CAS  Google Scholar 

  • McNamara PJ, Cuevas WA, Songer JG (1995) Toxic phospholipases D of Corynebacterium pseudotuberculosis, C. ulcerans and Arcanobacterium haemolyticum: cloning and sequence homology. Gene 156(1):113–118

    PubMed  CAS  Google Scholar 

  • Meers PD (1979) A case of classical diphtheria, and other infections due to Corynebacterium ulcerans. J Infect 1(1):139–142

    Google Scholar 

  • Mikhailovich VM, Melnikov VG, Mazurova IK, Wachsmuth IK, Wenger JD, Wharton M, Nakao H, Popovic T (1995) Application of PCR for detection of toxigenic Corynebacterium diphtheriae strains isolated during the Russian diphtheria epidemic, 1990 through 1994. J Clin Microbiol 33(11):3061–3063

    PubMed  CAS  Google Scholar 

  • Mina NV, Burdz T, Wiebe D, Rai JS, Rahim T, Shing F, Hoang L, Bernard K (2011) Canada’s first case of a multidrug-resistant Corynebacterium diphtheriae strain, isolated from a skin abscess. J Clin Microbiol 49(11):4003–4005

    PubMed  CAS  Google Scholar 

  • Mokrousov I (2009) Corynebacterium diphtheriae: genome diversity, population structure and genotyping perspectives. Infect Genet Evol 9(1):1–15

    PubMed  CAS  Google Scholar 

  • Mokrousov I, Narvskaya O, Limeschenko E, Vyazovaya A (2005) Efficient discrimination within a Corynebacterium diphtheriae epidemic clonal group by a novel macroarray-based method. J Clin Microbiol 43(4):1662–1668

    PubMed  CAS  Google Scholar 

  • Mothershed EA, Cassiday PK, Pierson K, Mayer LW, Popovic T (2002) Development of a real-time fluorescence PCR assay for rapid detection of the diphtheria toxin gene. J Clin Microbiol 40(12):4713–4719

    PubMed  CAS  Google Scholar 

  • Mouton RP (1960) Isolation of non-toxigenic diphtheria bacteria and phages during a local outbreak of diphtheria. Antonie Van Leeuwenhoek 26(1):297–304

    PubMed  CAS  Google Scholar 

  • Murphy JR, Bacha P, Teng M (1978) Determination of Corynebacterium diphtheriae toxigenicity by a colorimetric tissue culture assay. J Clin Microbiol 7(1):91–96

    PubMed  CAS  Google Scholar 

  • Nakao H, Popovic T (1997) Development of a direct PCR assay for detection of the diphtheria toxin gene. J Clin Microbiol 35(7):1651–1655

    PubMed  CAS  Google Scholar 

  • Nakao H, Popovic T (1998) Use of random amplified polymorphic DNA for rapid molecular subtyping of Corynebacterium diphtheriae. Diagn Microbiol Infect Dis 30(3):167–172

    PubMed  CAS  Google Scholar 

  • Neal SE, Efstratiou A (2009) International external quality assurance for laboratory diagnosis of diphtheria. J Clin Microbiol 47(12):4037–4042

    PubMed  CAS  Google Scholar 

  • Nielsen PB, Koch C, Friis H, Heron I, Prag J, Schmidt J (1987) Double-antibody sandwich enzyme-linked immunosorbent assay for rapid detection of toxin-producing Corynebacterium diphtheriae. J Clin Microbiol 25(7):1280–1284

    PubMed  CAS  Google Scholar 

  • Noble WC, Dixon JMS (1990) Corynebacterium and other coryneform bacteria. In: Parker MT, Duerden BI (eds) Topley Wilson’s principles of bacteriology, virology and immunity, vol. 2. Edward Arnold, London, pp 103–118

    Google Scholar 

  • Ouchterlony O (1948) In vitro method for testing the toxin-producing capacity of diphtheria bacteria. Acta Pathol Microbiol Scand 25(1–2):186–191

    PubMed  CAS  Google Scholar 

  • Pacheco LG, Pena RR, Castro TL, Dorella FA, Bahia RC, Carminati R, Frota MN, Oliveira SC, Meyer R, Alves FS, Miyoshi A, Azevedo V (2007) Multiplex PCR assay for identification of Corynebacterium pseudotuberculosis from pure cultures and for rapid detection of this pathogen in clinical samples. J Med Microbiol 56(4):480–486

    PubMed  CAS  Google Scholar 

  • Pallen MJ (1991) Rapid screening for toxigenic Corynebacterium diphtheriae by the polymerase chain reaction. J Clin Pathol 44(12):1025–1026

    PubMed  CAS  Google Scholar 

  • Pallen MJ, Hay AJ, Puckey LH, Efstratiou A (1994) Polymerase chain reaction for screening clinical isolates of corynebacteria for the production of diphtheria toxin. J Clin Pathol 47(4):353–356

    PubMed  CAS  Google Scholar 

  • Pascual C, Lawson PA, Farrow JA, Gimenez MN, Collins MD (1995) Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences. Int J Syst Bacteriol 45(4):724–728

    PubMed  CAS  Google Scholar 

  • Pereira GA, Pimenta FP, Santos FR, Damasco PV, Hirata R Jr, Mattos-Guaraldi AL (2008) Antimicrobial resistance among Brazilian Corynebacterium diphtheriae strains. Mem Inst Oswaldo Cruz 103(5):507–510

    PubMed  CAS  Google Scholar 

  • Petrie GF, Steabben D (1943) Specific identification of the chief pathogenic clostridia of gas gangrene. Brit Med J 1(4290):377–379

    PubMed  CAS  Google Scholar 

  • Pietrzak J, Muehlestein S, Gasser M (1990) Sandwich-dot immunobinding assay (Sandwich-DIA), a new immunological method for the detection of diphtheria toxin. Zentralbl Bakteriol 274(1):61–69

    PubMed  CAS  Google Scholar 

  • Pike RM (1976) Laboratory-associated infections: summary and analysis of 3921 cases. Health Lab Sci 13(2):105–114

    PubMed  CAS  Google Scholar 

  • Pike RM, Sulkin SE, Schulze ML (1965) Continuing importance of laboratory-acquired infections. Am J Public Health Nations Health 55(2):190–199

    PubMed  CAS  Google Scholar 

  • Pimenta FP, Matias GA, Pereira GA, Camello TC, Alves GB, Rosa AC, Hirata R Jr, Mattos-Guaraldi AL (2008a) A PCR for dtxR gene: application to diagnosis of non-toxigenic and toxigenic Corynebacterium diphtheriae. Mol Cell Probes 22(3):189–192

    CAS  Google Scholar 

  • Pimenta FP, Souza MC, Pereira GA, Hirata R Jr, Camello TC, Mattos-Guaraldi AL (2008b) DNase test as a novel approach for the routine screening of Corynebacterium diphtheriae. Lett Appl Microbiol 46(3):307–311

    CAS  Google Scholar 

  • Popovic T, Kombarova SY, Reeves MW, Nakao H, Mazurova IK, Wharton M, Wachsmuth IK, Wenger JD (1996) Molecular epidemiology of diphtheria in Russia, 1985–1994. J Infect Dis 174(5):1064–1072

    PubMed  CAS  Google Scholar 

  • Reinhardt DJ, Lee A, Popovic T (1998) Antitoxin-in-membrane and antitoxin-in-well assays for detection of toxigenic Corynebacterium diphtheriae. J Clin Microbiol 36(1):207–210

    PubMed  CAS  Google Scholar 

  • Rennie RP, Brosnikoff C, Turnbull L, Reller LB, Mirrett S, Janda W, Ristow K, Krilcich A (2008) Mulitcenter evaluation of the Vitek 2 anaerobe and Corynebacterium identification card. J Clin Microbiol 46(8):2646–2651

    PubMed  Google Scholar 

  • Riegel P, Ruimy R, de Briel D, Prévost G, Jehl F, Christen R, Monteil H (1995) Taxonomy of Corynebacterium diphtheriae and related taxa, with recognition of Corynebacterium ulcerans sp. nov. nom. rev. FEMS Microbiol Lett 126(3):271–276

    PubMed  CAS  Google Scholar 

  • Ruimy R, Riegel P, Boiron P, Monteil H, Christen R (1995) Phylogeny of the genus Corynebacterium deduced from analyses of small-subunit ribosomal DNA sequences. Int J Syst Bacteriol 45(4):740–746

    PubMed  CAS  Google Scholar 

  • Schubert JH, Bickham ST, Wiggins GL (1968) Tissue culture method for toxigenicity testing of Corynebacterium diphtheriae. Appl Microbiol 16(11):1748–1752

    PubMed  CAS  Google Scholar 

  • Schuhegger R, Kugler R, Sing A (2008a) Classical diphtheria caused by Corynebacterium ulcerans in Germany: amino acid sequence differences between diphtheria toxins from Corynebacterium diphtheriae and C. ulcerans. Clin Infect Dis 47(2):288

    Google Scholar 

  • Schuhegger R, Lindermayer M, Kugler R, Heesemann J, Busch U, Sing A (2008b) Detection of toxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans strains by a novel real-time PCR. J Clin Microbiol 46(8):2822–2823

    Google Scholar 

  • Schuhegger R, Schoerner C, Dlugaiczyk J, Lichtenfeld I, Trouillier A, Zeller-Peronnet V, Busch U, Berger A, Kugler R, Hörmansdorfer S, Sing A (2009) Pigs as source for toxigenic Corynebacterium ulcerans. Emerg Infect Dis 15(8):1314–1315

    PubMed  Google Scholar 

  • Segal E, Eylan E, Imre Z (1973) Cystine-serum-tellurite: a differential medium for Corynebacterium diphtheriae. Med Microbiol Immun 158(3):165–169

    CAS  Google Scholar 

  • Seto Y, Komiya T, Iwaki M, Kohda T, Mukamoto M, Takahashi M, Kozaki S (2008) Properities of corynephage attachment site and molecular epidemiology of Corynebacterium ulcerans isolated from humans and animals in Japan. Jpn J Infect Dis 61(2):116–122

    PubMed  CAS  Google Scholar 

  • Simmons LE, Abbott JD, Macaulay ME, Jones AE, Ironside AG, Mandal BK, Stanbridge TN, Maximescu P (1980) Diphtheria carriers in Manchester: simultaneous infection with toxigenic and non-toxigenic mitis strains. Lancet 315(8163):304–305

    Google Scholar 

  • Sing A, Hogardt M, Bierschenk S, Heesemann J (2003) Detection of differences in the nucleotide and amino acid sequences of diphtheria toxin from Corynebacterium diphtheriae and Corynebacterium ulcerans causing extrapharyngeal infections. J Clin Microbiol 41(10):4848–4851

    PubMed  CAS  Google Scholar 

  • Sing A, Bierschenk S, Heesemann J (2005) Classical diphtheria caused by Corynebacterium ulcerans in Germany: amino acid sequence differences between diphtheria toxins from Corynebacterium diphtheriae and C. ulcerans. Clin Infect Dis 40(2):325–326

    PubMed  Google Scholar 

  • Sing A, Berger A, Schneider-Brachert W, Holzmann T, Reischl U (2011) Rapid detection and molecular differentiation of toxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans strains by LightCycler PCR. J Clin Microbiol 49(7):2485–2489

    PubMed  CAS  Google Scholar 

  • Soto A, Zapardiel J, Soriano F (1994) Evaluation of API Coryne system for identifying coryneform bacteria. J Clin Pathol 47(8):756–975

    PubMed  CAS  Google Scholar 

  • Strauss N, Hendee ED (1959) The effect of diphtheria toxin on the metabolism of HeLa cells. J Exp Med 109(2):145–163

    PubMed  CAS  Google Scholar 

  • Sulakvelidze A, Kekelidze M, Gomelauri T, Deng Y, Khetsuriani N, Kobaidze K, De Zoysa A, Efstratiou A, Morris JG Jr, Imnadze P (1999) Diphtheria in the Republic of Georgia: use of molecular typing techniques for characterization of Corynebacterium diphtheriae strains. J Clin Microbiol 37(10):3265–3270

    PubMed  CAS  Google Scholar 

  • Synder JW (2004) Corynebacterium diphtheriae cultures. In: Isenberg HD (ed), Clinical Microbiology Procedures Handbook, 2nd ed. ASM Press, Washington, DC, pp 3.11.7.1–3.11.7.9.

    Google Scholar 

  • Tang YW, von Graevenitz A, Waddington MG, Hopkins MK, Smith DH, Li H, Kolbert CP, Montgomery SO, Persing DH (2000) Identification of coryneform bacterial isolates by ribosomal DNA sequence analysis. J Clin Microbiol 38(4):1676–1678

    PubMed  CAS  Google Scholar 

  • Taylor I, Tomlinson AJH, Davies JR (1962) Diphtheria control in the 1960’s. J R Soc Promot Health 82(3):158–164

    CAS  Google Scholar 

  • Thilo W, Kiehl W, Geiss HK (1997) A case report of laboratory-acquired diphtheria. Euro Surveill 2(8):67–68

    PubMed  Google Scholar 

  • Thompson NL, Ellner PD (1978) Rapid determination of Corynebacterium diphtheriae toxigenicity by counterimmunoelectrophoresis. J Clin Microbiol 7(5):493–494

    PubMed  CAS  Google Scholar 

  • Thompson JS, Gates-Davis DR, Yong DC (1983) Rapid microbiochemical identification of Corynebacterium diphtheriae and other medically important corynebacteria. J Clin Microbiol 18(4):926–929

    PubMed  CAS  Google Scholar 

  • Tinsdale GFW (1947) A new medium for the isolation and identification of Corynebacterium diphtheriae based on the production of hydrogen sulphide. J Pathol Bacteriol 59(3):461–466

    Google Scholar 

  • Tiwari TS, Golaz A, Yu DT, Ehresmann KR, Jones TF, Hill HE, Cassiday PK, Pawloski LC, Moran JS, Popovic T, Wharton M (2008) Investigations of 2 cases of diphtheria-like illness due to toxigenic Corynebacterium ulcerans. Clin Infect Dis 46(3):395–401

    PubMed  Google Scholar 

  • Toma C, Sisavath L, Iwanaga M (1997) Reversed passive latex agglutination assay for detection of toxigenic Corynebacterium diphtheriae. J Clin Microbiol 35(12):3147–3149

    PubMed  CAS  Google Scholar 

  • Vaneechoutte M, Riegel P, de Briel D, Monteil H, Verschraegen G, De Rouck A, Claeys G (1995) Evaluation of the applicability of amplified rDNA-restriction analysis (ARDRA) to identification of species of the genus Corynebacterium. Res Microbiol 146(8):633–641

    PubMed  CAS  Google Scholar 

  • von Graevenitz A, Funke G (1996) An identification scheme for rapidly and aerobically growing gram-positive rods. Zentralblatt Bakteriol Parasitenkd Infekt Hyg 284(2–3):246–254

    CAS  Google Scholar 

  • von Graevenitz A, Pünter-Streit V, Riegel P, Funke G (1998) Coryneform bacteria in throat cultures of healthy individuals. J Clin Microbiol 36(7):2087–2088

    PubMed  CAS  Google Scholar 

  • von Hunolstein C, Scopetti F, Efstratiou A, Engler K (2002) Penicillin tolerance amongst non-toxigenic Corynebacterium diphtheriae isolated from cases of pharyngitis. J Antimicrob Chemother 50 (1):125–128

    PubMed  CAS  Google Scholar 

  • Wagner KS, Stickings P, White JM, Neal S, Crowcroft NS, Sesardic D, Efstratiou A (2009) A review of the international issues surrounding the availability and demand for diphtheria antitoxin for therapeutic use. Vaccine 28(1):14–20

    PubMed  CAS  Google Scholar 

  • Wagner KS, White JM, Crowcroft NS, De Martin S, Mann G, Efstratiou A (2010) Diphtheria in the United Kingdom, 1986–2008: the increasing role of Corynebacterium ulcerans. Epidemiol Infect 138(11):1519–1530

    PubMed  CAS  Google Scholar 

  • Weiss K, Laverdière M, Rivest R (1996) Comparison of antimicrobial susceptibilities of Corynebacterium species by broth microdilution and disk diffusion methods. Antimicrob Agents Chemother 40(4):930–933

    PubMed  CAS  Google Scholar 

  • Wellinghausen N, Sing A, Kern WV, Perner S, Marre R, Rentschler J (2002) A fatal case of necrotizing sinusitis due to toxigenic Corynebacterium ulcerans. Int J Med Microbiol 292(1):59–63

    PubMed  Google Scholar 

  • Wirsing von Koenig CH, Krech T, Finger H, Bergmann M (1988) Use of fosfomycin disks for isolation of diphtheroids. Eur J Clin Microbiol Infect Dis 7(2):190–193

    PubMed  CAS  Google Scholar 

  • Young PS, Smith DD (1976) The detection of toxin production by Corynebacterium diphtheriae in diagnostic laboratories. Pathology 8(2):101–104

    PubMed  CAS  Google Scholar 

  • Zapardiel J, Nieto E, Gegúndez MI, Gadea I, Soriano F (1994) Problems in minimum inhibitory concentration determinations in coryneform organisms. Comparison of an agar dilution and the Etest. Diagn Microbiol Infect Dis 19(3):171–173

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Sing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht (outside the USA)

About this chapter

Cite this chapter

Berger, A., Hogardt, M., Konrad, R., Sing, A. (2014). Detection Methods for Laboratory Diagnosis of Diphtheria. In: Burkovski, A. (eds) Corynebacterium diphtheriae and Related Toxigenic Species. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7624-1_9

Download citation

Publish with us

Policies and ethics