Skip to main content

Spatially-Varying and Coherent Structures

  • Chapter
  • First Online:
The Near-Surface Layer of the Ocean

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 48))

  • 1419 Accesses

Abstract

This chapter is devoted to the theory and observation of coherent structures in the near-surface layer of the ocean. The upper ocean boundary layer is turbulent but not completely random. The phenomenon of self-organization occurs in a variety of nonlinear dissipative systems. Spatially coherent, organized motions have been recognized as an important part of turbulent boundary-layer processes.These motions provide nonlocal transport of properties across the boundary layer. Spirals on the sea surface and sharp frontal interfaces are intriguing examples of self-organization. Other types of quasiperiodic structures in the near-surface ocean, such as freshwater lenses produced by rainfalls, may have distinct signatures in the sea surface temperature field. Due to the presence of surface gravity waves, the Ekman boundary layer is unstable to helical motions (Langmuir cells). Ramp-like structures are a common feature of boundary-layer flows; they are, however, oriented perpendicular to the wind direction, while Langmuir cells are roughly aligned with the wind. Internal waves, resonant interactions between surface and internal modes, billows in the diurnal thermocline, and convection also produce organized motions in the upper ocean under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando K, McPhaden MJ (1997) Variability of surface layer hydrography in the tropical Pacific ocean. J Geophys Res 102(C10):23063–23078

    Google Scholar 

  • Antonia RA, Chambers AJ, Friehe CA, Van Atta CW (1979) Temperature ramps in the atmospheric surface layer. J Atmos Sci 36:99–108

    Google Scholar 

  • Apel JR, Byrne HM, Proni JR, Charnell RL (1975) Observations of oceanic internal and surface waves from the earth resources technology satellite. J Geophys Res 80:865–881

    Google Scholar 

  • Barenblatt GI, Shapiro GI (1984) A contribution to the theory of the wave fronts in dispersive media. Izvestiya, Akad Nauk SSSR, Atmos Oceanic Phys 20(4):277–284

    Google Scholar 

  • Batchelor GK (1969) Computation of the energy spectrum in homogeneous two-dimensional turbulence. The Physics of Fluids, Suppl. II, 12:233–239

    Google Scholar 

  • Belcher SE, Vassilicos JC (1997) Breaking waves and the equilibrium range of wind wave spectra. J Fluid Mech 342:377–401

    Google Scholar 

  • Belkin I, Cornillon P, Shan Z (2001) Global survey of ocean fronts from Pathfinder SST data. The oceanography society biennial scientific meeting, 2–5 April, 2001, Miami Beach, Florida USA. Oceanography 14(1):10

    Google Scholar 

  • Boubnov BM, Golitsyn GS (1990) Temperature and velocity field regimes of convective motions in a rotating fluid layer. J Fluid Mech 219:215–239

    Google Scholar 

  • Branover H, Eidelman A, Golbraikh E, Moiseev S (1999) Turbulence and structures. Chaos, fluctuations, and self-organization in nature and in the laboratory. Academic Press, San Diego, p 270

    Google Scholar 

  • Brekhovskikh LM, Goncharov VV, Kurtepov VM, Naugol’nykh KA (1972) Resonant excitation of internal waves by nonlinear interaction of surface waves Izvestiya,. Atmos Ocean Phys 8:192–203

    Google Scholar 

  • Briscoe MG (1983) Observations on the energy balance of internal waves during JASIN. Philos T Roy Soc London A308:427–444

    Google Scholar 

  • Brown GL, Thomas ASW (1977) Large structure in a turbulent boundary layer. Phys Fluids 20:S243–S252

    Google Scholar 

  • Cabanes O (1999) Modulation of mixed layer thermodynamics by equatorial waves in the tropical western Pacific. report. ENM Meteo France and SOEST University of Hawaii, p 74

    Google Scholar 

  • Corino ER, Brodkey RS (1969) A visual investigation of the wall region in turbulent flow. J Fluid Mech 37: 1–30

    Google Scholar 

  • Craik ADD (1977) The generation of Langmuir circulations by an instability mechanism. J Fluid Mech 81:209–223

    Google Scholar 

  • Craik ADD, Leibovich S (1976) A rational model for Langmuir circulations. J Fluid Mech 73:401–426

    Google Scholar 

  • Csanady GT (1984) The free surface turbulent shear layer. J Phys Oceanogr 14:402–411

    Google Scholar 

  • D’Asaro EA, Farmer DM, Osse JT, Dairiki GT (1996) A Lagrangian float. J Atmos Ocean Tech 13:1230–1246

    Google Scholar 

  • Delcroix T, Eldin G, Henin C, Gallois F, Grelet J, Inal M, Keene S, Langlade M.-J, Menkes C, Masia F, Richards K (1993) Campagne COARE-POI a bord du N.O. Le Noroit, 1 Dec 92–2 Mar 93. Technical Report, ORSTOM, BP A5, Noumea, New Caledonia. Rapports de Missions, Sci Mer Oceanogr Phys 10:338

    Google Scholar 

  • Dhanak MR, Si C (1999) On reduction of turbulent wall friction through spanwise wall oscillations. J Fluid Mech 383:175–195

    Google Scholar 

  • Dobrokhotov S, Semenov E, Tirozzi B (2003) Hugoniot–Maslov chains for singular eddy solutions of quasilinear hyperbolic systems and tayphoon trajectories. Sovrem Mat Fund Napr 2:5–44 (in Russian).

    Google Scholar 

  • Dysthe TH, Das KP (1981) Coupling between a surface wave spectrum and an internal wave: modulation interaction. J Fluid Mech 104:483–503

    Google Scholar 

  • Einstein A (1905) On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Annalen der Physik 17:549–560

    Google Scholar 

  • Eldevik T, Dysthe K (2002) Spiral Eddies. J Phys Oceanogr 32(3):851–869

    Google Scholar 

  • Faller AJ, Caponi EA (1978) Laboratory studies of wind-driven Langmuir circulations. J Geophys Res 83:3617–3633

    Google Scholar 

  • Farmer DM (1978) Observations of long nonlinear internal waves in a lake. J Phys Oceanogr 8(1):63–73

    Google Scholar 

  • Fedorov KN (1986) The physical nature and structure of oceanic fronts. Springer-Verlag, Berlin

    Google Scholar 

  • Feng M, Lukas R, Hacker P, Weller RA, Anderson SP (2000) Upper ocean heat and salt balances in the western equatorial Pacific in response to the intraseasonal oscillation during TOGA COARE. J Climate 13:2409–2427

    Google Scholar 

  • Feng M, Lukas R, Hacker P (2001) Spin-up of a sub-mesoscale eddy in the TOGA COARE Intensive flux array during the spin-down of an intense eastward jet. J Phys Oceanogr 31(3):711–724

    Google Scholar 

  • Ferrari R, Paparella F (2003) Compensation and alignment of thermohaline gradients in the ocean mixed layer. J Phys Oceanogr 34:247–257

    Google Scholar 

  • Ferrari R, Rudnick DL (2000) Thermohaline variability in the upper ocean. J Geophys Res 105(C7):16,857–16,883

    Google Scholar 

  • Ferrari R, Young WR (1997) On the development of thermohaline correlations as a result of nonlinear diffusive parameterizations. J Mar Res 55:1069–1101

    Google Scholar 

  • Ferrari R, Paparella F, Rudnick DL, Young WR (2001) The temperature-salinity relationship of the mixed layer. In: Peter Muller, Diane Henderson (eds) Proceedings, Hawaiian winter workshop, University of Hawaii at Manoa, January 16–19, 2001. SOEST Special Publication 2001, pp 95–104

    Google Scholar 

  • Flament P, Firing J, Sawyer M, Trefois C (1994) Amplitude and horizontal structure of a large diurnal sea surface warming event during the coastal ocean dynamics experiment. J Phys Oceanogr 24:124–139

    Google Scholar 

  • Foster TD (1975) The hierarchy of convection, Colloques Internationaux du C.N.R.S. N215.—Processus de Formation Des Eaux Oceaniques Profondes, pp 235–241

    Google Scholar 

  • Gargett AE (2009) Couette vs. Langmuir circulations: Comment on “On the helical flow of Langmuir circulation—Approaching the process of suspension freezing” by Dethleff, Kempema, Koch and Chubarenko. Cold Reg Sci Techn 56:58–60

    Google Scholar 

  • Goldstein S (1931) On the stability of superposed streams of fluids of different densities. Proc Roy Soc A 132:524–548

    Google Scholar 

  • Golitsyn S (2008) Polar lows and tropical hurricanes: Their energy and sizes and a quantitative criterion for their generation. Izv., Atmos Ocean Phys 44(5):537–547

    Google Scholar 

  • Golitsyn GS (2012) On the nature of spiral eddies on the surface of seas and oceans. Izvestiya, Atmos Oceanic Phys 48(3):350–354

    Google Scholar 

  • Grabowski WW, Smolarkiewicz PK (1999) CRCP: a cloud resolving convection parameterization for modeling the tropical convecting atmosphere. Physica D 133:171(178)

    Google Scholar 

  • Hagen JP, Kurosaka M (1993) Corewise cross-flow transport in hairpin vortices–the “Tornado Effect.” Phys. Fluids A 5:3167–3174

    Google Scholar 

  • Hasegawa A (1985) Self-organization processes in continuous media. Advan Phys 34:1–42

    Google Scholar 

  • Hinze J (1975) Turbulence. McGraw-Hill, New York, p 790

    Google Scholar 

  • Howard LN (1961) Note on a paper of John Miles. J Fluid Mech 10: 509–512

    Google Scholar 

  • Howard LN (1966) Convection at high Rayleigh number. Proc of the Eleventh Intern. Congress of Applied Mechanics, Munich, pp 1109–1115

    Google Scholar 

  • Hunkins K, Fliegel MJ (1973) Internal undular surges in Seneca Lake: Natural

    Google Scholar 

  • Huyer A, Kosro PM, Lukas R, Hacker P (1997) Upper ocean thermohaline fields near 2°S, 156°E, during the coupled ocean-atmosphere response experiment, November 1992 to February 1993. J Geophys Res 102:12,749–12,784

    Google Scholar 

  • Imberger J (1985) The diurnal mixed layer. Limnol Oceanogr 30(4):737–770

    Google Scholar 

  • Kamal JC, Wyngaard JC, Izumi Y, Cote OR (1972) Spectral characteristics of surface-layer turbulence, Q J Roy Meteor Soc 98:563–589

    Google Scholar 

  • Kantha L (2006) Comments on “Second-order turbulence closure models for geophysical boundary layers: a review of recent work“. Cont Shelf Res 26:819–822

    Google Scholar 

  • Kline SJ, Reynolds WC, Schraub FA, Runstadler PW (1967) The structure of turbulent boundary layers. J Fluid Mech 30:741–773

    Google Scholar 

  • Kraichnan RH (1967) Inertial ranges in two-dimensional turbulence. Phys Fluids 10:1417–1423

    Google Scholar 

  • Kraichnan RH (1975) Statistical dynamics of two-dimensional flow. J Fluid Mech 67:155–175

    Google Scholar 

  • Kudryavtsev VN, Soloviev AV (1990) Slippery near-surface layer of the ocean arising due to daytime solar heating. J Phys Oceanogr 20:617–628

    Google Scholar 

  • Landau LD, Lifshitz EM (1993) Fluid mechanics, 2nd edn. Pergamon Press, New York, p 593

    Google Scholar 

  • Langmuir I (1938) Surface motion of water induced by wind. Science 87(2250):119–123

    Google Scholar 

  • Large WG, Danabasoglu G, McWilliams JC, Gent PR, Bryan FO (2001) Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J Phys Oceanogr 31:518–536

    Google Scholar 

  • Leibovich S (1977a) On the evolution of the system of wind drift currents and Langmuir circulations in the ocean. Part I. Theory and the averaged current. J Fluid Mech 79:715–749

    Google Scholar 

  • Leibovich S (1977b) Convective instability of stably stratified water in the ocean. J Fluid Mech 82:561–585

    Google Scholar 

  • Leibovich S (1983) The form and dynamics of Langmuir circulations. Ann Rev Fluid Mech 15:391–427

    Google Scholar 

  • Leibovich S, Lele SK (1982) Thermocline erosion and surface temperature variability due to Langmuir circulations. FDA Rep. #82–07, Sibey School Mech & Aerosp. Eng. Cornell Univ., Ithaca

    Google Scholar 

  • Leibovich S, Ulrich D (1972) A note on the growth of small scale Langmuir circulations. J Geophys Res 77:1683–1688

    Google Scholar 

  • Lesieur M (2008) Turbulence in fluids, fourth revised and enlarged edition. Springer. p 148.

    Google Scholar 

  • Liang J‐H, McWilliams JC, Sullivan PP, Baschek B (2011) Modeling bubbles and dissolved gases in the ocean, J Geophys Res 116:C03015

    Google Scholar 

  • Liang J-H, McWilliams JC, Sullivan PP, Baschek B (2012) Large eddy simulation of the bubbly ocean: New insights on subsurface bubble distribution and bubble-mediated gas transfer, J Geophys Res 117:C04002

    Google Scholar 

  • Lien R-C, McPhaden MJ, Gregg MC (1996) High-frequency internal waves at 0°, 140°W and their possible relationship to deep-cycle turbulence. J Phys Oceanogr 26:581–600

    Google Scholar 

  • Lin CC (1966) The theory of hydrodynamcis stability. Cambridge Univ. Press, p 155

    Google Scholar 

  • Lin C-L (2000) Local pressure transport structure in a convective atmospheric boundary layer. Phys Fluids 12:1112–1128

    Google Scholar 

  • Longuet-Higgins MS (1962) Resonant interaction between two trains of gravity waves. J Fluid Mech 12:321–332

    Google Scholar 

  • Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res C96(Supplement):3343–3358

    Google Scholar 

  • Mack AP, Hebert D (1997) Internal gravity waves in the upper eastern equatorial Pacific: Observations and numerical solutions. J Geophys Res 102(9):21,081–21,100

    Google Scholar 

  • Marmorino GO, Smith GB, Lindemann GJ (2005) Infrared imagery of large-aspect-ratio Langmuir circulation. Continental Shelf Res 25:1–6

    Google Scholar 

  • Maslov VP (1980) Three algebras meeting nonsmooth solutions of systems of quasilinear hyperbolic equations. Uspekhi Mat Nauk 35(2):252–253 (in Russian)

    Google Scholar 

  • Matsuura H (2002) Observed variations of the upper ocean zonal currents in the western equatorial Pacific and their relation to local wind. J Geophys Res 107:3210

    Google Scholar 

  • Matt S, Fujimura A, Soloviev A, Rhee SH, Romeiser R (2012) Fine-scale features on the sea surface in SAR satellite imagery—Part 2: Numerical modeling. Ocean Sci Discuss 9:2915–2950

    Google Scholar 

  • McCreary JP Jr, Kohler KE, Hood RR, Smith S, Kindle J, Fischer AS, Weller RA (2001) Influences of diurnal and intraseasonal forcing on mixed-layer and biological variability in the central arabian sea. J Geophys Res 106:7139–7155

    Google Scholar 

  • McNaughton KG, Brunet Y (2002) Townsend’s hypothesis, coherent structures and Monin-Obukhov similarity. Bound-Layer Meteor 102:161–175

    Google Scholar 

  • McWilliams J (1984) The emergence of isolated coherent vortices in turbulent flow. J Fluid Mech 146:2–43

    Google Scholar 

  • McWilliams JC. Sullivan P (2000) Vertical mixing by Langmuir circulations. Spill Sci Techn Bull 6(3/4):225–236

    Google Scholar 

  • McWilliams JC, Sullivan PP, Moeng C-H (1997) Langmuir turbulence in the ocean. J Fluid Mech 334:1–30

    Google Scholar 

  • Moffatt HK, Tsinober A (1992) Helicity in laminar and turbulent flow. Ann Rev Fluid Mech 24:281–312

    Google Scholar 

  • Moncrieff MW, Krueger SK, Gregory D, Redelsperger J-L, Tao W-K (1997) GEWEX Cloud System Study (GCSS) Working Group 4: Precipitating convective cloud systems. Bull Am Meteorol Soc 78:831–845

    Google Scholar 

  • Moore DW, Philander SGH (1977) Modeling the equatorial oceanic circulation. In: The Sea, Vol. VI, Wiley Interscience, New York, pp 319–361

    Google Scholar 

  • Munk W, Armi L (2001) Spirals on the sea: A manifestation of upper-ocean stirring. In: From stirring to mixing in a stratified ocean, Proceedings ‘Aha Huliko’a Hawaiian Winter Workshop. University of Hawaii at Manoa, January 16–19, 2001, SOEST Special Publication, p 81–86

    Google Scholar 

  • Nicolas G, Prigogine I (1977) Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. Wiley, New York, p 491

    Google Scholar 

  • Offen GR, Kline SJ (1975): A proposed model of the bursting process in turbulent boundary layers’, J Fluid Mech 70:209–228

    Google Scholar 

  • Olbers DJ, Herterich K (1979) The spectral energy transfer from surface waves to internal waves. J Fluid Mech 92:349–380

    Google Scholar 

  • Özgökmen TM, Piterbarg LI, Mariano AJ, Ryan EH (2001) Predictability of drifter trajectories in the tropical Pacific Ocean. J Phys Oceanogr 31(9):2691–2720

    Google Scholar 

  • Pelinovsky DE, Shrira VI (1995) Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows. Phys Lett A: Math Gen 206:195–202

    Google Scholar 

  • Peltier LJ, Wyngaard JC, Khanna S, Brasseur J (1996) Spectra in the unstable surface layer. J Atmos Sci 53:49–61

    Google Scholar 

  • Phillips OM (1977) The dynamics of the upper ocean. Cambridge University Press, p 366

    Google Scholar 

  • Phong-Anant D, Antonia RA, Chamber AJ, Rajagopalan S (1980) Features of the organized motion in the atmospheric surface layer. J Geophys Res 424–432

    Google Scholar 

  • Pinkel R (2000) Internal solitary waves in the warm pool of the western equatorial Pacific. J Phys Oceanogr 30:2906–2926

    Google Scholar 

  • Pollard RT (1977) Observations and theories of Langmuir circulations and their role in near surface mixing. In: Angel M (ed) A voyage of discovery: George Deacon 70th anniversary volume, Pergamon Press, Oxford, p 696

    Google Scholar 

  • Price JF, Sanford TB, Forristall GZ (1994) Forced stage response to a moving hurricane. J Phys Oceanogr 24:233–260

    Google Scholar 

  • Rabinovich SG (1995) Measurement errors: theory and practice. American institute of physics, Woodbury, New York, p 279

    Google Scholar 

  • Randall D, Khairoutdinov M, Arakawa A, Grabowski A (2003) Breaking the cloud parameterization deadlock, Bull Amer Meteor Soc 84(11):1547–1564

    Google Scholar 

  • Redelsperger JL, Brown PRA, Guichard F, Hoff C, Kawasima M, Lang S, Montmerle Th, Nakamura K, Saito K, Seman C, Tao WK, Donner LJ (2000) A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. I: Cloud-resolving models. Q J Roy Meteor Soc 126:823–864

    Google Scholar 

  • Rhines PB (1975) Waves and turbulence on a beta-plane. J Fluid Mech 69:417–443

    Google Scholar 

  • Roemmich D, Morris M, Young WR, Donguy JR (1994) Fresh equatorial jets. J Phys Oceanogr 24:540–558

    Google Scholar 

  • Romanova NN (1984) Long nonlinear waves on layers having large wind velocity gradients. Izvestiya, Akad Nauk SSR, Fizika Atmos I Okeana 20:469–475 (Translation: Izv Acad Sci USSR, Atmosph Ocean Phys 20:452–456)

    Google Scholar 

  • Romeiser R (2008) M4S 3.2.0 User’s manual. University of Hamburg, Hamburg

    Google Scholar 

  • Ruddick BR, Turner JS (1979) The vertical length scale of double-diffusive intrusions. Deep sea research Part A. Oceanogr Res Papers 26(8):903–913

    Google Scholar 

  • Rudnick DL, Luyten JR (1996) Intensive surveys of the Azores Front 1. Tracers and dynamics. J Geophys Res 101: 923–940

    Google Scholar 

  • Sandstrom H, Oakey NS (1995) Dissipation in internal tides and solitary waves, J Phys Oceanogr 25:604–614

    Google Scholar 

  • Shay TJ, Gregg MC (1986) Convectively driven turbulent mixing in the upper ocean, J Phys Oceanogr 16:1777–1798

    Google Scholar 

  • Shinoda T, Lukas R (1995) Lagrangian mixed layer modeling of the western equatorial Pacific. J Geophys Res 100(C2):2523–2541

    Google Scholar 

  • Shinoda T, Hendon HH, Glick JD (1998) Mixed layer modeling of intraseasonal sea surface temperature variability in the tropical western Pacific and Indian ocean. J Climate 11:2668–2685

    Google Scholar 

  • Shrira VI (1989) On the ‘sub-surface’ waves of the mixed layer of the upper ocean. Dokl Akad Nauk SSSR 308:732–736 (Trans USSR Acad Sci, Earth Sci Section 308:276–279)

    Google Scholar 

  • Short DA, Kucera PA, Ferrier BS, Gerlach JC, Rutledge SA, Thiele OW (1997) Shipborne radar rainfall patterns within the TOGA/COARE IFA. Bull Amer Meteor Soc 78(12):2817–2836

    Google Scholar 

  • Simpson JE (1987) Gravity currents: In the environment and the laboratory. Ellis Horwood Limited, New York, p 244

    Google Scholar 

  • Simpson JE, Linden PF (1989) Frontogenesis in a fluid with horizontal density gradients. J Fluid Mech 202:1–16

    Google Scholar 

  • Skyllingstad ED, Denbo DW (1995) An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J Geophys Res 100:8501–8522

    Google Scholar 

  • Smith CR, Walker JDA (1997) Sustaining mechanisms of turbulent boundary layers: the role of vortex development and interaction. In: Panton RL (ed) Self-sustaining mechanisms of wall turbulence, Advances in fluid mechanics 15, Computational Mechanics Publications, Southampton, pp 273–308

    Google Scholar 

  • Soloviev AV (1990) Coherent structure at the ocean surface in the convectively unstable conditions. Nature 346:157–160

    Google Scholar 

  • Soloviev AV, Bezverkhny VA (1990) Coherent structure in the near-surface turbulent boundary layer of the ocean. Doklady Akademii Nauk SSSR 312(1):218–222

    Google Scholar 

  • Soloviev A, Klinger B (2001) Open ocean convection. In: Encyclopedia of ocean sciences, Academic Press, UK, pp 2015–2022

    Google Scholar 

  • Soloviev A, Lukas R (1996) Observation of spatial variability of diurnal thermocline and rain-formed halocline in the western Pacific warm pool. J Phys Oceanogr 26(11):2529–2538

    Google Scholar 

  • Soloviev A, Lukas R (1997) Sharp frontal interfaces in the near-surface layer of the ocean in the western equatorial Pacific warm pool. J Phys Oceanogr 27(6):999–1017

    Google Scholar 

  • Soloviev AV, Zatsepin AG (1992) Response of density depression pool to wind forcing. Abstract, 24th International Liege colloquium on ocean hydrodynamics: “Sub-Mesoscale Air-Sea Interaction,“ Liege, Belgium, May 4–8, 1992. GHER/Model Environment, pp 99–100

    Google Scholar 

  • Soloviev AV, Vershinsky NV, Bezverchnii VA (1988) Small-scale turbulence measurements in the thin surface layer of the ocean. Deep-Sea Res 35:1859–1874

    Google Scholar 

  • Soloviev A, Lukas R, DeCarlo S, Snyder J, Arjannikov A, Turenko V, Baker M, Khlebnikov D (1998) A near-surface microstructure sensor system used during TOGA-COARE. Part I: Bow measurements. J Atmos Ocean Tech 15:563–578

    Google Scholar 

  • Soloviev A, Lukas R, Hacker P, Baker M, Schoeberlein H, Arjannikov A (1999) A near-surface microstructure sensor system used during TOGA COARE. Part II: Turbulence measurements. J Atmos Oceanic Tech 16:1598–1618

    Google Scholar 

  • Soloviev A, Lukas R, Hacker P (2001) An approach to parameterization of the oceanic turbulent boundary layer in the western pacific warm pool. J Geophys Res 106:4421–4435

    Google Scholar 

  • Soloviev A, Lukas R, Matsuura H (2002) Sharp frontal interfaces in the near-surface layer of the tropical ocean. J Mar Syst–Spec Issue Ocean Front 37(1–3):47–68

    Google Scholar 

  • Soloviev A, Fujimura A, Matt S (2012) Air-sea interface in hurricane conditions, J Geophys Res 117:C00J34

    Google Scholar 

  • Spall M, Chapman D (1998) On the efficiency of baroclinic eddy heat transport across narrow fronts. J Phys Oceanogr 28(11):2275–2287

    Google Scholar 

  • Spangenberg WG, Rowland WR (1961) Convective circulation in water induced by evaporative cooling. Phys Fluids 4:743–750

    Google Scholar 

  • Stevenson RE (1985) Oceanography in orbit. In: 1985 Yearbook and the future. Encyc Brit Chicago IL, p 190–205

    Google Scholar 

  • Stevenson RE (1998) Spiraleddies: The discovery that changed the face of the oceans. 21st Century Sci Tech 11:58–71

    Google Scholar 

  • Stevenson RE (1999) A view from space: The discovery of nonlinear waves in the ocean’s near surface layer. 21st Century Sci Tech 18:36–47

    Google Scholar 

  • Stommel H (1993) A conjectural regulating mechanism for determining the thermohaline structure of the oceanic mixed layer. J Phys Oceanogr 23(1):142–148

    Google Scholar 

  • Stuart JT, (1967) On finite amplitude oscillations in laminar mixing layers. J Fluid Mech 29:417–440

    Google Scholar 

  • Tandon A, Garrett C (1995) Geostrophic adjustment and restratification of a mixed layer with horizontal gradients above a stratified layer. J Phys Oceanogr 25:2229–2241

    Google Scholar 

  • Taylor GI (1931) Effect of variation in density on the stability of superposed streams of fluid. P Roy Soc Lon A 132:499–523

    Google Scholar 

  • Theodorsen T (1952) Mechanism of turbulence. In: Proceedings of the second midwestern conference on fluid mechanics, Columbus, Ohio, Ohio State University, pp 1–18

    Google Scholar 

  • Thorpe SA (1968) On the shape of progressive internal waves. Phil Trans Roy Soc Lon Ser A 263:563–614

    Google Scholar 

  • Thorpe SA (1971) Asymmetry of the internal seiche in Loch Ness. Nature 231(5301):306–308

    Google Scholar 

  • Thorpe SA (1985) Small-scale processes in the upper ocean boundary layer. Nature 318:519–522

    Google Scholar 

  • Thorpe SA (1988) The dynamics of the boundary layers of the deep ocean. Sci Prog Oxf 72:189–206

    Google Scholar 

  • Thorpe SA (1992) The break-up of Langmuir circulation and the instability of an array of vortices. J Phys Oceanogr 22:350–360

    Google Scholar 

  • Thorpe SA, Hall AJ (1987) Bubble clouds and temperature anomalies in the upper ocean. Nature 328:48–51

    Google Scholar 

  • Thorpe SA, Jackson JFE, Hall AJ, Lueck RG (2003) Measurements of turbulence in the upper ocean mixing layer using Autosub. J Phys Oceanogr 33:122–145

    Google Scholar 

  • Tomczak M (1995) Salinity variability in the surface layer of the tropical western Pacific ocean. J Geophys Res 100(C10):20,499–20,515

    Google Scholar 

  • Townsend A (1961) Equilibrium layers and wall turbulence. J Fluid Mech 11:97–120

    Google Scholar 

  • Tsai W (2001) On the formation of streaks on wind‐driven water surfaces. Geophys Res Lett 28(20):3959–3962. doi:10.1029/2001GL013190.

    Google Scholar 

  • Tsai W-T, Hung L-P (2007) Three-dimensional modeling of smallscale processes in the upper boundary layer bounded by a dynamic ocean surface, J Geophys Res 112:C02019, doi:10.1029/2006JC003686

    Google Scholar 

  • Turner JS (1973) Buoyancy effects in fluids. Cambridge Univ. Press, New York

    Google Scholar 

  • Van Heijst GJF (1993) Self-organization of two-dimensional flows. Nederlands Tijdschrift voor Natuurkunde 59:321–325

    Google Scholar 

  • Van Heijst GJF, Flór JB (1989) Dipole formation and collision in a stratified fluid. Nature 340(6230):212–215

    Google Scholar 

  • Van Heijst GJF, Kloosterziel RC (1989) Tripolar vortices in a rotating fluid. Nature 338(6216):569–570

    Google Scholar 

  • Vialard J, Delecluse P (1998) An OGCM study for the TOGA decade. Part II: Barrier layer formation and variability. J Phys Oceanogr 28(C6):1089–1106

    Google Scholar 

  • Voronovich VV, Pelenovsky DE, Shrira VA (1998a) On internal wave-shear flow resonance in shallow water. J Fluid Mech 354:209–237

    Google Scholar 

  • Voronovich VV, Shrira VI, Stepanyants YuA (1998b) Two-dimensional models for nonlinear vorticity waves in shear flows. Stud Appl Math 100:1–32

    Google Scholar 

  • Voropayev SI, Afanasyev YaD, Filippov IA (1991) Horizontal jets andvortex dipoles in a s Voronovich, V.V., D.E. Pelenovsky, and V.A. Shrira, 1998a: On internal wave-shear flow resonance in shallow water. J Fluid Mech 354:209–237

    Google Scholar 

  • Voropaev SI, Gavrilin BL, Zatsepin AG (1981) On the structure of the surface layer of the ocean. Izvestiya: Akad Nauk SSSR. Atmos Ocean Phys 17:378–382

    Google Scholar 

  • Walsh EJ, Pinkel R, Hagan DE, Weller RA, Fairall CW, Rogers DP, Burns SP, Baumgartner M (1998) Coupling of internal waves on the main thermocline to the diurnal surface layer and sea surface temperature during the tropical ocean global atmosphere coupled ocean-atmosphere response experiment. J Geophys Res 103:12,613–12,628

    Google Scholar 

  • Watson KM (1990) The coupling of surface and internal gravity waves: revisited. J Phys Oceanogr 20:1233–1248

    Google Scholar 

  • Watson KM, West BJ, Cohen BI (1976) Coupling of surface and internal gravity waves: A mode coupling model. J Fluid Mech 77:185–208

    Google Scholar 

  • Weller RA, Price JF (1988) Langmuir circulation within the oceanic mixed layer. Deep-Sea Res 35:711–747

    Google Scholar 

  • Wijesekera HW, Dillon TM (1991). Internal waves and mixing in the upper equatorial pacific ocean. J Geophys Res 96:7115–7125

    Google Scholar 

  • Wijesekera HW, Paulson CA, Huyer A (1999a) The effect of rainfall on the surface layer during a westerly burst in the western equatorial Pacific. J Phys Oceanogr 29(4):612–632

    Google Scholar 

  • Wijesekera HW, Paulson CA, Huyer A (1999) Spectra and skewness of near-surface turbulent temperature fluctuations forced by surface cooling and wind stress, Proceeding COARE98, Boulder, Colorado, USA, 7-14 July 1998, World Climate Research Programme, pp 287–288.

    Google Scholar 

  • Wijesekera HW, Paulson CA, Huyer A (2001) Horizontal wave number spectra of temperature in the unstably stratified oceanic surface layer. J Geophys Res 106:16,929–16,946

    Google Scholar 

  • Whitham GB (1974) Linear and nonlinear waves. Wiley, New York

    Google Scholar 

  • Woods JD (1980) The generation of thermohaline fine structure of fronts in the ocean. Ocean Model 32:1–4

    Google Scholar 

  • Woods JD, Barkmann W (1986) The response of the upper ocean to solar heating. I: The mixed layer. Q J Roy Meteor Soc 112:1–42

    Google Scholar 

  • You Y (1995) Salinity variability and its role in the barrier-layer formation during TOGA COARE. J Phys Oceanogr 25:2778–2807

    Google Scholar 

  • Yoder JA, Ackleson SG, Barber RT, Flament P, Balch WM (1994) A line in the sea. Nature 371:689–692

    Google Scholar 

  • Young WR (1994) The subinertial mixed layer approximation. J Phys Oceanogr 24:1812–1826

    Google Scholar 

  • Zenk W, Katz EJ (1975) On the stationarity of temperature spectra at high horizontal wave numbers. J Geophys Res 80(27):3885–3891

    Google Scholar 

  • Zhang Y, Baggeroer AB, Bellingham JG (2001) Spectral-feature classification of oceanographic processes using an autonomous underwater vehicle. IEEE J Ocean Eng 26:726–741

    Google Scholar 

  • Zilitinkevich SS, Calanca P (2000) An extended similarity-theory for the stably stratified atmospheric surface layer. Q J Roy Meteorol Soc 126:1913–1923

    Google Scholar 

  • Zilitinkevich SS, Esau IN (2005) Resistance and heat/mass transfer laws for neutral and stable planetary boundary layers: old theory advanced and re-evaluated. Quart J Roy Met Soc 131:1863–1892

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Soloviev .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Soloviev, A., Lukas, R. (2014). Spatially-Varying and Coherent Structures. In: The Near-Surface Layer of the Ocean. Atmospheric and Oceanographic Sciences Library, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7621-0_5

Download citation

Publish with us

Policies and ethics