Image Enhancement Methods for a Customized Videokeratography System Designed for Animals with Small Eyes

  • Bin Chen
  • Shan Ling
  • Hongfei Cen
  • Wenfu Xu
  • Kee Chea-su
  • Yongjin Zhou
  • Lei Wang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 269)


We built a Placido’s disc videokeratographic system intended for eye examination of small animals. To derive the corneal topology and other corneal biometric parameters we rely on precise extraction of Placido ring patterns. However, since the images from CCD are noisy, image enhancement is necessary as a pre-processing procedure in order to prevent further noise magnification during the corneal surface topography reconstruction. In this study, two popular image enhancement methods, namely Gabor Filtering (GF) and Multiscale Vessel Enhancement Filtering (MVEF), are quantitatively evaluated in the context of image enhancement before corneal reconstruction. The two methods were tested on 21 images of steel balls with different diameters. Both methods have been demonstrated to be useful for Placido ring extraction; however, the GF method showed better performance on images of steel balls with smaller diameter. Compared to the GF method, the MVEF method performed better on images of steel balls with larger diameter. The result of the present work implies that the two methods should be used cooperatively.


Videokeratography Gabor filtering Multiscale vessel enhancement filtering 



This work is supported in part by grants from National Natural Science Foundation of China (NSFC: 81171402, 61103165), the next generation communication technology Major project of National S&T(2013ZX03005013), Guangdong Innovative Research Team Program (GIRTF-LCHT, No. 2011S013), Low-cost Healthcare Programs of Chinese Academy of Sciences and International Science and Technology Cooperation Program of Guangdong Province (2012B050200004) and Shenzhen Key Laboratory for Low-cost Healthcare (CXB201005260056A).


  1. 1.
    Kee CS, Deng Li (2008) Astigmatism associated with experimentally induced myopia or hyperopia in chickens. Invest Ophthalmol Vis Sci 49(3): 858–867Google Scholar
  2. 2.
    Kee CS, Huang LF, Qiao-Grider Y (2003) Astigmatism in infant monkeys reared with cylindrical lenses. Vision Res 43(26):2721–2739CrossRefGoogle Scholar
  3. 3.
    Schmid K, Wildsoet CF (1997) Natural and imposed astigmatism and their relation to emmetropization in the chick. Exp Eye Res 64(5):837–847CrossRefGoogle Scholar
  4. 4.
    Alonso-Caneiro D, Iskander DR, Collins MJ (2008) Computationally efficient interference detection in videokeratoscopy images. In: 2008 IEEE 10th Workshop on Multimedia Signal Processing, pp 486–490 Oct 2008Google Scholar
  5. 5.
    Zhong X, Ge J, Smith EL 3rd (2004) Compensation for experimentally induced hyperopic anisometropia in adolescent monkeys. Invest Ophthalmol Vis Sci 45(10):3373–3379CrossRefGoogle Scholar
  6. 6.
    Paulino LV, Paulino E, Barros RA, Salles AG, Rehder JR (2005) Corneal topographic alteration after radiofrequency application to an animal model. Arq Bras Oftalmolog 68(4):451–456CrossRefGoogle Scholar
  7. 7.
    Norton TT, Amedo AO, Siegwart JT Jr (2006) Darkness causes myopia in visually experienced tree shrews. Invest Ophthalmol Vis Sci 47(11):4700–4707CrossRefGoogle Scholar
  8. 8.
    Hanuch OE, Agrawal VB, Bassage S, delCerro M, Aquavella JV (1998) Myopic picosecond laser keratomileusis with the neodymium-yttrium lithium fluoride laser in the cat cornea. Ophthalmology 105(1):142–149Google Scholar
  9. 9.
    Busin M, Yau CW, Yamaguchi T, McDonald MB, Kaufman HE (1986) The effect of collagen cross-linkage inhibitors on rabbit corneas after radial keratotomy. Invest Ophthalmol Vis Sci 27(6):1001–1005Google Scholar
  10. 10.
    Carrington SD, Woodward EG (1984) Woodward, The topography of the anterior surface of the cat’s cornea. Curr Eye Res 3(6):823–826CrossRefGoogle Scholar
  11. 11.
    Oshita T, Hayashi S, Inoue T, Hayashi A, Maeda N, Kusaka S, Ohji M, Fujikado T, Tano Y (2001) Topographic analysis of astigmatism induced by scleral shortening in pig eyes. Graefe’s Arch Clin Exp Ophthalmol 239(5):382–386CrossRefGoogle Scholar
  12. 12.
    Alonso-Caneiro D, Iskander DR, Collins MJ (2008) Estimating Corneal Surface Topography in Videokeratoscopy in the Presence of Strong Signal Interference. IEEE Trans Biomed Eng 55(10):2381–2387CrossRefGoogle Scholar
  13. 13.
    Gabor D (1946) Theory of communication. Part 1: The analysis of information. J Ins Electr Eng 93(26):429–441Google Scholar
  14. 14.
    Daugman JG (1988) Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans Acoust Speech Signal Process 36(7):1169–1179CrossRefMATHGoogle Scholar
  15. 15.
    Dunn D, Higgins WE (1995) Optimal Gabor filters for texture segmentation. IEEE Trans Image Process 4(7):947–964CrossRefGoogle Scholar
  16. 16.
    Dunn D, Higgins WE, Wakeley J (1994) Texture segmentation using 2-D Gabor elementary functions. IEEE Trans Pattern Anal Mach Intell 16(2):130–149CrossRefGoogle Scholar
  17. 17.
    Zhou Y, Zheng Y-P (2009) Enhancement of muscle fibers in ultrasound images using gabor filters. In: Ultrasonics Symposium (IUS), 2009 IEEE International, pp 2296–2299Google Scholar
  18. 18.
    Zhou Yongjin, Zheng Yong-ping (2011) Longitudinal enhancement of the hyperechoic regions in ultrasonography of muscles using a gabor filter bank approach: a preparation for semi-automatic muscle fiber orientation estimation. Ultrasound Med Biol 37(4):665–673CrossRefGoogle Scholar
  19. 19.
    Frangi AF, Wiro JN, Koen LV, Max AV (1998) Multiscale vessel enhancement filtering. Lect Notes Comput Sci, vol 1496, pp 130–137Google Scholar
  20. 20.
    Wink O, Niessen WJ, Viergever MA (2004) Multiscale vessel tracking. IEEE Trans Med Imagin 23(1):130–133CrossRefGoogle Scholar
  21. 21.
    Weldon TP, Higgins WE, Dunn DF (1996) Gabor filter design for multiple texture segmentation. Opt Eng 10(35):2852–2863CrossRefGoogle Scholar
  22. 22.
    Jain AK, Farrokhnia F (1991) Unsupervised texture segmentation using Gabor filters. Pattern Recogn 24(12):1167–1186CrossRefGoogle Scholar
  23. 23.
    Teuner A, Pichler O, Hosticka BJ (1995) Unsupervised texture segmentation of images using tuned matched gabor filters. IEEE Trans Image Process 4(6):863–870CrossRefGoogle Scholar
  24. 24.
    Yang J, Liu L, Jiang T, Fan Y (2003) A modified Gabor filter design method for fingerprint image enhancement. Pattern Recogn Lett 24(12):1805–1817CrossRefGoogle Scholar
  25. 25.
    Mehrotra R, Namuduri KR, Ranganathan N (1992) Gabor filter-based edge detection. Pattern Recogn 25(12):1479–1494CrossRefGoogle Scholar
  26. 26.
    Ng H-F (2006) Automatic thresholding for defect detection. Pattern Recogn Lett 27(14):1644–1649CrossRefGoogle Scholar
  27. 27.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Bin Chen
    • 1
    • 2
  • Shan Ling
    • 1
    • 3
  • Hongfei Cen
    • 4
  • Wenfu Xu
    • 2
  • Kee Chea-su
    • 5
  • Yongjin Zhou
    • 1
    • 6
    • 7
  • Lei Wang
    • 1
    • 6
  1. 1.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenPeople’s Republic of China
  2. 2.Harbin Institute of Technology Shenzhen Graduate SchoolShenzhenPeople’s Republic of China
  3. 3.School of Geosciences and Info-PhysicsCentral South UniversityChangshaPeople’s Republic of China
  4. 4.Peking University Shenzhen HospitalShenzhenPeople’s Republic of China
  5. 5.School of OptometryHong Kong Polytechnic UniversityHong KongPeople’s Republic of China
  6. 6.The Shenzhen Key Laboratory for Low-cost HealthcareShenzhenPeople’s Republic of China
  7. 7.Interdisciplinary Division of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongPeople’s Republic of China

Personalised recommendations