Investigation and Analysis on Ear Diameter and Ear Axis Diameter in Maize RIL Population

  • Daowen He
  • Hongmei Zhang
  • Changmin Liao
  • Qi Luo
  • Guoqiang Hui
  • Zhirun Nan
  • Yi Sun
  • Yongsi Zhang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 269)


Maize (Zea mays L.) is a very important crop in the world. In this present study, two important agronomic traits related to yield, ear diameter (ED) and ear axis diameter (EAD), were investigate in a maize recombinant inbred line (RIL) population derived from the cross of Mo17 and Huangzao4. Furthermore, the descriptive statistics, analysis of variance and correlation analysis were performed using SPSS 11.5 software in the RIL population. The results are useful for further developing quantitative trait locus mapping and molecular marker-assisted selection for ED and EAD in maize.


Maize Ear diameter Ear axis diameter Investigation and analysis 



This work was financially supported by the Major Project for Genetically Modified Organisms Breeding from China Agriculture Ministry, China (2011ZX08003-001) and Project for the Doctoral Research Program from Shanxi Academy of Agricultural Sciences, China (YBSJJ1106).


  1. 1.
    Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959Google Scholar
  2. 2.
    Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185CrossRefGoogle Scholar
  3. 3.
    Ding AM, Li J, Cui F, Zhao CH, Ma HY, Wang HG (2011) QTL mapping for yield related traits using two associated RIL populations of wheat. Acta Agronomica Sinica 37:1511–1524Google Scholar
  4. 4.
    Ding JQ, Wang XM, Chander S, Li JS (2008) Identification of QTL for maize resistance to common smut by using recombinant inbred lines developed from the Chinese hybrid Yuyu22. J Appl Genet 49:147–154CrossRefGoogle Scholar
  5. 5.
    Fu S, Zhan Y, Zhi H, Gai J, Yu D (2006) Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica 128:63–69CrossRefGoogle Scholar
  6. 6.
    Guo JF, Su GQ, Zhang JP, Wang GY (2008) Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semiarid land condition. Afr J Biotechnol 7:1829–1838Google Scholar
  7. 7.
    Hatakeyama K, Horisaki A, Niikura S, Narusaka Y, Abe H, Yoshiaki H, Ishida M, Fukuoka H, Matsumoto S (2010) Mapping of quantitative trait loci for high level of self-incompatibility in Brassica rapa L. Genome 53:257–265CrossRefGoogle Scholar
  8. 8.
    Liu QM, Jiang JH, Niu FA, He YJ, Hong DL (2013) QTL analysis for seven quality traits of RIL population in Japonica rice based on three genetic statistical models. Rice Sci 20:31–38CrossRefGoogle Scholar
  9. 9.
    Liu R, Wang B, Guo W, Wang L, Zhang T (2011) Differential gene expression and associated QTL mapping for cotton yield based on a cDNA-AFLP transcriptome map in an immortalized F2. Theor Appl Genet 123:439–454CrossRefGoogle Scholar
  10. 10.
    Liu XH, Zheng ZP, Tan ZB, Li Z, He C, Liu DH, Zhang GQ, Luo YC (2010) QTL mapping for controlling anthesis-silking interval based on RIL population in maize. Afr J Biotechnol 9:950–955Google Scholar
  11. 11.
    Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q (2007) Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics 277:31–42CrossRefGoogle Scholar
  12. 12.
    Ordas B, Malvar RA, Hill WG (2008) Genetic variation and quantitative trait loci associated with developmental stability and the environmental correlation between traits in maize. Genet Res 90:385–395CrossRefGoogle Scholar
  13. 13.
    Pilet ML, Duplan G, Archipiano M, Barret P, Baron C, Horvais R, Tanguy X, Lucas MO, Renard M, Delourme R (2001) Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Sci 41:197–205CrossRefGoogle Scholar
  14. 14.
    Ribaut JM, Jiang C, Gonzales-de-Leon D, Edmeades GO, Hosington D (1997) Identification of quantitative trait loci under drought trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896CrossRefGoogle Scholar
  15. 15.
    Sandal N, Jin H, Rodriguez-Navarro DN, Temprano F, Cvitanich C, Brachmann A, Sato S, Kawaguchi M, Tabata S, Parniske M, Ruiz-Sainz JE, Andersen SU, Stougaard J (2012) A set of Lotus japonicus Gifu x Lotus burttii recombinant inbred lines facilitates map-based cloning and QTL mapping. DNA Res 19(4):223–317CrossRefGoogle Scholar
  16. 16.
    Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183CrossRefGoogle Scholar
  17. 17.
    Tan WW, Wang Y, Li YX, Liu C, Liu ZZ, Peng B, Wang D, Zhang Y, Sun BC, Shi YS, Song YC, Yang DG, Wang TY, Li Y (2011) QTL mapping of ear traits of maize under different water regimes. Acta Agronomica Sinica 37:235–248CrossRefGoogle Scholar
  18. 18.
    Tian WW, Wang Y, Li YX, Liu C, Liu ZZ, Peng B, Wang D, Zhang Y, Sun BC, Shi YS, Song YC, Yang DG, Wang TY, Li Y (2011) QTL analysis of ear traits in maize across multiple environments. Scientia Agricultura Sinica 44:233–244Google Scholar
  19. 19.
    Wan X, Weng J, Zhai H, Wang J, Lei C, Liu X, Guo T, Jiang L, Su N, Wan J (2008) Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics 179:2239–2252CrossRefGoogle Scholar
  20. 20.
    Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF, Wang HL, Lei CL, Wang JL, Zhang X, Cheng ZJ, Guo XP (2006) QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 112:1258–1270CrossRefGoogle Scholar
  21. 21.
    Wang HL, Yu DY, Wang YJ, Chen SY, Gai JY (2004) Mapping QTL of soybean root weight with RIL population NJRIKY. Yi Chuan 26:333–336Google Scholar
  22. 22.
    Xiao YN, Li XH, George ML, Li MS, Zhang SH, Zheng YL (2005) Quantitative trait locus analysis of drought tolerance and yield in maize in China. Plant Molecular Biology Reporter 23:155–165CrossRefGoogle Scholar
  23. 23.
    Yang JP, Rong TZ, Xiang DQ, Tang HT, Huang LJ, Dai JR (2005) QTL mapping of quantitative traits in maize. Acta Agronomica Sinica 31:188–196Google Scholar
  24. 24.
    Yang XJ, Lu M, Zhang SH, Zhou F, Qu YY, Xie CX (2008) QTL mapping of plant height and ear position in maize (Zea mays L.). Yi Chuan 30:1477–1486CrossRefGoogle Scholar
  25. 25.
    Zhang WQ, Ku LX, Zhang J, Han P, Chen YH (2013) QTL analysis of kernel ratio, kernel depth and 100-Kernel weight in maize (Zea mays L.). Acta Agronomica Sinica 39:455–463Google Scholar
  26. 26.
    Zhang Z, Liu Z, Cui Z, Hu Y, Wang B, Tang J (2013) Genetic analysis of grain filling rate using conditional QTL mapping in maize. PLoS ONE 8:e56344CrossRefGoogle Scholar
  27. 27.
    Zheng ZP, Liu XH (2013) Genetic analysis of agronomic traits associated with plant architecture by QTL mapping in maize. Genet Mol Res 12:1243–1253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Daowen He
    • 4
  • Hongmei Zhang
    • 2
    • 3
  • Changmin Liao
    • 1
  • Qi Luo
    • 2
    • 3
  • Guoqiang Hui
    • 2
    • 3
  • Zhirun Nan
    • 2
    • 3
  • Yi Sun
    • 5
  • Yongsi Zhang
    • 4
  1. 1.LibraryChina West Normal UniversityNanchongChina
  2. 2.Maize Research InstituteShanxi Academy of Agricultural SciencesXinzhou CityChina
  3. 3.Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess PlateauMinisty of AgricultureTaiyuan CityChina
  4. 4.College of Life ScienceChina West Normal UniversityNanchongChina
  5. 5.Biotechnology Research CenterShanxi Academy of Agricultural SciencesTaiyuanChina

Personalised recommendations