3D Ear Shape Feature Optimal Matching Using Bipartite Graph

  • Xiaopeng Sun
  • Wang Xingyue
  • Guan Wang
  • Feng Han
  • Lu Wang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 269)


In this paper, we present an optimized matching algorithm based on bipartite graph for 3D ear shape key points. Comparing with the graph matching algorithm of key points, our algorithm avoid the 2D Delaunay triangulation on 3D key points, then has less accuracy error; and our complexity is lower because our matching algorithm is basing on the bipartite graph. And then we optimal the bipartite graph matching work by weighting the edge between the key points. Experiments show that, our optimal matching on bipartite graph of ear key points can get a higher matching accuracy and a better matching efficiency.


Ear matching Keypoints Shape feature Bipartite optimal matching 



This work is supported in part by National Natural Science Foundation of China with projects No. 61170143 and No. 60873110.


  1. 1.
    Burge M., Burger W (2000) Ear biometrics in computer vision. In: Proceedings 15th international conference on pattern recognition, vol 2, pp 822–826. doi:  10.1109/ICPR.2000.906202
  2. 2.
    Torresani L, Kolmogorov V, Rother C (2008) Feature correspondence via graph matching: models and global optimization. In Proceedings 10th European conference computer vision, pp 596–609. doi:  10.1007/978-3-540-88688-4_44
  3. 3.
    Bhowmick P, Pradhan R, Bhattacharya B (2009) Approximate matching of digital point sets using a novel angular tree. IEEE Trans Pattern Anal Mach Intell 31(5):769–782. doi:  10.1109/TPAMI.2007. 70812Google Scholar
  4. 4.
    Leordeanu M, Hebert M (2009) Unsupervised learning for graph matching. In: IEEE conference on computer vision and pattern recognition, pp 864–871. doi:  10.1109/CVPRW.2009.5206533
  5. 5.
    Caetano T, Caelli T, Schuurmans D, Barone D (2006) Graphical models and point pattern matching. IEEE Trans Pattern Anal Mach Intell 28(10):1646–1663. doi:  10.1109/TPAMI.2006.207 Google Scholar
  6. 6.
    Mcauley J, Caetano T, Barbosa M (2008) Graph rigidity, cyclic belief propagation and point pattern matching. IEEE Trans Pattern Anal Mach Intell 30(11):2047–2054. doi:  10.1109/TPAMI.2008.124 Google Scholar
  7. 7.
    Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. J Int J Comput Vis 60, 1:63–86. doi:  10.1023/B:VISI.0000027790.02288.f2 Google Scholar
  8. 8.
    Weiss Y, Freeman W (2001) On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Trans Inf Theory 47(2):736–744. doi:  10.1109/18.910585 Google Scholar
  9. 9.
    Mian AS, Bennamoun M, Owens R (2008) Keypoint detection and local feature matching for textured 3D face recognition. Int J Comput Vis 79(1):1–12. doi:  10.1007/s11263-007-0085-5 Google Scholar
  10. 10.
    SasiKanth (2010) Bi-dimensional empirical mode decomposition. MATLAB central file exchange selectGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Xiaopeng Sun
    • 1
  • Wang Xingyue
    • 1
  • Guan Wang
    • 1
  • Feng Han
    • 1
  • Lu Wang
    • 1
  1. 1.Liaoning Normal UniversityDalianChina

Personalised recommendations