Advertisement

PET Image Processing in the Early Diagnosis of PD

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 269)

Abstract

Objective To clear which degree of damage of mice dopamine could change the brain glucose metabolic activity and whether the change can be detected with positron emission tomography imaging processing and to find a positron emission tomography data processing method effectively. Methods Using Positron Emission Tomography imaging technology to image 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model mice, data analysis after imaging. Results The study of Parkinson’s disease glucose metabolism found that mice with bilateral striatal glucose metabolism reduced after 2 weeks 1-methyl-4-phenyl -1,2,3,6-tetrahydropyridine administration. And the data processing method of Positron Emission Tomography imaging techniques is discussed in detail, Specific typical statistical parameter mapping processing of positron emission tomography data processing steps and the experimental results are given. Conclusions Positron emission tomography imaging can detect early diagnosis of Parkinson’s disease and Statistical pixel processing positron emission tomography data image processing method is an effective data image processing methods.

Keywords

Parkinson’s disease Positron emission tomography Dopamine transporter Glucose metabolism 

References

  1. 1.
    Shih MC, Hoexter MQ, Andrade LA, Bressan RA et al (2006) Parkinson’s disease and dopamine transporter neuroimaging: a critical review. Sao Paulo Med J 124(3):168–175Google Scholar
  2. 2.
    Chitneni SK, Garreau L, Cleynhens B, Evens N, Bex M, Vermaelen P, Chalon S, Busson R, Guilloteau D, Van Laere K, Verbruggen A, Bormans G (2008) Improved synthesis and metabolic stability analysis of the dopamine transporter ligand [(18)F]FECT. Nucl Med Biol 35(1):75–82Google Scholar
  3. 3.
    Wuest F, Berndt M, Strobel K et al (2007) Synthesis and radiopharmacological characterization of 2beta-carbo-2’-[18F] fluoroethoxy-3beta-(4-bromo-phenyl) –tropane([18F]MCL-322)as a PET radiotracer for imaging the dopamine transporter (DAT). Bioorg Med Chem 15(13):4511–4519CrossRefGoogle Scholar
  4. 4.
    Saba W, Valette H, Schöllhorn-Peyronneau MA et al (2007) [11C]LBT-999: a suitable radioligand for investigation of extra-striatal dopamine transporter with PET. Synapse 61(1):17–23CrossRefGoogle Scholar
  5. 5.
    Wang J, Zuo CT, Jiang YP et al (2007) 18F-FP-CIT PET imaging and SPM analysis of dopamine transporters in Parkinson’s disease in various Hoehn&Yahr stages. J Neurol 254(2):185–190CrossRefGoogle Scholar
  6. 6.
    Shi J, Zhao LY, Copersino ML et al (2008) PET imaging of dopamine transporter and drug craving during methadone maintenance treatment and after prolonged abstinence in heroin users. Eur J Pharmacol 579(1–3):160–166CrossRefGoogle Scholar
  7. 7.
    Sekine Y, Minabe Y, Ouchi Y et al (2003) Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. Am J Psychiatry 160:1699–1701CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kai Ma
    • 1
  • Zhi-an Liu
    • 2
  • Ya-ping Nie
    • 1
  • Dian-shuai Gao
    • 2
  1. 1.Institute of Medical Information ScienceXuzhou Medical CollegeXuzhouChina
  2. 2.Department of Basic MedicalXuzhou Medical CollegeXuzhouChina

Personalised recommendations