Skip to main content

How to Make a Continent: Thirty-five Years of TTG Research

  • Chapter
  • First Online:
Evolution of Archean Crust and Early Life

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 7))

Abstract

After more than 35 years of TTG (tonalite-trondhjemite-granodiorite) research, we still face many questions about the origin and tectonic significance of these peculiar rocks. What we do know is that TTGs are similar in composition regardless of age, they have high La/Yb, Sr/Y, Sr and Eu/Eu*, they decrease in abundance relative to calc-alkaline granitoids at the end of the Archean, and they are not made in oceanic arcs, shallow levels of oceanic plateaus or at ocean ridges. Furthermore, oxygen isotopes in TTG zircons require interaction of TTG sources with the hydrosphere, and the existence of Hadean continental crust inferred from detrital zircon suites remains problematic. Although we now realize that TTGs require amphibole and garnet fractionation and sources that are at least 50 km deep, what we do not know are the relative roles of (1) melting versus fractional crystallization and (2) melting of slabs versus melting of thickened mafic crust. The mechanisms and rates of slab dehydration control the stability of garnet and amphibole in subduction zones. From what we know about early Archean greenstones, they are more altered than later ones, and thus they would appear to bring more water and fluid-mobile elements into subduction zones, at least by the late Archean when plate tectonics became widespread. Hotter slabs in the Archean should contribute to higher volatile release rates. This may explain the trace element changes we see in TTGs at the end of the Archean.

To make continental crust today we need to start at a continental subduction zone where we produce both calc-alkaline (CA) and TTG magmas, and combine the felsic components in a ratio of about 3 parts CA to 2 parts TTG. In contrast, to make an Archean continent, we need nearly 100 % of the TTG component, and may begin, at least before about 3 Ga, by melting the roots of oceanic plateaus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker F (1979) Trondhjemites, dacites and related rocks. Elsevier, New York

    Google Scholar 

  • Bedard JH (2006) A catalytic delamination-driven model for coupled genesis of Archean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta 70:1188–1214

    Article  Google Scholar 

  • Bindeman IN, Eiler JM, Yogodzinski GM, Tatsumi Y, Stern CR, Grove TL, Portnyagin M, Hoernle K, Danyushevsky LV (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet Sci Lettr 235:480–496

    Article  Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada. Contib Mineral Petrol 134:3–16

    Google Scholar 

  • Claiborne LL, Miller CF, Wooden JL (2010) Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib Mineral Petrol 160:511–531

    Article  Google Scholar 

  • Coldwell B, Clemens J, Petford N (2011) Deep crustal melting in the Peruvian Andes: felsic magma generation during delamination and uplift. Lithos 125:272–286

    Article  Google Scholar 

  • Coleman RG, Donato MM (1979) Oceanic plagiogranite revisited. In: Barker F (ed) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, pp 149–168

    Chapter  Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37

    Article  Google Scholar 

  • Condie KC (2005) TTGs and adakites: are they both slab melts? Lithos 80:33–44

    Article  Google Scholar 

  • Condie KC (2007) Accretionary orogens in space and time. Geol Soc America Mem 200:145–158

    Article  Google Scholar 

  • Condie KC (2008) Did the character of subduction change at the end of the Archean? Constraints from convergent-margin granitoids. Geology 36(8):611–614

    Article  Google Scholar 

  • Condie KC, Chomiak B (1996) Continental accretion: contrasting Mesozoic and Early Proterozoic tectonic regimes in North America. Tectonophys 265:101–126

    Article  Google Scholar 

  • Condie KC, Kroner A (2008) When did plate tectonics begin? Evidence from the geologic record. Geol Society America Spec Paper 440:281–295

    Google Scholar 

  • Condie KC, O’Neill C (2010) The Archean-Proterozoic boundary: 500 My of tectonic transition in Earth history. Amer J Sci 310:775–790

    Article  Google Scholar 

  • Condie KC, Kroner A (2012) The building blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Res. doi:10.1016/j.gr.2011.09.011

    Google Scholar 

  • Coogan LA, Hinton RW (2010) Do the trace element compositions of detrital zircons require Hadean continental crust? Geology 34(8):633–636

    Article  Google Scholar 

  • Dilek Y, Thy P (2006) Age and petrogenesis of plagiogranite intrusions of the Ankara mélange, central Turkey. Island Arc 15:44–57

    Article  Google Scholar 

  • Dilek Y, Thy P (2009) Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: model for milti-stage early arc-forearc magmatism in Tethyan subduction factories. Lithos 113:68–87

    Article  Google Scholar 

  • Dilek Y, Furnes H, Shallo M (2008) Geochemistry of the Jurassic Mirdita ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos 100:174–209

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Drummond MS, Defant MJ (1990) A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95:21503–21521

    Article  Google Scholar 

  • Foley S, Tlepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Article  Google Scholar 

  • George R, Turner S, Hawkesworth C, Bacon CR, Nye C, Stelling P, Dreher S (2004) Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc. J Petrol 45:203–219

    Article  Google Scholar 

  • Getsinger A, Rushmer T, Jackson MD, Baker D (2009) Generating high Mg-numbers and chemical diversity in tonalite-trondhjemite-granodiorite (TTG) magmas during melting and melt segregation in the continental crust. J Petrol 50:1935–1954

    Article  Google Scholar 

  • Grimes CB et al (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35(7):643–646

    Article  Google Scholar 

  • Grimes CB, Ushikubo T, John BE, Valley JW (2011) Uniformly mantle-like δ18O in zircons from oceanic plagiogranites and gabbros. Contrib Mineral Petrol 161:13–33

    Article  Google Scholar 

  • Grove TL, Till CB, Lev E, Chatterjee N, Medard E (2009) Kinematic variables and water transport control the formation and location of arc volcanoes. Nature 459:694–697

    Article  Google Scholar 

  • Hamada M, Fujii T (2008) Experimental constraints on the effects of pressure and H2O on the fractional crystallization of high-Mg island arc basalt. Contrib Mineral Petrol 155:767–790

    Article  Google Scholar 

  • Harrison TM (2009) The Hadean crust: evidence from > 4 Ga zircons. Annu Rev Earth Planet Sci 37:479–505

    Article  Google Scholar 

  • Hastie AR, Kerr AC, McDonald I, Mitchell SF, Pearce JA, Millar IL, Barfod D, Mark DF (2010) Geochronology, geochemistry and petrogenesis of rhyodacite lavas in eastern Jamaica: a new adakite subgroup analogous to early Archean continental crust? Chem Geol 276:344–359

    Article  Google Scholar 

  • Heilimo E, Halla J, Holtta P (2010) Discrimination and origin of the sanukitoid series: geochemical constraints from the Neoarchean western Karelian Province (Finland). Lithos 115:27–39

    Article  Google Scholar 

  • Hofmann A, Harris C (2008) Silica alteration zones in the Barberton greenstone belt: a window into subseafloor processes 3.5-3.3 Ga. Chem Geol 257:221–239

    Article  Google Scholar 

  • Hofmann JE, Munker C, Naeraa T et al (2011) Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs. Geochim Cosmochim Acta 75:4157–4178

    Article  Google Scholar 

  • Jagoutz OE, Schmidt ME (2012) The formation and bulk composition of modern juvenile continental crust: the Kohistan arc. Chem Geol 298–299:79–96

    Google Scholar 

  • Jagoutz OE, Burg JP, Hussain S, Dawood H, Pettke T, Iizuka T, Maruyama S (2009) Construction of the granitoids crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan). Contrib Mineral Petrol 158:739–755

    Article  Google Scholar 

  • John T, Klemd R, Klemme S et al (2011) Nb-Ta fractionation by partial melting at the titianite-rutile transition. Contrib Mineral Petrol 161:35–45

    Article  Google Scholar 

  • Kamber BS, Ewart A, Collerson KD, Bruce MC, McDonald GD (2002) Fluid-mobile trace element constraints on the role of slab melting and implications for Archean crustal growth models. Contrib Mineral Petrol 144:38–56

    Article  Google Scholar 

  • Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. J Volcanol Geotherm Res 4:117–132

    Article  Google Scholar 

  • Kay SM, Mpodozis C, Coira B (1999) Magmatism, tectonism, and mineral deposits of the central Andes. In: Skinner B (ed) Geology and ore deposits of the central andes, vol 7. Society Economic Geologists Special Publication, pp 27–59

    Google Scholar 

  • Kleinhanns IC, Kramers JD, Kamber BS (2003) Importance of water for Archean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa. Contrib Mineral Petrol 145:377–389

    Article  Google Scholar 

  • Kovalenko A, Clemens JD, Savatenkov V (2005) Petrogenetic constraints for the genesis of Archean sanukitoid suites: geochemistry and isotopic evidence from Karelia, Baltic shield. Lithos 79:147–160

    Article  Google Scholar 

  • Leat PT, Larter RD, Millar IL (2007) Silicic magmas of Protector shoal, South Sandwich arc: indicators of generation of primitive continental crust in an island arc. Geol Mag 144:179–190

    Article  Google Scholar 

  • Martin H (1994) The Archean grey gneisses and the genesis of the continental crust. In: Condie KC (ed) Archean crustal evolution. Elsevier, Amsterdam, pp 205–259

    Chapter  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Martin H, Moyen J-F (2002) Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology 30:319–322

    Article  Google Scholar 

  • Martin E, Sigmarsson O (2007) Crustal thermal state and origin of silicic magma in Iceland: the case of Torfajokull, Ljosufjoll and Snaefellsjokull volcanes. Contrib Mineral Petrol 153:593–605

    Article  Google Scholar 

  • Martin E, Sigmarsson O (2010) Thirteen million years of silicic magma production in Iceland: likes between petrogenesis and tectonic settings. Lithos 116:129–144

    Article  Google Scholar 

  • Martin E, Martin H, Sigmarsson O (2008) Could Iceland be a modern analogue for the Earth’s early continental crust? Terra Nova 20:463–468

    Article  Google Scholar 

  • Martin H, Moyen J-F, Rapp R (2010) The sanukitoid series: magmatism at the Archean-Proterozoic transition. Earth Environ Science, Transact Roy Society Edinburgh 100:15–33

    Google Scholar 

  • Mohan MR, Kamber B, Piercey SJ (2008) Boron and arsenic in highly evolved Archean felsic rocks: implications for Archean subduction processes. Earth Planet Sci Lettr 274:479–488

    Article  Google Scholar 

  • Moyen J-F (2011) The composite Archean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archean crustal growth. Lithos 123:21–36

    Article  Google Scholar 

  • Moyen J-F, Stevens G (2006) Experimental constraints of TTG petrogenesis: implications for Archean geodynamics: American Geophysical Union, Geophys. Mon 164:149–175

    Google Scholar 

  • Muntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: and experimental study. Contrib Mineral Petrol 141:643–658

    Article  Google Scholar 

  • Nair R, Chacko T (2008) Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology 36(7):583–586

    Article  Google Scholar 

  • Petford N, Atherton M (1996) Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith, Peru. J Petrol 37:1491–1521

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res 51:1–25

    Article  Google Scholar 

  • Rapp RP, Norman MD, Laporte D, Yaxley GM, Martin H, Foley SF (2010) Continent formation in the Archean and chemical evolution of the cratonic lithosphere: melt-rock reaction experiments at 3–4 GPa and petrogenesis of Archean Mg-diorites. J Petrol 51(6):1237–1266

    Article  Google Scholar 

  • Richards JP, Kerrich R (2007) Special paper: Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Econ Geol 102:537–576

    Article  Google Scholar 

  • Rollinson H (2008) Ophiolitic trondhjemites: a possible analogue for Hadean felsic crust. Terra Nova 20:364–369

    Article  Google Scholar 

  • Rollinson H (2009) New models for the genesis of plagiogranites in the Oman ophiolite. Lithos 112:603–614

    Article  Google Scholar 

  • Rudnick RL, Gao S (2004) Composition of the continental crust. In: Rudnick RL (ed) Treatise on Geochemistry, Vol 3. Elsevier, Amsterdam, pp 1–64

    Google Scholar 

  • Samsonov AV, Bogina MM, Bibikova EV, Petrova AYu, Shchipansky AA (2005) The relationship between adakitic, calc-alkaline volcanic rocks and TTGs: implications for the tectonic setting of the Karelian greenstone belts, Baltic shield. Lithos 79:83–106

    Article  Google Scholar 

  • Shirey SB, Hanson GH (1984) Mantle-derived Archean monzodiorites and trachyandesites. Nature 310:222–224

    Article  Google Scholar 

  • Shukuno H, Tamura Y, Tani K, Chang Q, Suzuki T, Fiske RS (2006) Origin of silicic magmas and the compositional gap at Sumisu submarine caldera, Izu-Bonin arc, Japan. J Volcanol Geotherm Res 156:187–216

    Article  Google Scholar 

  • Smith IEM, Worthington TJ, Price RC, Stewart RS, Maas R (2006) Petrogenesis of dacite in an oceanic subduction environment: Raoul Island, Kermadec arc. J Volcanol Geotherm Res 156:252–265

    Article  Google Scholar 

  • Smithies RH (2000) The Archean tonalite-tondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Letters 182:115–125

    Article  Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ (2009) Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth Planet Sci Lettr 281:298–306

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AS, Norry MJ (eds) Magmatism in Ocean Basins. Geol Society London, Spec Public 42:313–345

    Google Scholar 

  • Tatsumi Y, Suzuki T (2009) Tholeiitic vs calc-alkalic differentiation and evolution of arc crust: constraints from melting experiments on a basalt from the Izu-Bonin-Mariana arc. J Petrol 50:1575–1603

    Article  Google Scholar 

  • Turner SP, Rushmer T (2009) Similarities between mantle-derived A-type granites and voluminous rhyolites in continental flood basalt provinces. Earth Environ Science Trans. Roy Soc Edinburgh 100:1–10

    Google Scholar 

  • Valley JW et al (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561–580

    Article  Google Scholar 

  • Whalen JB, Percival JA, McNicoll VJ, Longstaffe FJ (2002) A mainly crustal origin for tonalitic granitoid rocks, Superior province, Canada: implications for Late Archean tectonomagmatic processes. J Petrol 43:1551–1570

    Article  Google Scholar 

  • White RV, Tarney J, Kerr AC, Saunders AD, Kempton PD, Pringle MS, Klaver GT (1999) Modification of an oceanic plateau, Aruba, Dutch Caribbean: implications for the generation of continental crust. Lithos 46:43–68

    Article  Google Scholar 

  • Willbold M, Hegner E, Stracke A, Rocholl A (2009) Continental geochemical signatures in dacites from Iceland and implications for modes of early Archean crust formation. Earth Planet Sci Lettr 279:44–52

    Article  Google Scholar 

  • Winther KT (1996) An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem Geol 127:43–59

    Article  Google Scholar 

  • Zellmer GF, Iizuka Y, Miyoshi M, Tamura Y, Tatsumi Y (2012) Lower crustal H2O controls on the formation of adakitic melts. Geology 10 April 2012. doi:10.1130/G32912.1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent C. Condie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Condie, K. (2014). How to Make a Continent: Thirty-five Years of TTG Research. In: Dilek, Y., Furnes, H. (eds) Evolution of Archean Crust and Early Life. Modern Approaches in Solid Earth Sciences, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7615-9_7

Download citation

Publish with us

Policies and ethics