Archaean Elements of the Basement Outliers West of the Scandinavian Caledonides in Northern Norway: Architecture, Evolution and Possible Correlation with Fennoscandia

  • Steffen G. BerghEmail author
  • K. Kullerud
  • P.I. Myhre
  • F. Corfu
  • P.E.B. Armitage
  • K.B. Zwaan
  • E.J.K. Ravna
Part of the Modern Approaches in Solid Earth Sciences book series (MASE, volume 7)


Meso- and Neoarchaean basement rocks occur in two coastal outliers west of the Scandinavian Caledonides in North Norway, i.e. in western Troms (West Troms Basement Complex) and the Lofoten-Vesterålen area. When restored, these two outliers appear to have been assembled together in a cratonic-marginal position at the northern edge of the Fennoscandian shield in the Neoarchaean, and they share a similar tectono-magmatic history prior to Palaeoproterozoic events. This is confirmed by radiometric dating and similarity of sedimentary/volcanic units, intrusive/magmatic events, structural architecture and metamorphic events, and the mechanisms of amalgamation.

Distinctive tonalite-trondhjemite-granodiorite (TTG) gneisses (2.92-2.67 Ga) and intervening meta-volcanic and sedimentary units, e.g. the Ringvassøya greenstone belt (2.83–2.6 Ga), make up a significant portion of the West Troms Basement Complex. The TTG gneisses, likely magmatic in origin, were deformed, metamorphosed up to granulite facies and locally migmatized during periods of accretion and collisional/convergent tectonism at c. 2.9–2.8 Ga, 2.75–2.7 and 2.7–2.67 Ga. The final Neoarchaean stage (c. 2.67 Ga) caused high-grade metamorphism, resetting and comprehensive migmatization along presumed Neoarchaean terrane boundary shear zones prior to intrusion of an extensive Palaeoproterozoic mafic dyke swarm (2.4–2.2 Ga). The subsequent Palaeoproterozoic evolution involved rifting and basin formation (2.4–1.9 Ga), intrusion of an extensive magmatic suite of anorthosite-mangerite-charnockite-granite (1.8–1.7 Ga) and Svecofennian accretion and collisional orogenesis at c. 1.8–1.67 Ga.

In terms of correlation of the Archaean components with Fennoscandia and/or Laurentia, a closer connection to Fennoscandia is inferred from gravity-magnetic trends beneath the Caledonides, age constraints and tectono-magmatic evolution, and extrapolation of intervening tectonic basement windows present in the Caledonides. Provinces such as the Kola-Norwegian, Belomorian and Karelian provinces of the northwestern Fennoscandian shield of Russia, Finland and north Sweden, display obvious similarities with respect to supracrustal units of similar age and geological setting and their tectono-magmatic evolution.


Shear Zone Greenstone Belt Ductile Shear Zone Mafic Dyke Fennoscandian Shield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This paper is based on several years of research in the West Troms Basement Complex and the Lofoten-Vesterålen area. The ongoing research is an interdisciplinary study at the University of Tromsø, the University of Oslo and the Geological Survey of Norway, aimed at resolving aspects of the Precambrian development of provinces along the northern margin of Fennoscandia.


  1. Andresen A, Tull JF (1983) The age of the Lødingen granite and its possible regional significance. Norsk Geologisk Tidsskrift 63:269–276Google Scholar
  2. Andresen A, Forslund T (1987) Post-Caledonian brittle faults in Troms: geometry, age and tectonic significance (Abstract). The Caledonian and related Geology of Scandinavia. Symposium. Cardiff, Sept 1987Google Scholar
  3. Andersen TB, Jamtveit B, Dewey JF, Swensson E (1991) Subduction and eduction of continental crust: major mechanisms during continent-continent collision and orogenic extensional collapse, a model based on the south Norwegian Caledonides. Terra Nova 3:303–310CrossRefGoogle Scholar
  4. Armitage PEB, Bergh SG (2005) Structural development of the Mjelde-Skorelvvatn Zone on Kvaløya, Troms: a metasupracrustal shear belt in the Precambrian West Troms Basement Complex, North Norway. Norwegian Journal of Geology 85:117–132Google Scholar
  5. Bargel T, Bergstrøm B, Boyd R, Karlsen TA (1995) Geologisk kart, Narvik kommune M 1:100 000, Norges geologiske undersøkelseGoogle Scholar
  6. Bark G, Weihed P (2007) Orogenic gold in the Lycksele–Storuman ore province, northern Sweden; the Palaeoproterozoic Faboliden deposit. Ore Geology Reviews 32:431–451CrossRefGoogle Scholar
  7. Bergh SG, Armitage PEB (1998) Structural reconnaissance field work on western Ringvassøy. (Unpublished report), p 32Google Scholar
  8. Bergh SG, Torske T (1986) The Proterozoic Skoadduvarri Sandstone Formation, Alta, Northern Norway: a tectonic fan delta complex. Sedimentary Geol 47:1–25CrossRefGoogle Scholar
  9. Bergh SG, Torske T (1988) Palaeovolcanology and tectonic setting of a Proterozoic meta-tholeiitic sequence near the Baltic Shield margin, northern Norway. Precambr Res 39:227–246CrossRefGoogle Scholar
  10. Bergh SG, Kullerud K, Corfu F, Armitage PEB, Davidsen B, Johansen HW, Pettersen T, Knudsen S (2007) Low-grade sedimentary rocks on Vanna, North Norway: a new occurrence of a Palaeoproterozoic (2.4–2.2 Ga) cover succession in northern Fennoscandia. Norwegian Journal of Geology 87:301–318Google Scholar
  11. Bergh SG, Kullerud K, Armitage PEB, Zwaan KB, Corfu F, Ravna EJK, Myhre PI (2010) Neoarchaean to Svecofennian tectono-magmatic evolution of the West Troms Basement Complex, North Norway. Norwegian Journal of Geology 90:21–48Google Scholar
  12. Bleeker W, Ernst R (2006) Short-lived mantle generated magmatic events and their dyke swarms: the key unlocking Earth’s paleogeographic record back to 2.6 Ga. In: Hanski E, Mertanen S, Rämö T, Vuollo J (eds) Dyke swarms—time markers of crustal evolution. Balkema Publishers, Rotterdam, pp 3–26Google Scholar
  13. Blystad P, Brekke H, Færseth RB, Larsen BT, Skogseid J, Tørudbakken B (1995) Structural elements of the Norwegian continental shelf. Part II: the Norwegian sea region. Norwegian Petroleum Directorate Bulletin 8:1–45Google Scholar
  14. Braathen A, Davidsen B (2000) Structure and stratigraphy of the Palaeoproterozoic Karasjok Greenstone Belt, north Norway—regional implications. Norsk Geologisk Tidsskrift 80:33–50CrossRefGoogle Scholar
  15. Bridgewater D, Austrheim H, Hansen BT, Mengel F, Pedersen S, Winter J (1990) The Proterozoic Nagssugtoqidian mobile belt of southeast Greenland: a link between the Eastern Canadian and Baltic Shields. Geosci Can 17:305–310Google Scholar
  16. Connelly JN, Van Gool JAM, Mengel FC (2000) Temporal evolution of a deeply eroded orogen: the Nagssugtoqidian Orogen, West Greenland. Can J Earth Sci 37:1121–1142CrossRefGoogle Scholar
  17. Corfu F (2004a) U-Pb age, setting, and tectonic significance of the anorthosite-mangerite-charnockite-granite-suite, Lofoten-Vesterålen, Norway. J of Petrol 45:1799–1819CrossRefGoogle Scholar
  18. Corfu F (2004b) U-Pb geochronology of the Leknes Group: an exotic Early-Caledonian metasedimentary assemblage stranded on Lofoten basement, N-Norway. J Geol Soc London 161:619–627CrossRefGoogle Scholar
  19. Corfu F (2007) Multistage metamorphic evolution and nature of the amphibolite–granulite facies transition in Lofoten–Vesterålen, Norway, revealed by U–Pb in accessory minerals. Chem Geol 241:108–128CrossRefGoogle Scholar
  20. Corfu F, Armitage PEB, Kullerud K, Bergh SG (2003) Preliminary U-Pb geochronology in the West Troms Basement Complex, North Norway: Archaean and Palaeoproterozoic events and younger overprints. Norges geologiske undersøkelse Bulletin 441:61–72Google Scholar
  21. Daly JS, Balagansky VV, Timmerman MJ, Whitehouse MJ (2006) The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. Geological Society London Memoirs 32:579–598CrossRefGoogle Scholar
  22. Dilek Y, Polat A (2008) Suprasubduction zone ophiolites and Archean tectonics. Geology 36:431–432CrossRefGoogle Scholar
  23. Dilek Y, Furnes H (2009) Structure and geochemistry of Tethyan ophiolites and their peterogenesis in subduction rollback systems. Lithos 113:1–20CrossRefGoogle Scholar
  24. Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological society of America Bulletin 123:387–411CrossRefGoogle Scholar
  25. Doré AG, Lundin ER, Fichler C, Olesen O (1997) Patterns of basement structure and reactivation along the NE Atlantic margin. J Geol Soc London 154:85–92CrossRefGoogle Scholar
  26. Friend PD, Kinny PD (2001) A reappraisal of the Lewisian Gneiss Complex: geochronological evidence for its tectonic assembly from disparate terranes in the Proterozoic. Contribution Mineral Petrology 142:198–218CrossRefGoogle Scholar
  27. Gaál G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic Shield. Precambr Res 35:15–52CrossRefGoogle Scholar
  28. Gorbatschev R, Bogdanova S (1993) Frontiers in the Baltic Shield. Precambr Res 64:3–21CrossRefGoogle Scholar
  29. Griffin WL, Heier KS, Taylor PN, Weigand PW (1974) General geology, age and chemistry of the Raftsund mangerite intrusion, Lofoten-Vesterålen. Norges geologiske undersøkelse Bulletin 312:1–30Google Scholar
  30. Griffin WL, Taylor PN, Hakkinen JW, Heier KS, Iden IK, Krogh EJ, Malm O, Olsen KI, Ormaasen DE, Tveten E (1978) Archaean and Proterozoic crustal evolution in Lofoten-Vesterålen, N. Norway. J Geol Soc London 135:629–647CrossRefGoogle Scholar
  31. Hanski EJ, Huhma H, Lehtonen MI, Rastas P (1997) Isotope (Srn-Nd, U-Pb) and geo-chemical evidence for an oceanic crust to molasse evolution of the Palaeoproterozoic Kittilä greenstone complex, northern Finland. Norges geologiske undersøkelse Report 97.131, COPENA conference, Abstracts and ProceedingsGoogle Scholar
  32. Hanski EJ, Manttari I, Huhma H, Rastas P (2000) Post-1.88 Ga deposits of the Kumpu and Laino group molasse-type sediments in northern Finland: evidence from conventional NORDSIM zircon dating. Abstract, 24, Nordisk geologisk vintermøte, Trondheim 2000.Geonytt 1,75Google Scholar
  33. Heier KS (1960) Petrology and geochemistry of high-grade metamorphic and igneous rocks on Langøy, Northern Norway. Norsk Geologisk tidsskrift 207:1–246Google Scholar
  34. Heier KS, Compston W (1969) Interpretation of Rb-Sr age patterns in high grade metamorphic rocks, north Norway. Norsk geologisk tidsskrift 49:257–283Google Scholar
  35. Henderson I, Kendrick M (2003) Structural controls on graphite mineralisation, Senja, Troms. Geological Survey of Norway Report 2003.011, p 111Google Scholar
  36. Henkel H (1991) Magnetic crustal structures in Northern Fennoscandia. Tectonophysics 192:57–79CrossRefGoogle Scholar
  37. Herr W, Wolfe R, Kopp E, Eberhardt P (1967) Development and recent applications of the Re/Os dating method. In: Radioactive dating and methods of low-level counting. International Atomic Energy Agency, Vienna, pp 499–508Google Scholar
  38. Hölttä P, Balagansky V, Garde A, Mertanen S, Peltonen P, Slabunov A, Sorjonen-Ward P, Whitehouse M (2008) Archaean of Greenland and Fennoscandia. Episodes 31:13–19Google Scholar
  39. Jacobsen SB, Wasserburg GJ (1978) Interpretation of Nd, Sr and Pb isotope data from Archaean migmatites in Lofoten-Vesterålen, Norway. Earth Planet Sci Lett 41:245–253CrossRefGoogle Scholar
  40. Koistinen T, Stephens MB, Bogatchev V, Nordgulen Ø., Wennerström M, Korhonen J (compilers) (2001) Geological map of the Fennoscandian Shield, scale 1:2 000 000. Espoo, Geological Survey of Finland; Geological Survey of Norway, Trondheim; Geological Survey of Sweden, Uppsala; Ministry of Natural Resources of Russia, MoscowGoogle Scholar
  41. Korneliussen A, Sawyer E (1989) The geochemistry of lower Proterozoic mafic to felsic igneous rocks, Rombak Window, North Norway. Norges geologiske undersøkelse Bulletin 415:7–21Google Scholar
  42. Korneliussen A, Tollefsrud J. i, Flood B, Sawyer E (1986) Precambrian volcano-sedimentary sequences and related ore deposits, with special reference to the Gauteslifjell carbonate-hosted gold deposits, Rombak basement window, Northern Norway. Norges geologiske undersøkelse, Report 86 193, p 46Google Scholar
  43. Kozlov N.Ye, Sorokhtin NO, Glaznev VN, Kozlova N.Ye, Ivanov AA, Kudryashov NM, Martynov Ye.V, Tyuremnov VA, Matyushkin AV, Osipenko LG (2006) Geology of the Archean of the Baltic Shield. Saint Petersburg, Nauka Publishers, p 239 [in Russian]Google Scholar
  44. Krill A (1985) Svecokarelian thrusting with thermal inversion in the Karasjok-Levajok area of the northern Baltic Shield. Norges geologiske undersøkelse Bulletin 403:89–101Google Scholar
  45. Krill A, Bergh SG, Lindahl I, Mearns E, Often M, Olerud S, Olesen O, Sandstad JS, Siedlecka A, Solli A (1985) Rb-Sr, U-Pb and Sm-Nd isotopic dates from Precambrian rocks of Finnmark. Norges geol Undersøkelse Bulletin 403:37–54Google Scholar
  46. Kullerud K, Skjerlie KP, Corfu F, DeLaRosa J (2006) The 2.40 Ga Ringvassøy mafic dykes, West Troms Basement Complex, Norway: the concluding act of Early Palaeoproterozoic continental breakup. Precambr Res 150:183–200CrossRefGoogle Scholar
  47. Lahtinen R, Garde A, Melezhik VA (2008) Palaeoproterozoic evolution of Fennoscandia and Greenland. Episodes 31:20–28Google Scholar
  48. Larsen T, Henderson IHC, Sandstad JS, Bergh SG, Sundblad K (2011) Svecofennian deformation and associated shear zone related sulphide mineralization in the Rombak Tectonic Window, North Norway. NGF Abstracts and Proceedings of the Geological Society of Norway, No.1, p 58Google Scholar
  49. Lehtonen M, Airo M-L, Eilu P, Hanski E, Kortelainen V, Lanne E, Manninen T, Rastas P, Rasanen J, Virransalo P (1998) The stratigraphy, petrology and geochemistry of the Kittila greenstone area, northern Finland. Geological Survey of Finland, Report 140, p 144Google Scholar
  50. Markl G (1998) The Eidsfjord anorthosite, Vesterålen, Norway: field observations and geochemical data. Norsk geologisk tidsskrift 434:51–73Google Scholar
  51. Mertanen S, Korhonen F (2011) Paleomagnetic constraints on an Archean-Paleoproterozoic Superior-Karelia connection: new evidence from Archean Karelia. Precambr Res 186:193–204CrossRefGoogle Scholar
  52. Mjelde R, Sellevoll MA, Shimamura H, Iwasaki T, Kanazawa T (1993) Crustal structure beneath Lofoten, N. Norway from vertical incidence and wide-angle seismic data. Geophysical Journal International 114:116–126CrossRefGoogle Scholar
  53. Motuza G, Motuza V, Beliatsky B, Savva E (2001) The Ringvassøya greenstone belt (Tromso, North Norway): implications for a Mesoarchaean subduction zone. EUROPROBE time-slice symposium “Archaean and Proterozoic plate Tectonics: geological and geophysical records”. St. Petersburg, Russia, October 1–November 3, 2001, pp 43–44Google Scholar
  54. Myhre PI (2011) U-Pb geochronology along a Meso-Neoarchean geotransect in the West Troms Basement Complex, North Norway. Unpublished PhD thesis, University of Tromsø, NorwayGoogle Scholar
  55. Myhre PI, Heaman LM, Bergh SG (2010) Svecofennian (c. 1780 Ma) metamorphic zircon ages from the West Troms Basement Complex, northern Norway. In: NGF Abstract, Proceedings Geological Society Norway pp 128–129Google Scholar
  56. Myhre PI, Corfu F, Bergh S (2011) Palaeoproterozoic (2.0–1.95 Ga) pre-orogenic supracrustal sequences in the West Troms Basement Complex, North Norway. Precambr Res 186:89–100CrossRefGoogle Scholar
  57. Myhre PI, Corfu F, Bergh SG, Kullerud K (2013) U-Pb geochronology along a Meso-Neoarchean geotransect in the West Troms Basement Complex, North Norway. Norwegian Journal of Geology, (in press)Google Scholar
  58. Nironen M (1997) The Svecofennian Orogen: a tectonic model. Precambr Res 86:21–44CrossRefGoogle Scholar
  59. Olesen O, Torsvik T, Tveten E, Zwaan KB, Løseth H, Henningsen T (1997) Basement structure of the continental margin in the Lofoten-Lopphavet area, northern Norway: constraints from potential field data, on-land structural mapping and paleomagnetic data. Norwegian Journal of Geology 77:15–30Google Scholar
  60. Park RG (2005) The Lewisian terrane model: a review. Scot J Geol 41:105–118CrossRefGoogle Scholar
  61. Park RG, Tarney J, Connelly JN (2001) The Loch Maree Group: Palaeoproterozoic subduction-accretion complex in the Lewisian of NW Scotland. Precambr Res 105:205–226CrossRefGoogle Scholar
  62. Pesonen LJ, Elming S, Mertanen S, Pisarevsky S, D’Agrella-Filho MS, Meert JG, Schmidt PW, Abrahamsen N, Bylund G (2003) Palaeomagnetic configuration of continents during the Proterozoic. Tectonophysics 375: 289–324Google Scholar
  63. Ramberg IB, Bryhni I, Nøttvedt A (2006) The making of a land. Norsk Geologisk ForeningGoogle Scholar
  64. Rásanen J, Hanski E, Juopperi H, Kortelainen V, Lanne E, Lehtonen MI, Manninen T, Rastas P, Vaananen J (1995) New stratigraphical map of Central Finnish Lappland, 22nd Nordic Geological Winter meeting, Turku, 1996, Abstract, p 182Google Scholar
  65. Rastas P, Huhma H, Hanski EJ, Lehtonen MI, Harkonen I, Kortelainen V, Manttari I, Paakkola J (2001) U-Pb isotopic studies on the Kittilä greenstone area, central Finland. In: Vaasjoki M (ed) Radiometric age determinations from Finish Lapland and their bearing on the timing of Precambrian volcano-sedimentary sequences. Geological Survey of Finland Special Paper 33:95–141Google Scholar
  66. Romer RL (1987) The geology, geochemistry and metamorphism of the Sjangeli area, a tectonic window in the Caledonides of Northern Sweden. Research Report, Luleå University, Sweden. LULEÅ, 16, p 124Google Scholar
  67. Sandstad JS, Nilsson LP (1998) Gullundersøkelser på Ringvassøya; sammenstilling av tidligere prospektering og feltbefaring i 1997. Norges geologiske undersøkelse Report 98. 07, p 61Google Scholar
  68. Sidgren A-S, Page L, Garde AA (2006) New hornblende and muscovite 40Ar/39Ar cooling ages in the central Rinkian fold belt, West Greenland. Geological Survey Denmark-Greenland Bulletin 11:115–123Google Scholar
  69. Slabunov AI, Lobach-Zhuchenko SB, Bibikova EV, Sorjonen-Ward P, Balagansky VV, Volodichev OI, Shchipansky AA, Svetov SA, Chekulaev VP, Arestova NA, Stepanov VS (2006) The Archean nucleus of the Baltic/Fennoscandian Shield. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, Geological Society of London. Memoirs 32:627–644Google Scholar
  70. Taylor PN (1974) Isotope geology and related geochemical studies of ancient high-grade metamorphic basement complexes: Lofoten and Vesterålen, North Norway. PhD thesis, Oxford University, pp 1–187Google Scholar
  71. Taylor PN (1975) An early Precambrian age for Migmatitic Gneisses from Vikan i Bø, Vesterålen, North Norway. Earth Planet Sci Lett 27:35–42CrossRefGoogle Scholar
  72. Torske T, Bergh SG (2004) The Caravarri Formation of the Kautokeino Greenstone Belt, Finnmark, North Norway; a Palaeoproterozoic foreland basin succession. Norges geologiske undersøkelse Bulletin 442:5–22Google Scholar
  73. Tveten E (1978) Geologisk kart over Norge, berggrunns kart Svolvær 1:250 000, Norges geologiske undersøkelseGoogle Scholar
  74. Van Gool JAM, Connelly JN, Marker M, Mengel FC (2002) The Nagssugtoqidian orogen of West Greenland: tectonic evolution and regional correlation from a West Greenland perspective. Can J Earth Sci 39:665–686CrossRefGoogle Scholar
  75. Wade SJR (1985) Radiogenic isotope studies of crust-forming processes in the Lofoten-Vesterålen Province of North Norway. PhD Thesis, University of Oxford (vol I, 1–285, vol II, 1–292)Google Scholar
  76. Williams H, Hoffman PF, Lewry JF, Monger JWH, Rivers T (1991) Anatomy of North America: thematic geological portrayals of the continent. Tectonophysics 187:117–134CrossRefGoogle Scholar
  77. Zozulya D, Kullerud K, Ravna EK, Corfu F, Savchenko Y (2009) Geology, age and geochemical constraints on the origin of the Late Archaean Mikkelvik alkaline massif, West Troms Basement Complex in Northern Norway. Norwegian Journal of Geology 89:327–340Google Scholar
  78. Zwaan KB (1989) Berggrunnsgeologisk kartlegging av det prekambriske grønnsteinsbeltet på Ringvassøy, Troms. Norges geologiske undersøkelse Rapport 89.101Google Scholar
  79. Zwaan KB (1995) Geology of the Precambrian West Troms Basement Complex, northern Norway, with special emphasis on the Senja Shear Belt: a preliminary account. Norges geologiske undersøkelse Bulletin 427:33–36Google Scholar
  80. Zwaan KB, Gautier AM (1980) Alta og Gargia. Beskrivelse til de berggrunnsgeologiske kart 1834 I og 1934 IV, 1:50,000. Norges geologiske undersøkelse 357:1–47Google Scholar
  81. Zwaan KB, Tucker RD (1996) Absolute and relative age relationships in the Precambrian West Troms Basement Complex, northern Norway (Abstract). 22nd Nordic Geol. Winter Meeting, Åbo, Finland, p 237Google Scholar
  82. Zwaan KB, Fareth E, Grogan PW (1998) Geologisk kart over Norge, berggrunnskart Tromsø, M 1:250.000. Norges geologiske undersøkelseGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Steffen G. Bergh
    • 1
    Email author
  • K. Kullerud
    • 1
  • P.I. Myhre
    • 1
  • F. Corfu
    • 2
  • P.E.B. Armitage
    • 3
  • K.B. Zwaan
    • 4
  • E.J.K. Ravna
    • 1
  1. 1.Department of GeologyUniversity of TromsøTromsøNorway
  2. 2.Department of GeosciencesUniversity of OsloOsloNorway
  3. 3.Paul Armitage Consulting Ltd55 Reedham Crescent, Cliffe WoodsRochesterUK
  4. 4.Geological Survey of NorwayTrondheimNorway

Personalised recommendations