Abstract
This section reviews the relation between the continuous dynamics of a molecular system in thermal equilibrium and the kinetics given by a Markov State Model (MSM). We will introduce the dynamical propagator, an error-less, alternative description of the continuous dynamics, and show how MSMs result from its discretization. This allows for an precise understanding of the approximation quality of MSMs in comparison to the continuous dynamics. The results on the approximation quality are key for the design of good MSMs. While this section is important for understanding the theory of discretization and related systematic errors, practitioners wishing only to learn how to construct MSMs may skip directly to the discussion of Markov model estimation.
Part of this chapter is reprinted with permission from Prinz et al. (Markov models of molecular kinetics: Generation and validation. J. Chem. Phys. 134:174,105, 2011). Copyright 2011, American Institute of Physics.
A more detailed text book version is to be found in Schütte and Sarich (Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches. Courant Lecture Notes, 24. American Mathematical Society, 2013).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384–2393. doi:10.1063/1.439486
Bieri O, Wirz J, Hellrung B, Schutkowski M, Drewello M, Kiefhaber T (1999) The speed limit for protein folding measured by triplet-triplet energy transfer. Proc Natl Acad Sci USA 96(17):9597–9601. http://www.pnas.org/content/96/17/9597.abstract
Bowman GR, Beauchamp KA, Boxer G, Pande VS (2009) Progress and challenges in the automated construction of Markov state models for full protein systems. J Chem Phys 131(12):124,101+. doi:10.1063/1.3216567
Buchete NV, Hummer G (2008) Coarse Master Equations for Peptide Folding Dynamics. J Phys Chem B 112:6057–6069
Chan CK, Hu Y, Takahashi S, Rousseau DL, Eaton WA, Hofrichter J (1997) Submillisecond protein folding kinetics studied by ultrarapid mixing. Proc Natl Acad Sci USA 94(5):1779–1784. http://www.pnas.org/content/94/5/1779.abstract
Chodera JD, Dill KA, Singhal N, Pande VS, Swope WC, Pitera JW (2007) Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J Chem Phys 126:155,101
Chodera JD, Noé F (2010) Probability distributions of molecular observables computed from Markov models, II: uncertainties in observables and their time-evolution. J Chem Phys 133:105,102
Chodera JD, Swope WC, Noé F, Prinz JH, Pande VS (2010) Dynamical reweighting: improved estimates of dynamical properties from simulations at multiple temperatures. J Phys Chem. doi:10.1063/1.3592152
Chodera JD, Swope WC, Pitera JW, Dill KA (2006) Long-time protein folding dynamics from short-time molecular dynamics simulations. Multiscale Model Simul 5:1214–1226
Cooke B, Schmidler SC (2008) Preserving the Boltzmann ensemble in replica-exchange molecular dynamics. J Chem Phys 129:164,112
Deuflhard P, Huisinga W, Fischer A, Schütte C (2000) Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Linear Algebra Appl 315:39–59
Deuflhard P, Weber M (2005) Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl 398:161–184
Djurdjevac N, Sarich M, Schütte C (2012) Estimating the eigenvalue error of Markov state models. Multiscale Model Simul 10(1):61–81
Duane S (1987) Hybrid Monte Carlo. Phys Lett B 195(2):216–222. doi:10.1016/0370-2693(87)91197-X
Ermak DL (1975) A computer simulation of charged particles in solution, I: technique and equilibrium properties. J Chem Phys 62(10):4189–4196
Ermak DL, Yeh Y (1974) Equilibrium electrostatic effects on the behavior of polyions in solution: polyion-mobile ion interaction. Chem Phys Lett 24(2):243–248
Golub GH, van Loan CF (1996) Matrix computations, 3rd edn. John Hopkins University Press, Baltimore
Herau R, Hitrik M, Sjoestrand J (2010) Tunnel effect and symmetries for Kramers Fokker-Planck type operators. arXiv:1007.0838v1
Huisinga W (2001) Metastability of Markovian systems: a transfer operator based approach in application to molecular dynamics. PhD thesis, Fachbereich Mathematik und Informatik, FU Berlin
Huisinga W, Meyn S, Schütte C (2004) Phase transitions and metastability for Markovian and molecular systems. Ann Appl Probab 14:419–458
Jäger M, Nguyen H, Crane JC, Kelly JW, Gruebele M (2001) The folding mechanism of a beta-sheet: the WW domain. J Mol Biol 311(2):373–393. doi:10.1006/jmbi.2001.4873
van Kampen NG (2006) Stochastic processes in physics and chemistry, 4th edn. Elsevier, Amsterdam
Keller B, Hünenberger P, van Gunsteren W (2010) An analysis of the validity of Markov state models for emulating the dynamics of classical molecular systems and ensembles. J Chem Theor Comput. doi:10.1021/ct200069c
Kube S, Weber M (2007) A coarse graining method for the identification of transition rates between molecular conformations. J Chem Phys 126:024,103–024,113
Meerbach E, Schütte C, Horenko I, Schmidt B (2007) Metastable conformational structure and dynamics: peptides between gas phase and aqueous solution. Series in chemical physics, vol 87. Springer, Berlin, pp 796–806
Metzner P, Horenko I, Schütte C (2007) Generator estimation of Markov jump processes based on incomplete observations nonequidistant in time. Phys Rev E 76(6):066,702+. doi:10.1103/PhysRevE.76.066702
Metzner P, Schütte C, Vanden-Eijnden E (2009) Transition path theory for Markov jump processes. Multiscale Model Simul 7(3):1192–1219
Neuweiler H, Doose S, Sauer M (2005) A microscopic view of miniprotein folding: enhanced folding efficiency through formation of an intermediate. Proc Natl Acad Sci USA 102(46):16,650–16,655. doi:10.1073/pnas.0507351102
Noé F, Horenko I, Schütte C, Smith JC (2007) Hierarchical analysis of conformational dynamics in biomolecules: transition networks of metastable states. J Chem Phys 126:155,102
Noé F, Schütte C, Vanden-Eijnden E, Reich L, Weikl TR (2009) Constructing the full ensemble of folding pathways from short off-equilibrium simulations. Proc Natl Acad Sci USA 106:19,011–19,016
Prinz JH et al. (2011) Markov models of molecular kinetics: generation and validation. J Chem Phys 134:174,105
Sarich M (2011) Projected transfer operators. PhD thesis, Freie Universität Berlin
Sarich M, Noé F, Schütte C (2010) On the approximation error of Markov state models. Multiscale Model Simul 8:1154–1177
Sarich M, Schütte C (2012) Approximating selected non-dominant timescales by Markov state models. Comm Math Sci (in press)
Schütte C (1998) Conformational dynamics: modelling, theory, algorithm, and applications to biomolecules. Habilitation thesis, Fachbereich Mathematik und Informatik, FU Berlin
Schütte C, Huisinga W (2003) Biomolecular conformations can be identified as metastable sets of molecular dynamics. In: Handbook of numerical analysis. Elsevier, Amsterdam, pp 699–744
Schütte C, Sarich M (2013) Metastability and Markov state models in molecular dynamics: modeling, analysis, algorithmic approaches. Courant lecture notes, vol 24. American Mathematical Society, Providence
Schütte C, Fischer A, Huisinga W, Deuflhard P (1999) A direct approach to conformational dynamics based on hybrid Monte Carlo. J Comput Phys 151:146–168
Schütte C, Noé F, Meerbach E, Metzner P, Hartmann C (2009) Conformation dynamics. In: Jeltsch RGW (ed) Proceedings of the international congress on industrial and applied mathematics (ICIAM). EMS Publishing House, New York, pp 297–336
Schütte C, Noé F, Lu J, Sarich M, Vanden-Eijnden E (2011) Markov state models based on milestoning. J Chem Phys 134(19)
Sriraman S, Kevrekidis IG, Hummer G (2005) Coarse master equation from Bayesian analysis of replica molecular dynamics simulations. J Phys Chem B 109:6479–6484
Swope WC, Andersen HC, Berens PH, Wilson KR (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76(1):637–649
Swope WC, Pitera JW, Suits F (2004) Describing protein folding kinetics by molecular dynamics simulations, 1: theory. J Phys Chem B 108:6571–6581
Swope WC, Pitera JW, Suits F, Pitman M, Eleftheriou M (2004) Describing protein folding kinetics by molecular dynamics simulations, 2: example applications to alanine dipeptide and beta-hairpin peptide. J Phys Chem B 108:6582–6594
Voronoi MG (1908) Nouvelles applications des parametres continus a la theorie des formes quadratiques. J Reine Angew Math 134:198–287
Weber M (2006) Meshless methods in conformation dynamics. PhD thesis, Freie Universität Berlin
Weber M (2010) A subspace approach to molecular Markov state models via an infinitesimal generator. ZIB report 09-27-rev
Weber M (2011) A subspace approach to molecular Markov state models via a new infinitesimal generator. Habilitation thesis, Fachbereich Mathematik und Informatik, Freie Universität Berlin
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Sarich, M., Prinz, JH., Schütte, C. (2014). Markov Model Theory. In: Bowman, G., Pande, V., Noé, F. (eds) An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation. Advances in Experimental Medicine and Biology, vol 797. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7606-7_3
Download citation
DOI: https://doi.org/10.1007/978-94-007-7606-7_3
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-7605-0
Online ISBN: 978-94-007-7606-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)