The Role of Hyaluronic Acid and Its Receptors in the Growth and Invasion of Brain Tumors

Chapter
Part of the Tumors of the Central Nervous System book series (TCNS, volume 13)

Abstract

Malignant gliomas induce a complex cascade of changes in the extracellular matrix of the brain during their growth and invasion. This chapter highlights those changes involving hyaluronic acid, a glycosaminoglycan that constitutes much of the brain extracellular matrix, and the biophysical and biochemical effects those changes have on glioma cells. Signaling effects of hyaluronic acid receptors will be discussed, with a focus on CD44. The implications of CD44 enrichment in cancer stem cells will be discussed. Finally, because these interactions are highly dependent on the cellular microenvironment, we will review various in vitro cell culture platforms that have been used to model glioma cell motility and invasion.

Keywords

Hyaluronic Acid Glioma Cell Cancer Stem Cell Focal Adhesion Kinase Malignant Peripheral Nerve Sheath Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ananthanarayanan B, Kim Y, Kumar S (2011) Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32:7913–7923PubMedCentralPubMedCrossRefGoogle Scholar
  2. Ariza A, López D, Mate JL, Isamat M, Musulén E, Pujol M, Ley A, Navas-Palacios JJ (1995) Role of cd44 in the invasiveness of glioblastoma multiforme and the noninvasiveness of meningioma: an immunohistochemistry study. Hum Pathol 26:1144–1147PubMedCrossRefGoogle Scholar
  3. Bai Y, Liu Y-J, Wang H, Xu Y, Stamenkovic I, Yu Q (2007) Inhibition of the hyaluronan-cd44 interaction by merlin contributes to the tumor-suppressor activity of merlin. Oncogene 26:836–850PubMedCrossRefGoogle Scholar
  4. Baier C, Baader SL, Jankowski J, Gieselmann V, Schilling K, Rauch U, Kappler J (2007) Hyaluronan is organized into fiber-like structures along migratory pathways in the developing mouse cerebellum. Mat Biol 26:348–358CrossRefGoogle Scholar
  5. Beadle C, Assanah MC, Monzo P, Vallee R, Rosenfeld SS, Canoll P (2008) The role of myosin ii in glioma invasion of the brain. Mol Bio Cell 19:3357–3368CrossRefGoogle Scholar
  6. Bleau A-M, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) Pten/pi3k/akt pathway regulates the side population phenotype and abcg2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bourguignon LYW (2008) Hyaluronan-mediated cd44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Semin Cancer Biol 18:251–259PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bourguignon LYW, Zhu H, Shao L, Chen YW (2001) Cd44 interaction with c-src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J Biol Chem 276:7327–7336PubMedCrossRefGoogle Scholar
  9. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:H41–H56PubMedCentralPubMedCrossRefGoogle Scholar
  10. Calatozzolo C, Gelati M, Ciusani E, Sciacca F, Pollo B, Cajola L, Marras C, Silvani A, Vitellaro-Zuccarello L, Croci D, Boiardi A, Salmaggi A (2005) Expression of drug resistance proteins pgp, mrp1, mrp3, mrp5 and gst-π in human glioma. J Neurooncol 74:113–121PubMedCrossRefGoogle Scholar
  11. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428PubMedCrossRefGoogle Scholar
  12. Crapo PM, Medberry CJ, Reing JE, Tottey S, van der Merwe Y, Jones KE, Badylak SF (2012) Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 33:3539–3547PubMedCentralPubMedCrossRefGoogle Scholar
  13. Delpech B, Maingonnat C, Girard N, Chauzy C, Maunoury R, Olivier A, Tayot J, Creissard P (1993) Hyaluronan and hyaluronectin in the extracellular matrix of human brain tumour stroma. Eur J Cancer 29A:1012–1017PubMedCrossRefGoogle Scholar
  14. Enegd B, King JAJ, Stylli S, Paradiso L, Kaye AH, Novak U (2002) Overexpression of hyaluronan synthase-2 reduces the tumorigenic potential of glioma cells lacking hyaluronidase activity. Neurosurgery 50:1311–1318PubMedGoogle Scholar
  15. Fujita Y, Kitagawa M, Nakamura S, Azuma K, Ishii G, Higashi M, Kishi H, Hiwasa T, Koda K, Nakajima N, Harigaya K (2002) Cd44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett 528:101–108PubMedCrossRefGoogle Scholar
  16. Godar S, Ince TA, Bell GW, Feldser D, Donaher JL, Bergh J, Liu A, Miu K, Watnick RS, Reinhardt F, McAllister SS, Jacks T, Weinberg RA (2008) Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of cd44 expression. Cell 134:62–73PubMedCentralPubMedCrossRefGoogle Scholar
  17. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101:14228–14233PubMedCentralPubMedCrossRefGoogle Scholar
  18. Jijiwa M, Demir H, Gupta S, Leung C, Joshi K, Orozco N, Huang T, Yildiz VO, Shibahara I, de Jesus JA, Yong WH, Mischel PS, Fernandez S, Kornblum HI, Nakano I (2011) Cd44v6 regulates growth of brain tumor stem cells partially through the akt-mediated pathway. PLoS ONE 6:e24217PubMedCentralPubMedCrossRefGoogle Scholar
  19. Jung T, Gross W, Zoller M (2011) Cd44v6 coordinates tumor matrix-triggered motility and apoptosis resistance. J Biol Chem 286:15862–15874Google Scholar
  20. Kosaki R, Watanabe K, Yamaguchi Y (1999) Overproduction of hyaluronan by expression of the hyaluronan synthase has2 enhances anchorage-independent growth and tumorigenicity. Cancer Res 59:1141–1145PubMedGoogle Scholar
  21. Kumar S, Weaver V (2009) Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev 28:113–127PubMedCentralPubMedCrossRefGoogle Scholar
  22. Lee GY, Kenny PA, Lee EH, Bissell MJ (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Method 4:359–365CrossRefGoogle Scholar
  23. Legg JW, Lewis CA, Parsons M, Ng T, Isacke CM (2002) A novel pkc-regulated mechanism controls cd44 ezrin association and directional cell motility. Nat Cell Biol 4:399–407PubMedCrossRefGoogle Scholar
  24. Lin YH (2001) The osteopontin-cd44 survival signal involves activation of the phosphatidylinositol 3-kinase/akt signaling pathway. J Biol Chem 276:46024–46030PubMedCrossRefGoogle Scholar
  25. Liu D, Pearlman E, Diaconu E, Guo K, Mori H, Haqqi T, Markowitz S, Willson J, Sy MS (1996) Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proc Natl Acad Sci U S A 93:7832–7837PubMedCentralPubMedCrossRefGoogle Scholar
  26. Nedvetzki S, Gonen E, Assayag N, Reich R, Williams RO, Thurmond RL, Huang JF, Neudecker BA, Wang FS, Turley EA (2004) Rhamm, a receptor for hyaluronan-mediated motility, compensates for cd44 in inflamed cd44-knockout mice: a different interpretation of redundancy. Proc Natl Acad Sci U S A 101:18081PubMedCentralPubMedCrossRefGoogle Scholar
  27. Novak U, Stylli SS, Kaye AH, Lepperdingerm G (1999) Hyaluronidase-2 overexpression accelerates intracerebral but not subcutaneous tumor formation of murine astrocytoma cells. Cancer Res 59:6246–6250PubMedGoogle Scholar
  28. Oliferenko S, Kaverina I, Small JV, Huber LA (2000) Hyaluronic acid (ha) binding to cd44 activates rac1 and induces lamellipodia outgrowth. J Cell Biol 148:1159–1164PubMedCentralPubMedCrossRefGoogle Scholar
  29. Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231PubMedCentralPubMedCrossRefGoogle Scholar
  30. Ranuncolo SM, Ladeda V, Specterman S, Varela M, Lastiri J, Morandi A, Matos E, Joffe EBDK, Puricelli L, Pallotta MG (2002) Cd44 expression in human gliomas. J Surg Oncol 79:30–36PubMedCrossRefGoogle Scholar
  31. Siebzehnrubl FA, Reynolds BA, Vescovi A, Steindler DA, Deleyrolle LP (2011) The origins of glioma: E pluribus unum? Glia 59:1135–1147PubMedCrossRefGoogle Scholar
  32. Slomiany MG, Dai L, Bomar PA, Knackstedt TJ, Kranc DA, Tolliver L, Maria BL, Toole BP (2009) Abrogating drug resistance in malignant peripheral nerve sheath tumors by disrupting hyaluronan-cd44 interactions with small hyaluronan oligosaccharides. Cancer Res 69:4992–4998PubMedCentralPubMedCrossRefGoogle Scholar
  33. Toole BP, Slomiany MG (2008) Hyaluronan: a constitutive regulator of chemoresistance and malignancy in cancer cells. Semin Cancer Biol 18:244–250PubMedCentralPubMedCrossRefGoogle Scholar
  34. Ulrich TA, de Juan Pard EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69:4167–4174PubMedCentralPubMedCrossRefGoogle Scholar
  35. Ulrich TA, Lee TG, Shon HK, Moon DW, Kumar S (2011) Microscale mechanisms of agarose-induced disruption of collagen remodeling. Biomaterials 32: 5633–5642PubMedCentralPubMedCrossRefGoogle Scholar
  36. Wang Y-L, Pelham RJ Jr (1998) Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol 298:489–496PubMedCrossRefGoogle Scholar
  37. Xu Y, Stamenkovic I, Yu Q (2010) Cd44 attenuates activation of the hippo signaling pathway and is a prime therapeutic target for glioblastoma. Cancer Res 70:2455–2464PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Bioengineering and California, Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations