Molybdenum

Chapter

Abstract

Molybdenum is the element No. 42 of the periodic table (period—5, similar to tungsten group—6 (or VIB), relates to transition metals) with the ground state level 7S3 and electron configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 5 5s 1.

Keywords

Ultimate Tensile Strength Refractory Metal Electron Work Function Powder Metallurgy Method Pure Molybdenum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Steurer W (1996) Crystal structure of the metallic elements. In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th ed., Vol. 1, pp. 1–46. Elsevier Science BV, AmsterdamGoogle Scholar
  2. 2.
    Cotton FA, Wilkinson G (1965) Advanced inorganic chemistry. Wiley, New York, LondonGoogle Scholar
  3. 3.
    Akhmetov NS (2001) Obschaya i neorganicheskaya khimiya (General and inorganic chemistry), 4th ed. Vysshaya Shkola, Moscow (in Russian)Google Scholar
  4. 4.
    Waseda Y, Hirata K, Ohtani M (1975) High-temperature thermal expansion of platinum, tantalum, molybdenum and tungsten measured by X-ray diffraction. High Temp High Pressures 7:221–226Google Scholar
  5. 5.
    Kotelnikov RB, Bashlykov SN, Galiakbarov ZG, Kashtanov AI (1968) Osobo tugoplavkie elementy i soedineniya (Extra refractory elements and compounds). Metallurgiya, Moscow (in Russian)Google Scholar
  6. 6.
    Zefirov AP (ed), Veryatin UD, Mashirev VP, Ryabtsev NG, Tarasov VI, Rogozkin BD, Korobov IV (1965) Termodinamicheskie svoistva neorganicheskikh veschestv (Thermodynamic properties of inorganic substances). Atomizdat, Moscow (in Russian)Google Scholar
  7. 7.
    Speight JG, ed (2005) Lange’s handbook of chemistry, 16th ed. McGraw-Hill, New YorkGoogle Scholar
  8. 8.
    Lide DR, ed (2010) CRC handbook of chemistry and physics, 90th ed. CRC Press, Boca Raton, New YorkGoogle Scholar
  9. 9.
    Martienssen W (2005) The elements. In: Martienssen W, Warlimont H (eds) Springer handbook of condensed matter and materials data, pp. 45–158. Springer, Berlin, HeidelbergGoogle Scholar
  10. 10.
    Samsonov GV, ed (1976) Svoistva elementov (Properties of elements), 2nd ed., Vol. 1. Metallurgiya, Moscow (in Russian)Google Scholar
  11. 11.
    Marmer ÉN, Gurvich OS, Maltseva LF (1967) Vysokotemperaturnye materialy (High-temperature materials). Metallurgiya, Moscow (in Russian)Google Scholar
  12. 12.
    Cardarelli F (2008) Materials handbook, 2nd ed. Springer, LondonGoogle Scholar
  13. 13.
    Plansee Aktiengesellschaft (2000) Materials data base. Reutte, AustriaGoogle Scholar
  14. 14.
    Samsonov GV, ed (1976) Svoistva elementov (Properties of elements), 2nd ed., Vol. 2. Metallurgiya, Moscow (in Russian)Google Scholar
  15. 15.
    Lyakishev NP, ed (1997) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 2. Mashinostroenie, Moscow (in Russian)Google Scholar
  16. 16.
    Lyakishev NP, ed (2001) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 3, Part 1. Mashinostroenie, Moscow (in Russian)Google Scholar
  17. 17.
    Lyakishev NP, ed (1996) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 1. Mashinostroenie, Moscow (in Russian)Google Scholar
  18. 18.
    Massalski TB, Subramanian PR, Okamoto H, Kacprzak L, eds (1990) Binary alloy phase diagrams, 2nd ed. ASM International, Metals Park, OhioGoogle Scholar
  19. 19.
    Rudy E (1969) Compendium of phase diagram data. In: Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Report AFML-TR-65–2, Contracts USAF 33(615)-1249 and USAF 33(615)-67-C-1513, Part 5, pp. 1–689. Air Force Materials Laboratory, Wright-Patterson Air Force Base, OhioGoogle Scholar
  20. 20.
    Kuzma YuB (1983) Kristallokhimiya boridov (The crystal chemistry of borides). Vyshcha Shkola, Lviv (in Russian)Google Scholar
  21. 21.
    Kosolapova TYa, ed (1990) Handbook of high-temperature compounds: properties, production and applications. Hemisphere, New YorkGoogle Scholar
  22. 22.
    Toth LE (1971) Transition metal carbides and nitrides. Academic Press, New York, LondonGoogle Scholar
  23. 23.
    Kofstad P (1966) High-temperature oxidation of metals. Wiley, New York, LondonGoogle Scholar
  24. 24.
    Kofstad P (1988) High-temperature corrosion. Elsevier Applied Science, London, New YorkGoogle Scholar
  25. 25.
    Haschke H, Nowotny H, Benesovsky F (1966) Untersuchungen im der ternären Systeme (Mo,W)-(Fe,Co,Ni)-B (Investigations in the systems (Mo,W)-(Fe,Co,Ni)-B). Monatsh Chem 97:1459–1468 (in German)Google Scholar
  26. 26.
    Leithe-Jasper A, Klesnar H, Rogl P, Komai M, Takagi K-I (2000) Reinvestigation of isothermal section in M(M = Mo,W)-Fe-B ternary systems at 1323 K. J Jpn Inst Met 64(2):154–162 (in Japanese)Google Scholar
  27. 27.
    Harmon DP (1966) Hf-Mo-B and Hf-W-B systems. In: Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Report AFML-TR-65–2, Contract USAF 33(615)-1249, Part 2, Vol. 11, pp. 1–41. Air Force Materials Laboratory, Wright-Patterson Air Force Base, OhioGoogle Scholar
  28. 28.
    Holleck H (1984) Binäre und ternäre Carbid- und Nitridsysteme der Ubergangsmetalle (Binary and ternary carbide and nitride systems of the transition metals). Gebrüder Bornträeger, Berlin (in German)Google Scholar
  29. 29.
    Rogl P, Schuster JC (1992) Phase diagrams of ternary boron nitride and silicon nitride systems. ASM International, Materials Park, OhioGoogle Scholar
  30. 30.
    Borisova AL, Martsenyuk IS (1975) Reactions of boron and aluminum nitrides and materials based on them with refractory metals. Powder Metall Met Ceram 14(10):822–826Google Scholar
  31. 31.
    Samsonov GV, ed (1978) Fiziko-khimicheskie svoistva okislov (Physico-chemical properties of oxides), 2nd ed. Metallurgiya, Moscow (in Russian)Google Scholar
  32. 32.
    Samsonov GV, Vinitskii IM (1980) Handbook on refractory compounds. IFI/Plenum, New YorkGoogle Scholar
  33. 33.
    Telegus VS, Kuzma YuB (1968) Phase equilibria in the systems tungsten-chromium-boron and tungsten-molybdenum- boron. Powder Metall Met Ceram 7(2):133–138Google Scholar
  34. 34.
    Kharitonov VI, Shamrai FI (1969) Ternary system Mo-W-B. Powder Metall Met Ceram 8(7):567–570Google Scholar
  35. 35.
    Kosterova NV, Ordanyan SS, Neshpor VS, Ostrovskii EK (1980) Thermionic emission properties of cermets of eutectic compositions in MeIV – (C, B) – (Mo, Re, W) systems. Powder Metall Met Ceram 19(1):61–66Google Scholar
  36. 36.
    Ordanyan SS, Chupov VD, Kirshina VYu, Fesenko LV (1985) Reactions of hafnium nitride with molybdenum, tungsten and tantalum. Powder Metall Met Ceram 24(9):714–719Google Scholar
  37. 37.
    Ishchenko TV, Meshkov LL, Sokolovskaya YeM (1984) On the interaction of μ phases in systems formed by transition metals. J Less-Common Met 97:145–150Google Scholar
  38. 38.
    Andrievskii RA, Spivak II (1989) Prochnost tugoplavkikh soedinenii i materialov na ikh osnove (Strength of refractory compounds and materials based on them). Metallurgiya, Chelyabinsk (in Russian)Google Scholar
  39. 39.
    Setton M, Van Der Spiegel J (1991) A review of some aspects of ternary metal-metal-Si and metal-B-Si systems. J Appl Phys 69(2):994–999Google Scholar
  40. 40.
    Boettinger WJ, Perepezko JH, Frankwicz PS (1992) Application of ternary phase diagrams to the development of MoSi2-based materials. Mater Sci Eng A 155(1):33–44Google Scholar
  41. 41.
    Taylor A, Doyle NJ (1967) The solid solubility of oxygen in Nb and Nb-rich Nb-Hf, Nb-Mo and Nb-W alloys: Part III: The ternary systems Nb-Mo-O and Nb-W-O. J Less-Common Met 13(3):338–351Google Scholar
  42. 42.
    Ma CL, Li JG, Tan Y, Tanaka R, Hanada S (2004) Microstructure and mechanical properties of Nb/Nb5Si3 in situ composites in Nb-Mo-Si and Nb-W-Si systems. Mater Sci Eng A 386:375–383Google Scholar
  43. 43.
    Habashi F (1997) Handbook of extractive metallurgy. Wiley-VCH, Weinheim, New YorkGoogle Scholar
  44. 44.
    Samsonov GV (1966) Berillidy (Beryllides). Naukova Dumka, Kyiv (in Russian)Google Scholar
  45. 45.
    Savitskii EM, Burkhanov GS (1971) Metallovedenie splavov tugoplavkikh i redkih metallov (Metallography of refractory and less-common metal alloys), 2nd ed. Nauka, Moscow (in Russian)Google Scholar
  46. 46.
    Garg SP, Ackermann RJ (1977) The high temperature phase diagrams for Th-Mo, Th-Re, U-Mo and U-Re; derived thermodynamic properties of refractory metal solutes in liquid thorium and uranium. J Nucl Mater 64(3):265–274Google Scholar
  47. 47.
    Brewer L, Lamoreaux RH (1980) Phase diagrams. In: Brewer L (ed) Molybdenum. Physico-chemical properties of its compounds and alloys. Atomic Energy Review, Special Issue N 7, pp. 195–356. International Atomic Energy Agency, ViennaGoogle Scholar
  48. 48.
    Audi G, Wapstra AH, Thibault C, Blachot J, Bersillon O (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729:3–128Google Scholar
  49. 49.
    De Laeter JR, Bohlke JK, De Bievre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements. Review 2000 (IUPAC Technical report). Pure Appl Chem 75(6):683–800Google Scholar
  50. 50.
    Wieser ME (2006) Atomic weights of the elements 2005. (IUPAC Technical report). Pure Appl Chem 78(11):2051–2066Google Scholar
  51. 51.
    Ordanyan SS (1980) Reactions of HfB2 with Re and Cr. Powder Metall Met Ceram 19(4):273–277Google Scholar
  52. 52.
    Kubaschewski O (1982) Iron binary phase diagrams. Springer, BerlinGoogle Scholar
  53. 53.
    Goodwin F, Guruswamy S, Kainer KU, Kammer C, Knabl W, Koethe A, Leichtfried G, Schlamp G, Stickler R, Warlimont H (2005) Metals. In: Martienssen W, Warlimont H (eds) Springer handbook of condensed matter and materials data, pp. 161–430. Springer, Berlin, HeidelbergGoogle Scholar
  54. 54.
    Conway JB, Flagella BN (1971) Creep rupture data for the refractory metals to high temperatures. Gordon Breach, New YorkGoogle Scholar
  55. 55.
    Fromm E, Jehn H (1984) Solubility hydrogen in the elements. Bull Alloy Phase Diagrams 5(3):323–326Google Scholar
  56. 56.
    Maldonado A, Schubert K (1964) Strukturuntersuchungen in einigen zu T5-T10 homologen und quasihomologen Legierungssystemen (The structural studies of some T5-T10 homologous and quasi-homologous alloy systems). Z Metallkd 55(10):619–626 (in German)Google Scholar
  57. 57.
    Feldman Y, Wasserman E, Srolovotz DJ, Tenne R (1995) High-rate gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267:222–225Google Scholar
  58. 58.
    Ohtani T (2010) Synthesis and applications of chalcogenide nanotubes. In: Kijima T (ed) Inorganic and metallic nanotubular materials, pp. 191–200. Springer, Berlin, HeidelbergGoogle Scholar
  59. 59.
    Schuster JC (1988) Silicon nitride – metal joints: phase equilibria in the systems Si3N4 – Cr, Mo, W and Re. J Mater Sci 23(8):2792–2796Google Scholar
  60. 60.
    Asrar N, Meshkov LL, Sokolovskaya EM (1988) Phase equilibria in ternary alloys based on iron-group metals and containing refractory metals (Mo, W, Nb, Ta). J Less-Common Met 144:41–52Google Scholar
  61. 61.
    Xiong W, Du Y, Liu Y, Huang BY, Xu HH, Chen HL, Pan Z (2004) Thermodynamic assessment of the Mo-Nb-Ta system. Calphad 28:133–140Google Scholar
  62. 62.
    Briggs JZ, Linteau J (1992) Properties of pure metals. Molybdenum. In: ASM handbook. Vol. 2 – Properties and selection: nonferrous alloys and special-purpose materials, pp. 3102–3113. ASM International, The Materials Company, OhioGoogle Scholar
  63. 63.
    Leichtfried G (2002) Powder metallurgy data. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  64. 64.
    Ovsepyan ES (1964) Molibdenovye splavy (Molybdenum alloys). In: Tumanov AT (ed) Konstruktsionnye materialy (Structural materials). Vol. 2, pp. 218–219. Sovetskaya Entsiklopediya, Moscow (in Russian)Google Scholar
  65. 65.
    Femböck J, Pfaffinger K, Weiss B, Stickler R (1981) Verhalten von Mo-Werkstoffen unter zyklischer Beanspruchung (Behavior of Mo-materials under cyclic loading). In: Proc. 10th Plansee seminar. Vol. 2, pp. 27–35. Plansee AG, Reutte (in German)Google Scholar
  66. 66.
    Ovsepyan ES, Stroev AS (1964) Molibden (Molybdenum). In: Tumanov AT (ed) Konstruktsionnye materialy (Structural materials). Vol. 2, pp. 214–217. Sovetskaya Entsiklopediya, Moscow (in Russian)Google Scholar
  67. 67.
    Mazaev AA, Avarbe RG, Vilk YuN (1969) K rastvorimosti vodoroda v molibdene pri vysokikh temperaturakh i davleniyakh (On the solubility of hydrogen in molybdenum at high temperatures and pressures). Izv AN SSSR Metally (4):255–256 (in Russian)Google Scholar
  68. 68.
    Lange KW, Schenck H (1969) The hydrogen absorption in nickel-molybdenum and nickel-wolfram alloys. Z Metallkd 60(1):62–68Google Scholar
  69. 69.
    Oates WA, McLellan RB (1972) The solubility of hydrogen in molybdenum. Scr Metall 6(5):349–352Google Scholar
  70. 70.
    Leavenworth HW, Cleary RE (1961) The solubility of Ni, Cr, Fe, Ti and Mo in liquid lithium. Acta Metall 9(5):519–520Google Scholar
  71. 71.
    Von Goldbeck O (1973) Phase diagrams. In: Beryllium. Physico-chemical properties of its compounds and alloys. Atomic Energy Review, Special Issue N 4, pp. 45–61. International Atomic Energy Agency, ViennaGoogle Scholar
  72. 72.
    Gschneidner KA (1961) Rare earth alloys: a critical review of. Van Nostrand Reinhold, New YorkGoogle Scholar
  73. 73.
    Chuang Y-C, Li C-W, Chuang H-L, Kao L-M (1966) Phase diagram of the gadolinium-molybdenum system. Acta Metall Sin 9:110–112 (in Chinese)Google Scholar
  74. 74.
    Savitskii EM, Devingtal YuV, Gribulya VB (1968) Prognoz metallicheskikh soedinenii tipa A3B s pomoshchyu elektronno-vychislitelnoi mashiny (Prognosis of A3B type metallic compounds by means of computing). Doklady AN SSSR 183(5):1110–1112 (in Russian)Google Scholar
  75. 75.
    Savitskii EM, Devingtal YuV, Gribulya VB (1969) Raspoznavanie tipa reaktsii obrazovaniya i otsenka intervala gomogennosti metallicheskikh faz pri pomoshchi EVM (Identification of formation reaction type and evaluation of homogeneity range of metallic phases by means of computing). Doklady AN SSSR 185(3):561–563 (in Russian)Google Scholar
  76. 76.
    Savitskii EM, Gribulya VB (1970) Opyt prognozirovaniya sostava i svoistv soedinenii s pomoshchyu EVM (Prognosis experience in compound compositions and properties by means of computing). Doklady AN SSSR 190(5):1147–1150 (in Russian)Google Scholar
  77. 77.
    Savitskii EM, Gribulya VB (1972) Prognoz faz Lavesa pri pomoshchi EVM (Prognosis of Laves phases by means of computing). Doklady AN SSSR 206(4):848–851 (in Russian)Google Scholar
  78. 78.
    McMasters OD, Palmer PE, Larsen WL (1962) Thorium-molybdenum phase diagram. J Nucl Mater 7(2):151–156Google Scholar
  79. 79.
    Dwight AE (1960) The uranium-molybdenum equilibrium diagram below 900 °C. J Nucl Mater 2(1):81–87Google Scholar
  80. 80.
    Lehmann J (1964) Phases monocliniques dans les alliages uranium-molybdene (Monoclinic phases in the uranium-molybdenum alloys). J Nucl Mater 4(2):218–225 (in French)Google Scholar
  81. 81.
    Tangri K, Williams GI (1961) Metastable phases in the uranium molybdenum system and their origin. J Nucl Mater 4(2):226–233Google Scholar
  82. 82.
    Ageev NV, Guseva LN, Dolinskaya LK (1975) Metastabilnye fazy v zakalennykh splavakh titana s molibdenom i titana s vanadium i vliyanie na nikh malykh primesei kisloroda (Metastable phases in the hardened alloys of titanium with molybdenum and titanium with vanadium and effect of oxygen minor impurities on them). Izv AN SSSR Metally (4):151–156 (in Russian)Google Scholar
  83. 83.
    Davis R, Flower HM, West DRF (1979) Martensitic transformations in Ti-Mo alloys. J Mater Sci 14(3):712–722Google Scholar
  84. 84.
    Leibovitch C, Gartstein E, Rabinkin AG (1980) Structural stability and superconductivity of Ti-Mo alloys under pressure – 1. Structural stability. Z Metallkd 71(7):438–447Google Scholar
  85. 85.
    Murray JL (1981) The Mo-Ti (molybdenum-titanium) system. Bull Alloy Phase Diagrams 2(2):185–192Google Scholar
  86. 86.
    Rapp Ö (1970) Superconductivity and lattice parameters in the zirconium-molybdenum, zirconium-tungsten, hafnium-molybdenum and hafnium-tungsten alloy systems. J Less-Common Met 21(1):27–44Google Scholar
  87. 87.
    Samsonov GV, Braun SM, Rogozinskaya AA (1972) Nekotorye zakonomernosti vliyaniya legiruyushchikh elementov na temperature polimorfnogo prevrashcheniya tsirkoniya (Some rules of the effect of alloying elements on the polymorphic transformation temperature of zirconium). Izv Vyssh Uchebn Zaved Tsvet Metall (6):118–122 (in Russian)Google Scholar
  88. 88.
    Kubaschewski O, Von Goldbeck O (1976) Phase diagrams. In: Zirconium. Physico-chemical properties of its compounds and alloys. Atomic Energy Review, Special Issue N 6, pp. 67–140. International Atomic Energy Agency, ViennaGoogle Scholar
  89. 89.
    Garg SP, Ackermann RJ (1977) The high temperature phase diagrams for zirconium-molybdenum and hafnium-molybdenum. Metall Trans A 8(2):239–244Google Scholar
  90. 90.
    Taylor A, Doyle NJ, Kagle BJ (1961) The constitution diagram of the molybdenum-hafnium binary system. J Less-Common Met 3(4):265–348Google Scholar
  91. 91.
    Kocherzhinskii YuA, Vasilenko VI (1985) Diagrammy plavkosti sistem Mo-Nb(V,Cr), V-Nb(Cr) i Mo-V-Nb(Cr) (The meltability diagram of the Mo-Nb(V,Cr), V-Nb(Cr) and Mo-V-Nb(Cr) systems). Izv AN SSSR Metally (2):188–190 (in Russian)Google Scholar
  92. 92.
    Goldschmidt HJ, Brand JA (1961) The constitution of the chromium-niobium-molybdenum system. J Less-Common Met 3(1):44–61Google Scholar
  93. 93.
    Krimer BI (1968) Fazovoe sostoyanie splavov iz tugoplavkikh komponentov (k diagramme Nb-Mo) (Phase constitution of refractory component alloys (towards to Nb-Mo phase diagram)). Izv Vyssh Uchebn Zaved Chern Metall (5):143–145 (in Russian)Google Scholar
  94. 94.
    Okamoto H (1991) Mo-Nb (molybdenum-niobium) system. J Phase Equilibria 12(5):616–617Google Scholar
  95. 95.
    Kaufman L, Nesor H (1973) Theoretical approaches to the determination of phase diagrams. Annual Rev Mater Sci 3:1–30Google Scholar
  96. 96.
    Kocherzhinskii YuA, Vasilenko VI (1979) Diagramma plavkosti Mo-Cr (Mo-Cr meltability diagram). Izv AN SSSR Metally (4):205–207 (in Russian)Google Scholar
  97. 97.
    Venkatraman M, Neumann JP (1987) The Cr-Mo (chromium-molybdenum) system. Bull Alloy Phase Diagrams 8(3):216–220Google Scholar
  98. 98.
    Telegus VS, Kuzma YuB, Marko MA (1971) Phase equilibria in the systems molybdenum-manganese-carbon and tungsten-manganese-carbon. Powder Metall Met Ceram 10(11):898–903Google Scholar
  99. 99.
    Darby JB, Zegler ST (1962) Comments on superconducting phases in the Mo-Tc system. J Phys Chem Solids 23(12):1825–1827Google Scholar
  100. 100.
    Alekseevskii NE, Balakhovskii OA, Kirillov IV (1975) O sverkhprovodimosti tekhnetsiya i nekotorykh ego splavov (On superconductivity of technetium and its some alloys). Fiz Metal Metalloved 40(1):50–54 (in Russian)Google Scholar
  101. 101.
    Higgins J, Wilkes P (1972) Precipitation in the Fe-Mo and Fe-Au systems. Philos Mag 25:599–623Google Scholar
  102. 102.
    Kichner G, Harvig H, Uhrenius B (1973) Experimental and thermodynamic study of the equilibria between ferrite, austenite and intermediate phases in the Fe-W and Fe-Mo-W systems. Metal Trans 4:1059–1067Google Scholar
  103. 103.
    Heijwegen CP, Rieck GD (1974) Determination of the phase diagram of the Mo-Fe system using diffusion couples. J Less-Common Met 37(1):115–121Google Scholar
  104. 104.
    Fernandez-Guillermet A (1982) The Fe-Mo (iron-molybdenum) system. Bull Alloy Phase Diagrams 3(3):359–367Google Scholar
  105. 105.
    Anderson E, Hume-Rothery W (1960) The equilibrium diagram of the system molybdenum-ruthenium. J Less-Common Met 2(6):443–450Google Scholar
  106. 106.
    Moss M, Smith DL, Lefever RA (1964) Metastable phases and sulerconductors produced by plasma-jet spraying. Appl Phys Lett 5(6):120–121Google Scholar
  107. 107.
    Quinn TJ, Hume-Rothery W (1963) The equilibrium diagram of the system molybdenum-cobalt. J Less-Common Met 5(4):314–324Google Scholar
  108. 108.
    Heijwegen CP, Rieck GD (1974) Determination of the phase diagram of the Mo-Co system using diffusion couples. J Less-Common Met 34(2):309–314Google Scholar
  109. 109.
    Takayama T, Wey MY, Nichizawa T (1981) Effect of magnetic transition on the solubility of alloying elements in bcc iron and fcc cobalt. Trans Japan Inst Metals 22(5):315–325Google Scholar
  110. 110.
    Anderson E, Hume-Rothery W (1960) The equilibrium diagram of the system molybdenum-rhodium. J Less-Common Met 2(1):19–28Google Scholar
  111. 111.
    Glessen BC, Jähnigen U, Grant NJ (1966) Ordered AB and AB3 phases in T6-T9 alloy systems and a modified Mo-Ir phase diagram. J Less-Common Met 10(2):147–150Google Scholar
  112. 112.
    Raub E (1959) Metals and alloys of the platinum group. J Less-Common Met 1(1):3–18Google Scholar
  113. 113.
    Raub E, Plate W (1956) Aushärtung und Entmischung der Platin-Iridium-Legierungen (Age hardening and breakdown of solid solution in platinumiridium alloys). Z Metallkd 47(10):688–693 (in German)Google Scholar
  114. 114.
    Casselton REW, Hume-Rothery W (1964) The equilibrium diagram of the system molybdenum-nickel. J Less-Common Met 7(3):212–221Google Scholar
  115. 115.
    Heijwegen CP, Rieck GD (1973) Determination of the phase diagram of the Mo-Ni system using diffusion couples. Z Metallkd 64(6):450–453Google Scholar
  116. 116.
    Van Tendeloo G (1976) Short range order considerations and development of long range order in different Ni-Mo alloys. Mater Sci Eng 26:209–220Google Scholar
  117. 117.
    Raub E (1954) Die Legierungen der Platinmetalle mit Molybdän (The alloys of platinum metals with molybdenum). Z Metallkd 45:23–30 (in German)Google Scholar
  118. 118.
    Anderson E (1964) The equilibrium diagram of the system molybdenum-palladium. J Less-Common Met 6(1):81–84Google Scholar
  119. 119.
    Savitskii EM, Tylkina MA, Khamidov OKh (1964) Sistema palladii-molibden (The palladium-molybdenum system). Zh Neorg Khim 9(12):2738–2742 (in Russian)Google Scholar
  120. 120.
    Rooksby HP, Lewis B (1964) Relations between the structures of phases in the system platinum-molybdenum. J Less-Common Met 6(6):451–460Google Scholar
  121. 121.
    Raub E, Röschel E (1966) Über einige neue A15-Phasen (Several new A15-phases). Naturwissenschaften 53(1):17 (in German)Google Scholar
  122. 122.
    Ocken H, Van Vucht JHN (1968) Phase equilibria and superconductivity in the molybdenum-platinum system. J Less-Common Met 15(2):193–199Google Scholar
  123. 123.
    Flükiger R, Yvon K, Susz Ch, Roggen R, Paoli A, Muller J (1973) Les domaines d’homogénéité des phases supraconductrices dans le système molybdène-platine (The areas of homogeneity of superconducting phases in the system molybdenum-platinum). J Less-Common Met 32(2):207–225 (in French)Google Scholar
  124. 124.
    Driole J, Allibert C, Bonnier E (1979) Elektromagnetische Induktion – ein Mittel zur Untersuchung der Phasengleichgewichte Diagramme (Electromagnetic induction – a means for the investigation of phase equilibrium diagrams). Metall 33(5):471–474 (in German)Google Scholar
  125. 125.
    Subramanian PR, Laughlin DE (1990) The Cu-Mo (copper-molybdenum) system. Bull Alloy Phase Diagrams 11(2):169–172Google Scholar
  126. 126.
    Massalski TB, Okamoto H, Brever L (1986) The Au-Mo (gold-molybdenum). Bull Alloy Phase Diagrams 7(5):449–452Google Scholar
  127. 127.
    Neumann T, Schleicher H, Venker H (1969) Legierungsbildung zwischen niedrig- und höchstschmelzenden Metallen durch Reduktion flüchtiger Metallhalogenide und Klärung des Aufbaus der nach diesem Verfahren erhaltenen Molybdän-Zink-Legierungen (Alloy formation between low- and highest-melting metals by reducing volatile metal halides and clarify the structure of the products obtained by this method molybdenum-zinc alloys). Z Metallkd 60:438–441 (in German)Google Scholar
  128. 128.
    Rudy E, Benesovsky F, Toth L (1963) Untersuchungen der ternären Systeme der Gruppe Va und VIa Metalle mit Bor und Kohlenstoff (Studies of the ternary systems of the group Va and VIa metals with boron and carbon). Z Metallkd 54(6):345–353 (in German)Google Scholar
  129. 129.
    Rudy E, Windisch S (1965) Systems Mo-B and W-B. In: Ternary phase equilibria in transition metal – boron – carbon – silicon systems. Report AFML-TR-65–2, Contract USAF 33(615)-1249, Part 1, Vol. 3, pp. 1–72. Air Force Materials Laboratory, Wright Patterson Air Force Base, OhioGoogle Scholar
  130. 130.
    Portnoi KI, Levinskii YuV, Romashov VM, Mordovin OA, Levinskaya MKh (1967) Diagramma sostoyaniya sistemy molibden-bor (The constitution diagram of the molybdenum-boron system). Izv AN SSSR Metally (4):171–176 (in Russian)Google Scholar
  131. 131.
    Zakharov AM, Novikov II, Polkin VS (1971) Sistema Mo-B so storony molibdena (The Mo-B system from the molybdenum side). Izv Vyssh Uchebn Zaved Tsvet Metall (6):126–129 (in Russian)Google Scholar
  132. 132.
    Lundström T, Rosenberg I (1973) The crystal structure of the molybdenum boride Mo1–xB3. J Solid State Chem 6(2):299–305Google Scholar
  133. 133.
    Storms E, Mueller B (1977) Phase relations and thermodynamic properties of transition metal borides. I. The molybdenum-boron system and elemental boron. J Phys Chem 81(4):318–324Google Scholar
  134. 134.
    Spear KE, Liao PK (1988) The B-Mo (boron-molybdenum). Bull Alloy Phase Diagrams 9(4):457–466Google Scholar
  135. 135.
    Vigdorovich VN, Glazov VM, Glagoleva NN (1960) Issledovanie rastvorimosti khroma, molibdena i volframa v alyuminii metodom mikrotverdosti (A study of the solubility of chromium, molybdenum and tungsten in aluminium by microhardness method). Izv Vyssh Uchebn Zaved Tsvet Metall (2):143–146 (in Russian)Google Scholar
  136. 136.
    Pötschke M, Schubert K (1962) Zum Aufbau einiger zu T4-B3 homologer und quasi-homologer Systeme. II. Die Systeme Titan-Aluminium, Zirkonium-Aluminium, Hafnium-Aluminium, Molybdän-Aluminium und einige ternäre Systeme (Structure of some homologous to T4-B3 and quasi-homologous systems. II. Titanium-aluminum, zirconium-aluminum, hafnium-aluminum, molybdenum-aluminum systems and some of the ternary systems). Z Metallkd 53:548–560 (in German)Google Scholar
  137. 137.
    Rexer J (1971) Die Phasengleichgewichte im System Aluminium-Molybdän bei Temperaturen oberhalb 1400 °C (Phase equilibria in the aluminium-molybdenum system above 1400 °C). Z Metallkd 62(11):844–848 (in German)Google Scholar
  138. 138.
    Bornand JD, Siemens RE, Oden LL (1973) Phase relations in the molybdenum-gallium system. J Less-Common Met 30(2):205–209Google Scholar
  139. 139.
    Yatsenko SP, Dieva EN (1973) Rastvorimost tugoplavkikh metallov v zhidkom indii (The solubility of refractory metals in liquid indium). Zh Fiz Khim 47(11):2948 (in Russian)Google Scholar
  140. 140.
    Gokhale AB, Abbaschian GJ (1991) The Mo-Si (molybdenum-silicon) system. J Phase Equilibria 12(4):493–498Google Scholar
  141. 141.
    Brown A (1965) Structure data for some arsenic- and germanium-rich compounds of molybdenum. Nature 206:502–503Google Scholar
  142. 142.
    Agoshkov VM, Gorbatenkov VD, Popova VS, Fomicheva LN (1981) Crystallization of MoGe2 and WGe2 at high pressure and some properties of these phases. J Less-Common Met 78(2):235–243Google Scholar
  143. 143.
    Olesinki RW, Abbaschian GJ (1987) The Ge-Mo (germanium-molybdenum) system. Bull Alloy Phase Diagrams 8(1):53–56Google Scholar
  144. 144.
    Killpatrick DH (1964) High-pressure high-temperature synthesis of a new β-wolfram compound Mo3Sn. J Phys Chem Solids 25(12):1499–1500Google Scholar
  145. 145.
    Kozina LN, Revyakin AV, Samarin AM (1969) Rastvorimost azota v zhidkikh niobii i molibdene (The solubility of nitrogen in liquid niobium and molybdenum). Doklady AN SSSR 184(2):397–399 (in Russian)Google Scholar
  146. 146.
    Fromm E, Jehn H (1971) Gleichgewichtsuntersuchungen im System Molybdän-Stickstoff (Study of equilibria in the molybdenum-nitrogen system). Z Metallkd 62(5):372–377 (in German)Google Scholar
  147. 147.
    Domke H, Frohberg MG (1974) Die Bestimmung der Stickstoffloeslichkeit in fluessigem Molybdän (Determination of the solubility of nitrogen in liquid molybdenum). Z Metallkd 65(9):615–617 (in German)Google Scholar
  148. 148.
    Jehn H, Ettmayer P (1978) The molybdenum-nitrogen phase diagram. J Less-Common Met 58(1):85–98Google Scholar
  149. 149.
    Samsonov GV, Vereikin LL (1961) Fosfidy (Phosphides). UkrSSR Academy of Sciences, Kyiv (in Russian)Google Scholar
  150. 150.
    Kandler H, Reiss B (1966) Zur Kristallstruktur der intermetallischen Phasen MoAs und Mo3As (The crystal structure of the intermetallic phases MoAs and Mo3As). Z Naturforsch A 21:549–554 (in German)Google Scholar
  151. 151.
    Guerin R, Sergent M, Prigent J (1975) Etude des chaines metal-metal dans la structure type MnP: Les arseniure et phosphure “MoAs” et WP et leurs solutions solides avec les composes MX (M = element de transition 3d; X = As, P) (Study of metal-metal chains in the structure type MnP: The arsenide and phosphide “MoAs” and WP and their solid solutions with the compounds MX (M = 3d transition element, X = As, P)). Mater Res Bull 10(9):957–966 (in French)Google Scholar
  152. 152.
    Phillips B, Chang LLY (1965) Condensed-phase relations in the system Mo-O. Trans AIME 233(7):1433–1436Google Scholar
  153. 153.
    Chang LLY, Phillips B (1969) Phase relations in refractory metal – oxygen systems. J Am Ceram Soc 52(10):527–533Google Scholar
  154. 154.
    Zador S, Alcock CB (1970) Thermodynamic study of MoOx with small deviations from stoichiometry. J Chem Thermodyn 2(1):9–16Google Scholar
  155. 155.
    Srivastava SC, Seigle LL (1974) Solubility and thermodynamic properties of oxygen in solid molybdenum. Metall Trans 5(1):49–52Google Scholar
  156. 156.
    Ekstrom T, Tilley RJD (1976) Ternary tungsten oxides with the Mo5O14 structure. J Solid State Chem 19(2):125–133Google Scholar
  157. 157.
    Bygden J, Sichen D, Seetharaman S (1994) A thermodynamic study of the molybdenum-oxygen system. Metall Mater Trans B 25(6):885–891Google Scholar
  158. 158.
    Cannon P (1959) Melting point and sublimation of molybdenum disulphide. Nature 183:1612–1613Google Scholar
  159. 159.
    Anderson E (1964) The equilibrium diagram of the system molybdenum-palladium. J Less-Common Met 6(1):81–84Google Scholar
  160. 160.
    Stäfer SC, Larson AH, Schlechten AW (1964) Sulfur pressure variation of molybdenum disulfide at 1100 °C. Trans AIME 230:594–595Google Scholar
  161. 161.
    De Jonge R, Popma TJA, Wiegers GA, Jellinek F (1970) Structure and phase transitions of molybdenum (III) sulfide and some related phases. J Solid State Chem 2(2):188–192Google Scholar
  162. 162.
    Chevrel R, Sergent M, Prigent J (1974) Un nouveau sulfure de molybdene: Mo3S4 preparation, proprietes et structure cristalline (A new molybdenum sulfide: Mo3S4 preparation, properties and crystal structure). Mater Res Bull 9(11):1487–1489 (in French)Google Scholar
  163. 163.
    Poulard G, Perrot P (1975) Enthalpies libres de formation et domaine de stabilité des sulfures de molybdéne Mo2S3 et MoS2 (Free energies of formation and stability region of molybdenum sulfides Mo2S3 and MoS2). Compt Rend Acad Sci C 281:143–146 (in French)Google Scholar
  164. 164.
    Johnson WB, Hong WS, Readey DW (1983) A molybdenum sulphur binary phase diagram. Scr Metall 17(7):919–922Google Scholar
  165. 165.
    Frey GL, Elani S, Homyonfer M, Feldman Y, Tenne R (1998) Optical-absorption spectra of inorganic fullerenelike MS2 (M = Mo, W). Phys Rev B 57(11):6666–6671Google Scholar
  166. 166.
    Remskar M, Mrzel A, Skraba Z, Jesih A, Ceh M, Demsÿar J, Stadelmann P, Levy F, Mihailovic D (2001) Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 292:479–481Google Scholar
  167. 167.
    Suemitsu M, Toshimi A (2010) Synthesis and applications of molybdenum oxide nanotubes. In: Kijima T (ed) Inorganic and metallic nanotubular materials, pp. 83–96. Springer, Berlin, HeidelbergGoogle Scholar
  168. 168.
    Towle LC, Oberbeck V, Brown BE, Stajdohar RE (1966) Molybdenum diselenide: rhombohedral high pressure – high temperature polymorph. Science 154:895–896Google Scholar
  169. 169.
    Spiesser M, Rouxel J, Kerriou M, Goureaux MG (1969) Caractérisation et étude physico-chimique de séléniures et tellures non stœchiométriques de molybdène (Physico-chemical characterization and study of non-stoichiometric selenides and tellurides of molybdenum). Bull Soc Chim France (5):1427–1431 (in French)Google Scholar
  170. 170.
    Al-Hilli AA, Evans BL (1972) The preparation and properties of transition metal dichalcogenide single crystals. J Cryst Growth 15(2):93–101Google Scholar
  171. 171.
    Bars O, Guillevic J, Grandjean D (1973) Étude structurale de combinaisons sulfurées et séléniées du molybdène: I. Structure cristalline de Mo3Se4 (Structural study of sulfur and selenium compounds of molybdenum: I. Crystal structure of Mo3Se4). J Solid State Chem 6:48–57 (in French)Google Scholar
  172. 172.
    Glazunov MP, Mikhailov ES, Piskarev NV, Chupakhin MS (1976) A mass-spectrometric investigation of the evaporation of molybdenum and tantalum diselenides. Powder Metall Met Ceram 15(11):866–868Google Scholar
  173. 173.
    Hershfinkel M, Gheber LA, Volterra V, Hutchison JL, Margulis L, Tenne R (1994) Nested polyhedra of MX2 (M = W, Mo; X = S, Se) probed by high-resolution electron microscopy and scanning tunneling microscopy. J Am Chem Soc 116(5):1914–1917Google Scholar
  174. 174.
    Revolinsky E, Beerntsen DJ (1966) Electrical properties of α- and β-MoTe2 as affected by stoichiometry and preparation temperature. J Phys Chem Solids 27(3):523–526Google Scholar
  175. 175.
    Vellinga MB, De Jonge R, Haas CU (1970) Semiconductor to metal transition in MoTe2. J Solid State Chem 2(2):299–302Google Scholar
  176. 176.
    Opalovskii AA, Fedorov VE, Lobkov EU, Tsikanovskii BI (1971) Issledovanie telluridov molibdena i volframa tenzimetricheskim metodom (A study of molybdenum and tungsten tellurides by tensometric method). Zh Fiz Khim 45(7):1864 (in Russian)Google Scholar
  177. 177.
    Yanaki AA, Obolonchik VA (1974) Termicheskaya ustoichivost telluridov perekhodnykh metallov V-VI grupp periodicheskoi sistemy elementov (The thermal resistance of tellurides of transition metals V-VI groups of the periodic table). Zh Prikl Khim 47(7):1454–1458 (in Russian)Google Scholar
  178. 178.
    Zelikman AN (1970) Molibden (Molybdenum). Metallurgiya, Moscow (in Russian)Google Scholar
  179. 179.
    Mercer M (1967) Molybdenum hexachloride. Chem Commun (3):119–121Google Scholar
  180. 180.
    Kepert DL, Mandyczewsky R (1968) α-Molybdenum tetrachloride. A structural isomer containing molybdenum- molybdenum interactions. Inorg Chem 7(10):2091–2093Google Scholar
  181. 181.
    Nirsha VM, Korshunov VG (1969) Sintez oksitrikhlorida i oksitetrakhlorida molibdena (Synthesis of molybdenum oxytrichloride and oxytetrachloride). Zh Neorg Khim 14(6):1693–1694 (in Russian)Google Scholar
  182. 182.
    Drobot DV, Sapranova EA (1974) Sintez trikhlorida molibdena i issledovanie fazovykh ravnovesii v sisteme MoCl3 – MoCl5 (Synthesis of molybdenum trichloride and study of phase relations in the MoCl3 – MoCl5 system). Zh Neorg Khim 19(1):228–231 (in Russian)Google Scholar
  183. 183.
    Oppermann H, Stöver G (1972) Beiträge zur Chemie der Oxidhalogenide von Molybdän und Wolfram. VI. Thermische Zersetzung von MoCl3 und MoOCl2 (Contributions to the chemistry of molybdenum and tungsten oxyhalides. VI. Thermal decomposition of MoCl3 and MoOCl2). Z Anorg Allgem Chem 387(2):218–229 (in German)Google Scholar
  184. 184.
    Schaefer H, Schering HGV, Tillack J, Kuhnen F, Wöhrle H, Baumann H (1967) Neue Untersuchungen über die Chloride des Molybdäns (New research on the chlorides of molybdenum). Z Anorg Allgem Chem 353(5–6):281–310 (in German)Google Scholar
  185. 185.
    Babel D (1972) Die Verfeinerung der MoBr3-Struktur (The refinement of the structure MoBr3). J Solid State Chem 4(3):410–416 (in German)Google Scholar
  186. 186.
    Oppermann H (1975) Gleichgewichtsmessungen im System Molybdän-Brom (Equilibrium measurements in the system molybdenum-bromine). Z Anorg Allgem Chem 395(2–3):249–261 (in German)Google Scholar
  187. 187.
    Hashimoto K, Hanamura T (1999) Phase stability and mechanical properties of Nb-rich Nb-Mo-Al ternary system at elevated temperatures. Mater Trans JIM 40(2):152–158Google Scholar
  188. 188.
    Kovalchenko MS, Samsonov GV, Yasinskaya GA (1960) Splavy boridov perekhodnykh metallov s drugimi metallami (Alloys of transition metals borides with other metals). Izv AN SSSR OTN Metallurgiya Toplivo (2):115–119 (in Russian)Google Scholar
  189. 189.
    Kuzma YuB, Telegus VS, Kovalyk DA (1969) X-ray diffraction investigation of the ternary systems V-Cr-B, Nb-Cr-B and Mo-Cr-B. Powder Metall Met Ceram 8(5):403–410Google Scholar
  190. 190.
    Kolomytsev PT, Moskaleva NV, Snetkov AYa (1969) Phase composition and some properties of molybdenum-chromium-boron alloys. Powder Metall Met Ceram 8(10):836–839Google Scholar
  191. 191.
    Zakharov AM, Yudkovskij SI, Popova YuS (1982) Molibdenovyi ugol troinoi sistemy Mo-Cr-B (The molybdenum-rich angle in the Mo-Cr-B ternary system). Izv AN SSSR Neorg Mater 18(10):1714–1716 (in Russian)Google Scholar
  192. 192.
    Tojo M, Tokunaga T, Ohtani H, Hasebe M (2010) Thermodynamic analysis of phase equilibria in the Cr-Mo-B ternary system. Calphad 34:263–270Google Scholar
  193. 193.
    Kuzma YuB (1971) An x-ray structural investigation of the systems niobium-titanium-boron and niobium-molybdenum-boron. Powder Metall Met Ceram 10(4):298–300Google Scholar
  194. 194.
    Yamada K, Ohtani H, Hasebe M (2009) Thermodynamic analysis of the Mo-Nb-B ternary phase diagram. Nippon Kinzoku Gakkaishi 73(3):180–188 (in Japanese)Google Scholar
  195. 195.
    Katrych S, Grytsiv A, Bondar A, Rogl P, Velikanova T, Bohn M (2002) Structural materials metal-silicon-boron. On the melting behavior of Mo-Si-B alloys. J Alloys Compd 347(1–2):94–100Google Scholar
  196. 196.
    Yang Y, Chang YA (2005) Thermodynamic modeling of the Mo-Si-B system. Intermetallics 13(2):121–128Google Scholar
  197. 197.
    Yoshimi K, Ha S-H, Maruyama K, Tu R, Goto T (2011) Microstructural evolution of Mo-Si-B ternary alloys through heat treatment at 1800 °C. Adv Mater Res 278:527–532Google Scholar
  198. 198.
    Jéhanno P, Heilmaier M, Saage H, Böning M, Kestler H, Freudenberger J, Drawin S (2007) Assessment of the high temperature deformation behavior of molybdenum silicide alloys. Mater Sci Eng A 463(1-2):216–223 Google Scholar
  199. 199.
    Yoshida M, Takasugi T (1997) Phase relation and microstructure of Nb-Cr-V and Nb-Cr-Mo alloy systems. Mater Sci Eng A 224:69–76Google Scholar
  200. 200.
    Savitskii EM, Baron VV, Bychkova MI, Bakakuta SA, Gladyshevskii EI (1965) Diagramma sostoyaniya I nekotorye svoistva splavov sistemy Nb-Mo-Si (The constitution diagram and some properties of alloys of the Nb-Mo-Si system). Izv AN SSSR Metally (2):159–166 (in Russian)Google Scholar
  201. 201.
    Ma CL, Tan Y, Tanaka H, Kasama A, Tanaka R, Miura S, Mishima Y, Hanada S (2000) Phase equilibria in Nb-Mo-rich zone of the Nb-Si-Mo ternary system. Mater Trans JIM 41(10):1329–1336Google Scholar
  202. 202.
    Kim W-Y, Tanaka H, Kasama A, Tanaka R, Hanada S (2001) Microstructure and room temperature deformation of Nbss/Nb5Si3 in situ composites alloyed with Mo. Intermetallics 9:521–527Google Scholar
  203. 203.
    Huang Q, Ma CL, Zhao X, Xu H (2008) Phase equilibria in Nb-Si-Mo ternary alloys at 1273 K and 2073 K. Chin J Aeronaut 21(5):448–454Google Scholar
  204. 204.
    Geng T, Li C, Zhao X, Xu H, Du Z, Guo C (2010) Thermodynamic assessment of the Nb-Si-Mo system. Calphad 34:363–376Google Scholar
  205. 205.
    Geng T, Li C, Zhao X, Xu H, Guo C, Du Z (2010) Experimental study on the as-cast solidification of the Si-rich alloys of the Nb-Si-Mo ternary system. Intermetallics 18(5):1007–1015Google Scholar
  206. 206.
    Liu Y, Shao G, Tsakiropoulos P (2000) Thermodynamic reassessment of the Mo-Si and Al-Mo-Si systems. Intermetallics 8(8):953–962Google Scholar
  207. 207.
    Gokhale AB, Abbaschian GJ (1991) The Mo-Si (molybdenum-silicon) system. J Phase Equilibria 12(4):493–498Google Scholar
  208. 208.
    Ordanyan SS, Serbezova RYa, Lebedeva TA (1972) Vzaimodeistvie diborida tsirkoniya s molibdenom (The interaction of zirconium diboride with molybdenum). Izv AN SSSR Neorg Mater 8(11):2037–2038 (in Russian)Google Scholar
  209. 209.
    Ordanyan SS, Maksimova NM, Smirnov VV (1979) Reactions in the HfB2-Mo system. Powder Metall Met Ceram 18(10):719–721Google Scholar
  210. 210.
    Kolomytsev PT, Moskaleva NV (1966) Phase composition and some properties of alloys of the system molybdenum – nickel – boron. Powder Metall Met Ceram 5(8):665–670.Google Scholar
  211. 211.
    Ilnitskaya ON, Kuzma YuB (1982) Diagrammy fazovykh ravnovesii v sistemakh (Cr, Mo) – (Si, B) – P (Diagrams of phase equilubria in the (Cr, Mo) – (Si, B) – P systems. In: Tezisy dokladov 4-oi Vsesoyuznoi konferentsii po diagrammam sostoyaniya metallicheskikh sistem (Summaries of papers to the 4th All-Union conference on the constitution diagrams of metallic systems), pp. 122–123. Nauka, Moscow (in Russian)Google Scholar
  212. 212.
    Kuzma YuB, Chaban NF (1990) Dvoinye i troinye sistemy soderzhashchie bor (Binary and ternary systems containing boron). Metallurgiya, Moscow (in Russian)Google Scholar
  213. 213.
    Chaban NF, Mikhalenko SI, Kuzma YuB (1998) New compounds with a Y2ReB6 type structure. Powder Metall Met Ceram 37(11–12):635–637Google Scholar
  214. 214.
    Chaban NF, Kuzma YuB (1999) Phase diagrams for the Lu – Cr – B and Lu – Mo – B systems. Powder Metall Met Ceram 38(9–10):458–461Google Scholar
  215. 215.
    Huebsch JJ, Kramer MJ, Zhao HL, Akinc M (2000) Solubility of boron in Mo5+ySi3–y. Intermetallics 8:143–150Google Scholar
  216. 216.
    Chaban NF, Mikhalenko SI, Kuzma YuB (2000) Component interactions in (Y,Gd,Tm) – Mo – B ternary systems at 1270 K. Powder Metall Met Ceram 39(1–2):48–54Google Scholar
  217. 217.
    Pokropivnyi VV (2001) Non-carbon nanotubes (review). II. Types and structures. Powder Metall Met Ceram 40(11–12):582–594Google Scholar
  218. 218.
    Kubliy VZ, Bondar AA, Utkin SV, Petyukh VM, Lysenko SI, Velikanova TYa (2008) Phase equilibria in the nickel corner of the Mo – Ni – B system at temperatures close to melting. Powder Metall Met Ceram 47(3–4):211–222Google Scholar
  219. 219.
    Volkov NA, Gusei LS, Chunikhina LL, Khayurov SS (1984) Issledovanie sistemy Ni-Mo-B v oblasti bogatoi nikelem (Investigation of Ni-Mo-B system in nickel-rich region). Moscow Univ Chem Bull 25(3):317–319 (in Russian)Google Scholar
  220. 220.
    Morishita M, Koyama K, Yagi S, Zhang C (2001) Calculated phase diagram of the Ni-Mo-B ternary system. J Alloys Compd 314(1–2):212–218Google Scholar
  221. 221.
    Kuzma YuB, Chepiga MV (1969) An x-ray diffraction investigation of the systems Ti-Ni-B, Mo-Ni-B and W-Ni-B. Powder Metall Met Ceram 8(10):832–835Google Scholar
  222. 222.
    Omori S, Koyama K, Hashimoto Ya, Yamashita M (1984) Phase relations in Ni-Mo-B and Ni-W-B systems at 1223 K. J Japan Inst Metals 48(7):682–687Google Scholar
  223. 223.
    Egorov FF, Kislyi PS (1978) Reactions of zirconium nitride with alumina and molybdenum. Powder Metall Met Ceram 17(6):446–449Google Scholar
  224. 224.
    Barabash OM, Shurin AK (1978) Fazovye ravnovesiya v splavakh Mo-Ti-N i Mo-Hf-N (Phase equilibria in Mo-Ti-N and Mo-Hf-N alloys). Izv AN SSSR Metally (4):243–246 (in Russian)Google Scholar
  225. 225.
    Barabash OM, Shurin AK (1974) Rastvorimost nitridov Ti, Zr i Hf v vanadii (The solubility of Ti, Zr and Hf nitrides in vanadium). Izv AN SSSR Metally (4):194–197 (in Russian)Google Scholar
  226. 226.
    Ordanyan SS (1975) Reactions of rhenium and other refractory metals with some metal-like compounds. Powder Metall Met Ceram 14(2):125–129Google Scholar
  227. 227.
    Mikhalenko SI, Kuzma YuB (1976) Reactions of molybdenum and tungsten with rare-earth metals and boron. Powder Metall Met Ceram 15(2):128–130Google Scholar
  228. 228.
    Kuzma YuB, Svarichevskaya SI, Sobolev AS (1973) Sistemy ittrii-molibden-bor i ittrii-volfram-bor (The yttrium-molybdenum-boron and yttrium-tungsten-boron systems). Izv AN SSSR Neorg Mater 9(10):1697–1702 (in Russian)Google Scholar
  229. 229.
    Chaban NF (1982) Ternary systems Cr(Mo,W) – Gd – B. Powder Metall Met Ceram 21(1):53–54Google Scholar
  230. 230.
    Kuzma YuB, Zakharchuk NP, Maksimova LT (1988) Isothermal sections of diagrams of phase equilibria of the (terbium, dysprosium, holmium) – molybdenum – boron systems at 1273 K. Powder Metall Met Ceram 27(9):738–741Google Scholar
  231. 231.
    Klesnar H, Aselage TL, Morosin B, Kwei GH, Lawson AC (1996) The diboride compounds of molybdenum: MoB2–x and Mo2B5–y. J Alloys Compd 241(1–2):180–186Google Scholar
  232. 232.
    Kornilov II, Polyakov RS (1958) Fazovaya diagramma troinoi sistemy titan-niobii-molibden (Phase diagram of the ternary system titanium-niobium-molybdenum). Zh Neorg Khim 3(4):62–74 (in Russian)Google Scholar
  233. 233.
    Rogl P, Nowotny H, Benesovsky F (1971) Complex Boride in den Systemen Hf-Mo-B und Hf-W-B (Complex borides in the systems Hf-Mo-B and Hf-W-B). Monatsh Chem 102(4):971–984 (in German)Google Scholar
  234. 234.
    Dion C, Noel A (1981) Etude et interprétation de la ligne UO2MoO4-Na2MoO4 dans le carde du systeme UO3-MoO3-Na2O (Study and interpretation of the line UO2MoO4-Na2MoO4 – part of the system UO3-MoO3-Na2O). Bull Soc Chim Fr (9–10):1371–1376 (in French)Google Scholar
  235. 235.
    Fournier JP, Fournier J, Kohlmuller R (1970) Etude des systemes La2O3-MoO3, Y2O3-MoO3 et des phases Ln6MoO12 (Study of the La2O3-MoO3, Y2O3-MoO3 systems and phases Ln6MoO12). Bull Soc Chim Fr (12):4277–4283 (in French)Google Scholar
  236. 236.
    Yanushkevich TM, Zhukovskii VM (1973) Fazovaya diagramma sistemy MoO3 – CaO (Phase diagram of the MoO3 – CaO system). Zh Neorg Khim 18(8):2234–2237 (in Russian)Google Scholar
  237. 237.
    Antonova SS, Shakhno IV, Plyushchev VE (1971) Izuchenie vzaimodeistviya okislov samariya, ittriya i erbiya s trekhokisyu molibdena (A study of the interaction of samarium, yttrium and erbium oxides with molybdenum trioxide). Izv Vyssh Uchebn Zaved Khim Khim Tekhnol 14(1): 17–20 (in Russian)Google Scholar
  238. 238.
    Tsuzuki A, Kani K, Watari K, Torii Y (1992) Phase relations in the MoO3-MgMoO4 system. J Mater Sci Lett 11(6):334–335Google Scholar
  239. 239.
    Rosen E, Saitton B (1994) Studies of phase equilibria in the system MgO-Mo-O in the temperature range 1100–1400 K. Acta Chem Scand 48(9):720–723Google Scholar
  240. 240.
    Lindblom B (1989) Studies of phase relations and equilibria in the system CaO-Mo-O in the temperature range 1000–1500 K. Scand J Metall 18(2):61–66Google Scholar
  241. 241.
    Yanushkevich TM, Shevchenko NN, Zhukovskii VM, Ustyantsev VM, Lykova LN (1973) Ob usloviyakh obrazovaniya i fiziko-khimicheskikh svoistvakh trekhkaltsievogo molibdata Ca3MoO6 (On the formation conditions and physico-chemical properties of tricalcium molybdate Ca3MoO6). Zh Neorg Khim 18(11):2931–2935 (in Russian)Google Scholar
  242. 242.
    Andruszkiewicz R (1992) On the Mo-CaO system. J Alloys Compd 186(2):369–378Google Scholar
  243. 243.
    Kunev DK, Belyaevskaya LV, Zelikman AN (1966) Sistemy MoO3 – CaMoO4, MoO3 – PbMoO4, MoO3 – ZnMoO4 (The MoO3 – CaMoO4, MoO3 – PbMoO4, MoO3 – ZnMoO4 systems). Zh Neorg Khim 11(8):1989–1991 (in Russian)Google Scholar
  244. 244.
    Bart JCJ, Giordano N (1976) Phase relationships in the cerium-molybdenum oxide system. J Less-Common Met 46(1):17–24 Google Scholar
  245. 245.
    Ran Q, Rokhlin L, Dobatkina T, Semenova E, Kolchugina N (2009) Aluminium – boron – molybdenum system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. E, Part 1, pp. 24–32. Springer, Berlin, HeidelbergGoogle Scholar
  246. 246.
    Rieger W, Nowotny H, Benesovsky F (1965) Complex Boride der Übergangsmetalle (Mo, W, Fe, Co, Ni) (Complex borides of the transition metals (Mo, W, Fe, Co, Ni)). Monatsh Chem 96(3):844–851 (in German)Google Scholar
  247. 247.
    Jeitschko W (1966) Die Kristallstruktur von MoAlB (The crystal structure of MoAlB). Monatsh Chem 97:1472–1476 (in German)Google Scholar
  248. 248.
    Higashi I, Takahashi Y, Atoda T (1976) Crystal growth of borides and carbides of transition metals from Al solutions. J Cryst Growth 33:207–211Google Scholar
  249. 249.
    Kornienko K, Bondar A (2009) Boron – iron – molybdenum system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. E, Part 1, pp. 500–513. Springer, Berlin, HeidelbergGoogle Scholar
  250. 250.
    Gladyshevskii EI, Fedorov TF, Kuzma YuB, Skolozdra RV (1966) Isothermal section of the molybdenum – iron – boron system. Powder Metall Met Ceram 5(4):305–309Google Scholar
  251. 251.
    Rogl P (2009) Boron – hafnium – molybdenum system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. E, Part 1, pp. 514–522. Springer, Berlin, HeidelbergGoogle Scholar
  252. 252.
    Zakharov AM, Golubev MY (1980) The polythermal cross section Mo-HfB2 of the Mo-Hf-B system. Inorg Mater 16:579–581Google Scholar
  253. 253.
    Kuznetsov V (2007) Molybdenum – oxygen – uranium system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. C, Part 4, pp. 328–336. Springer, Berlin, HeidelbergGoogle Scholar
  254. 254.
    Gebhardt E, Ondracek G (1964) Verfassung der UO2-Mo-System (Constitution of the UO2-Mo system). J Nucl Mater 13:220–228 (in German)Google Scholar
  255. 255.
    Kovba LM, Trunov VK (1965) Rentgenostrukturnoe issledovanie dvoinykh okislov v sisteme UO2-MoO2-MoO3 (X-ray investigation of double oxides in the system UO2-MoO2-MoO3). Radiokhimiya 7:316–319 (in Russian)Google Scholar
  256. 256.
    Chattopadhyay G, Tripathi SN, Kerkar AS (1984) Thermodynamic investigations in the system U-Mo-O. J Am Ceram Soc 67:610–614Google Scholar
  257. 257.
    Sundberg M, Tabachenko V (1990) HREM studies of complex uranium oxides containing molybdenum and tungsten. Microscopy Microanalysis Microstructures 1:373–385Google Scholar
  258. 258.
    Sundberg M, Marinder B-O (1994) New complex uranium-molybdenum oxides with intergrowth structures: an HREM study. Eur J Solid State Inorg Chem 31:855–866Google Scholar
  259. 259.
    Tabachenko VV, Dyachenko OG, Sundberg M (1995) The crystal structures of UMo5O16 and U0.75Mo5O16 studies by X-ray diffraction and high-resolution electron microscopy. Eur J Solid State Inorg Chem 32:1137–1149Google Scholar
  260. 260.
    Dyachenko OG, Tabachenko VV, Tali R, Kovba LM, Marinder B-O, Sundberg M (1996) Structure of UMoO5 studied by single-crystal X-ray diffraction and high-resolution transmission electron microscopy. Acta Crystallogr B 52:961–965Google Scholar
  261. 261.
    Politis C, Thümmler F, Wedemeyer H (1969) Untersuchungen über die Verträglichkeit von Uranmononitrid mit Molybdän, Wolfram und Thoriumoxid bei hohen Temperaturen (Studies on the compatibility of uranium mononitride with molybdenum, tungsten and thoria at high temperatures). J Nucl Mater 32(2):181–192 (in German)Google Scholar
  262. 262.
    Nowotny H, Rogl P (1977) Ternary metal borides. In: Matkovich VI (ed) Boron and refractory borides, pp. 413–438. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  263. 263.
    Rogl P, Nowotny H (1973) Neue κ- (kappa-) Phasen (New κ- (kappa-) phases). Monatsh Chem 104(6):1497–1504 (in German)Google Scholar
  264. 264.
    Jeitschko W (1968) The crystal structure of MoCoB and related compounds. Acta Crystallogr B 24:930–934Google Scholar
  265. 265.
    Rieger W, Nowotny H, Benesovsky F (1966) Die Kristallstruktur von W2CoB2 und isotypen Phasen (The crystal structure of W2CoB2 and isotypic phases). Monatsh Chem 97(2):378–382 (in German)Google Scholar
  266. 266.
    Rieger W, Nowotny H, Benesovsky F (1964) Die Kristallstruktur von Mo2FeB2 (The crystal structure of Mo2FeB2). Monatsh Chem 95(6):1502–1503 (in German)Google Scholar
  267. 267.
    Telegus VS, Kuzma YuB (1971) Phase equilibrium in the systems vanadium-manganese-boron, molybdenum-manganese-boron and tungsten-manganese-boron. Powder Metall Met Ceram 10(1):52–56Google Scholar
  268. 268.
    Rogl P, Benesovsky F, Nowotny H (1972) Über einige Komplexboride mit Platinmetallen (About complex boride with some platinum metals). Monatsh Chem 103(4):965–989 (in German)Google Scholar
  269. 269.
    Rogl P, Nowotny H (1974) Ternäre Komplexboride mit ThMoB4-Typ (Ternary complex borides with ThMoB4-type structure). Monatsh Chem 105(5):1082–1098 (in German)Google Scholar
  270. 270.
    Rogl P, Nowotny H (1975) Uran-haltige Komplexboride (Complex borides with uranium). Monatsh Chem 106(2):381–387 (in German)Google Scholar
  271. 271.
    Argon AS (1996) Mechanical properties of single-phase crystalline media: deformation at low temperatures. In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th ed., Vol. 3, pp. 1877–1955. Elsevier Science BV, AmsterdamGoogle Scholar
  272. 272.
    Briggs JZ, Linteau J (1990) Molybdenum. In: Metals handbook, Vol. 2 – Properties and selection: nonferrous alloys and special-purpose materials, pp. 3102–3113. ASM International, Metals Park, OhioGoogle Scholar
  273. 273.
    Somenkov VA, Glazkov VP, Irodova AV, Shilshtein SS (1987) Crystal structure and volume effects in the hydrides of d-metals. J Less-Common Met 129:171–180Google Scholar
  274. 274.
    Okamoto H (1991) The Cs-Mo (cesium-molybdenum) system. J Phase Equilib 12:701–702Google Scholar
  275. 275.
    Moffat WG (1978) The handbook of binary phase diagrams. General Electric Company, Schenectady, New YorkGoogle Scholar
  276. 276.
    English JJ (1961) Binary and ternary phase diagrams of columbium, molybdenum, tantalum and tungsten. Report DMIC-152, Contract AF-33(616)-7747, pp. 1–226. Defence Metals Information Center, Battelle Memorial Institute, Columbus, OhioGoogle Scholar
  277. 277.
    Palenzona A, Cirafici S (1996) The Ce-Mo (cerium-molybdenum) system. J Phase Equilib 17(1):57–59Google Scholar
  278. 278.
    Zinkevich MV, Mattern N, Seifert HJ (2001) Thermodynamic assessment of Gd-Zr and Gd-Mo systems. J Phase Equilib 22:43–50Google Scholar
  279. 279.
    De Boer FR, Dijkman WH, Mattens WCM, Miedema AR (1979) On the valence state of Yb and Ce in transition metal intermetallic compounds. J Less-Common Met 64(2):241–253Google Scholar
  280. 280.
    Chiotti P, Akhachinskij VV, Ansara I, Rand MH (1982) The Mo-Th (molybdenum-thorium) system. Bull Alloy Phase Diagrams 3:100–101Google Scholar
  281. 281.
    Mardon PG, Evans JP, Hodkin DJ, North JM, Pearce JH (1961) The constitution and fabrication of uranium-molybdenum-plutonium fuels. In: Plutonium 1960. Proceedings of 2nd International Conference on plutonium, pp. 329–352. Institute of Metals, LondonGoogle Scholar
  282. 282.
    Schonfeld FW, Cramer EM, Miner WN, Ellinger FH, Coffinberry AS (1959) Plutonium constitutional diagrams. Prog Nucl Energy Ser 5 2:579–599Google Scholar
  283. 283.
    Guminski C (1994) The Hg-Mo (mercury-molybdenum) system. J Phase Equilibria 15(1):108–110Google Scholar
  284. 284.
    Dieva EN (1974) Rastvorimost tugoplavkikh metallov v zhidkom indii (The solubility of refractory metals in liquid indium). In: Bamburov VG (ed) Fiziko-khimicheskie issledovaniya zhidkikh metallov i splavov (Physico-chemical studies of liquid metals and alloys), p. 105–106. Uralskii Nauchnyi Tsentr AN SSSR, Sverdlovsk (in Russian)Google Scholar
  285. 285.
    Ettmayer P, Kieffer R.: (1970) Nitrid- und Karbonitridsysteme bei hohem Stickstoffdruck (Nitride and carbonitride systems at high nitrogen pressure). Radex Rundsch 191–198 (in German)Google Scholar
  286. 286.
    Tsuya K, Aritomi N (1968) On the effects of vacuum annealing and carburizing on the ductility of coarse-grained molybdenum. J Less-Common Met 15:245–257Google Scholar
  287. 287.
    Frisk K (1991) A thermodynamic evaluation of the Cr-N, Fe-N, Mo-N and Cr-Mo-N systems. Calphad 15(1):79–106Google Scholar
  288. 288.
    Hörz G, Steinheil E (1971) Gleichgewichtsuntersuchungen im System Niob-Molybdän-Stickstoff. III. Zum Phasendiagram (Studies of equilibrium in the system niobium-molybdenum-nitrogen. III. Phase diagram). Z Metallkd 62:893–896 (in German)Google Scholar
  289. 289.
    Popov AP, Tsvetnikov AK, Goncharuk VK (1978) Equilibrium diagram of the MoF5-MoF6 system. Russ J Inorg Chem 23:132–133Google Scholar
  290. 290.
    Khaldoyanidi KA, Yakovlev II, Ikorskii VN (1981) Phase equilibria in the fluorine-molybdenum system. Russ J Inorg Chem 26:1639–1640Google Scholar
  291. 291.
    Hunt CR Jr, Raman A (1968) Alloy chemistry of σ(βU)-related phases. I. Extension of μ- and occurrence of μ′-phases in the ternary systems Nb(Ta)-X-Al (X = Fe, Co, Ni, Cu, Cr, Mo). Z Metallkd 59:701–707Google Scholar
  292. 292.
    Guzei LS (1993) The Al-Mo-Nb (aluminium-molybdenum-niobium) system. Ternary Alloys VCH 7:196–198Google Scholar
  293. 293.
    Gubbels GHM, Wolff LR, Metselaar R (1990) A thermionic energy converter with a molybdenum-alumina cermet emitter. J Appl Phys 68:5856–5865Google Scholar
  294. 294.
    Nickel KG (1993) The Al-Mo-O (aluminium-molybdenum-oxygen) system. Ternary Alloys, VCH 7:219–220Google Scholar
  295. 295.
    Harrison WTA (1995) Crystal structures of paraelastic aluminum molybdate and ferric molybdate β-Al2(MoO4)3 and β-Fe2(MoO4)3. Mater Res Bull 30:1325–1331Google Scholar
  296. 296.
    Kuzma YuB, Nych OV, Skolozdra RV (1966) Molybdenum-cobalt-boron system. Inorg Mater 2:1709–1712Google Scholar
  297. 297.
    Stadelmaier HH, Davis HH (1966) Die Kobaltecke im Dreistoffsystem Kobalt-Molybdän-Bor (The cobalt corner in the ternary system cobalt-molybdenum-boron). Monatsh Chem 97:1489–1493 (in German)Google Scholar
  298. 298.
    Kuzma YuB, Mikhalenko SI, Chaban NF (1983) Vzaimodeistvie Mo, W i Re s redkozemelnymi metallami i borom (Interaction of Mo, W and Re with rare-earth metals and boron). In: Savitskii EM (ed) Issledovaniya i primenenie splavov tugoplavkikh metallov (Studies and application of refractory metal alloys), pp. 5–11. Nauka, Moscow (in Russian)Google Scholar
  299. 299.
    Ilnitskaya ON, Kuzma YuB (1985) Diagram of phase equilibria in the Mo-P-B system in the range 0–0.67 at. fraction of P. Powder Metall Met Ceram 24(3):226–228Google Scholar
  300. 300.
    Dheeradhada VS, Johnson DR, Dayananda MA (2006) Diffusional analysis of a multiphase oxide scale formed on a Mo-Mo3Si-Mo5SiB2 alloy. J Phase Equilib Diffus 27:582–589Google Scholar
  301. 301.
    Nowotny H, Kieffer R, Benesovsky F (1957) Silicoboride der Übergangsmetalle Vanadin, Niob, Tantal, Molybdän und Wolfram (Silicoborides of the transition metals vanadium, niobium, tantalum, molybdenum and tungsten). Planseeber Pulvermetall 5:86–93 (in German)Google Scholar
  302. 302.
    Zakharov AM, Polkin VS (1972) Molibdenovyi ugol sistem Mo-Ti-B i Mo-Zr-B (The molybdenum corner of the systems Mo-Ti-B and Mo-Zr-B) Izv Vyssh Uchebn Zaved Tsvetn Metall 15(4):109–113 (in Russian)Google Scholar
  303. 303.
    Valovka IP, Kuzma YuB (1986) Isothermal section of the diagram of the systems U-Mo-B and U-Re-B. Powder Metall Met Ceram 25(12):986–988Google Scholar
  304. 304.
    Konrad T, Jeitschko W (1996) U5Mo10B24, a boride containing three different kinds of boron polyanions. J Alloys Compd 233:L3-L7Google Scholar
  305. 305.
    Kuzma YuB, Marko MA, Petrovskaya MV (1972) Rentgenograficheskoe issledovanie troinykh sistem V-(Nb,Ta)-B, Nb-Ta-B i V-(Mo,W)-B (X-ray investigation of the ternary systems V-(Nb,Ta)-B, Nb-Ta-B and V-(Mo,W)-B). Visn Lviv Derzh Univ Ser Khim 13:3–8 (in Russian)Google Scholar
  306. 306.
    Zakharov AM, Novikov II, Polkin VS, Gimelfarb FA (1973) The molybdenum corner of the Mo-Zr-B phase diagram. Russ Metall (4):165–168Google Scholar
  307. 307.
    Rogl P, Nowotny H, Benesovsky F (1973) Neue K-Boride und verwandte Phasen (Re3B-Typ, aufgefüllt) (New K-borides and related phases (Re3B type, packed)). Monatsh Chem 104:182–193 (in German)Google Scholar
  308. 308.
    Voroshilov YV, Kuzma YuB (1969) Reaction of zirconium with the transition metals and boron. Sov Powder Metall Met Ceram 8:941–944Google Scholar
  309. 309.
    Prior TJ, Battle PD (2003) Facile synthesis of interstitial metal nitrides with the filled β-manganese structure. J Solid State Chem 172:138–147Google Scholar
  310. 310.
    Raghavan V (1987) Phase diagrams of ternary iron alloys, Part 1. The Indian Institute of metals, CalcuttaGoogle Scholar
  311. 311.
    Allen S, Ward RJ, Hampson MR, Gover RKB, Evans JSO (2004) Structures and phase transitions of trigonal ZrMo2O8 and HfMo2O8. Acta Crystallogr B 60:32–40Google Scholar
  312. 312.
    Stümke M, Petzow G (1975) Kristallstrukturen und Gitterabmessungen von Übergangsmetall-Diberylliden und -Diboriden in ternären Mischkristallbereichen (Crystal structures and lattice dimensions of the transition metal diborides and diberyllides in ternary mixed crystal regions). Z Metallkd 66:292–297 (in German)Google Scholar
  313. 313.
    Allibert CH, Wicker A, Driole J, Bonnier E (1970) Determination de diagrammes de phases a haute temperature dans les systemes de metaux refractaires (Determination of phase diagrams at high temperature in the systems of refractory metals) Rev Int Hautes Temp Refract 7:45–50 (in French)Google Scholar
  314. 314.
    Svechnikov VN, Shurin AK, Alfintseva RA (1970) Issledovanie fazovykh ravnovesii v sisteme molibden-niobii-gafnii (Investigation of the phase equilibria in alloys of the system molybdenum-niobium-hafnium). Metallofizika (Akad Nauk Ukr SSR Inst Metallofiz) 32:25–27 (in Russian)Google Scholar
  315. 315.
    Lomnytska YF (1992) Isothermal section of the equilibrium diagram of the Nb-Mo-P system at 1070 K. Powder Metall Met Ceram 31:343–345Google Scholar
  316. 316.
    Ivanov OS, Terekhov GI (1963) Izotermicheskie razrezy pri 500 i 560 °C fazovoi diagrammy troinoi sistemy uran-niobii-molibden (Isothermal cross sections for 500 and 560 °C of the phase diagram of the triple system uranium-niobium-molybdenum). In: Ivanov OS (ed) Struktura splavov nekotorykh sistem soderzhashchikh uran i torii (Structure of alloys of certain systems containing uranium and thorium), pp. 200–212. Nauka, Moscow (in Russian)Google Scholar
  317. 317.
    Ivanov OS, Terekhov GI (1963) Izotermicheskie razrezy pri 575–1200 °C fazovoi diagrammy troinoi sistemy uran-niobii-molibden (Isothermal cross sections at 575–1200 °C of the phase diagram of the uranium-niobium-molybdenum system) In: Ivanov OS (ed) Struktura splavov nekotorykh sistem soderzhashchikh uran i torii (Structure of alloys of certain systems containing uranium and thorium), pp. 213–231. Nauka, Moscow (in Russian)Google Scholar
  318. 318.
    Tate EF, Nicholson S (1963) The (β+γ)/γ phase boundaries at 675°, 700° and 720 °C in the uranium-rich corner of the U-Mo-Nb diagram. J Nucl Mater 9:365–366Google Scholar
  319. 319.
    Bannister GH, Murray DJR (1960) Some observations on uranium-molybdenum-niobium alloys. J Less-Common Met 2:372–382Google Scholar
  320. 320.
    Lukas HL (2010) Molybdenum – niobium – zirconium system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. E, Part 3, pp. 366–376. Springer, Berlin, HeidelbergGoogle Scholar
  321. 321.
    Okamoto H (2010) The Al-Mo (aluminium-molybdenum) system. J Phase Equilib Diffus 31(5):492–493Google Scholar
  322. 322.
    Okamoto H (2012) The Mo-U (molybdenum-uranium) system. J Phase Equilib Diffus 33(6):497Google Scholar
  323. 323.
    Okamoto H (2011) The Mo-Si (molybdenum-silicon) system. J Phase Equilib Diffus 32(2):176Google Scholar
  324. 324.
    Nunes CA, Coelho GC, Ramos AS (2001) On the invariant reactions in the Mo-rich portion of the Mo-Si system. J Phase Equilib 22(5):556–559Google Scholar
  325. 325.
    Ewh A, Perez E, Keiser DD Jr, Sohn YH (2010) Microstructural characterization of U-Nb-Zr, U-Mo-Nb and U-Mo-Ti alloys via electron microscopy. J Phase Equilib Diffus 31(3):216–222Google Scholar
  326. 326.
    Okamoto H (2000) The Mo-Ru (molybdenum-ruthenium) system. J Phase Equilib 21(6):572Google Scholar
  327. 327.
    Ghosh G, Olson GB (2000) Thermodynamic modeling of the Cr-Pd and Mo-Pd systems. J Phase Equilib 21(1):32–39Google Scholar
  328. 328.
    Zheng F, Argent BB, Smith JF (1999) Thermodynamic computation of the Mo-V binary phase diagram. J Phase Equilib 20(4):370–372Google Scholar
  329. 329.
    Davydov A, Kattner UR (1999) Thermodynamic assessment of the Co-Mo system. J Phase Equilib 20(1):5–16Google Scholar
  330. 330.
    Okamoto H (1994) Comment on Mo-Pd (molybdenum-palladium) system. J Phase Equilib 15(4):452–453Google Scholar
  331. 331.
    Okamoto H (1993) The Mo-Pd (molybdenum-palladium) system. J Phase Equilib 14(3):400Google Scholar
  332. 332.
    Okamoto H (1992) The Mo-Pd (molybdenum-palladium) system. J Phase Equilib 13(3):332–334Google Scholar
  333. 333.
    Okamoto H (1994) Comment on Mo-Rh (molybdenum-rhodium) system. J Phase Equilib 15(3):368Google Scholar
  334. 334.
    Smith JF (1992) The Mo-V (molybdenum-vanadium) system. J Phase Equilib 13(1):50–53Google Scholar
  335. 335.
    Okamoto H (1991) The Mo-Ni (molybdenum-nickel) system. J Phase Equilib 12(6):703Google Scholar
  336. 336.
    Okamoto H (1991) The Mo-Nb (molybdenum-niobium) system. J Phase Equilib 12(5):616–617Google Scholar
  337. 337.
    Ordanyan SS, Vikhman SV, Nagaeva YuS (2011) Reaction of MoSi2 with niobium and tantalum diborides. Refract Indust Ceram 52(4):282–285Google Scholar
  338. 338.
    Ordanyan SS, Kosterova NV, Avgustinik AI (1977) Phase equilibria in the system Ti-B-Mo at 1400 °C. Inorg Mater 13:691–693Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Materials and Research CentreThe University of SalfordSalfordUK

Personalised recommendations