• Igor L.  Shabalin


Tungsten (or wolfram) is the element No. 74 of the periodic table (period—6, group—6 (or VIB), relates to transition metals) with the ground state level 5D0 and electron configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 4 6s 2.


Refractory Metal Tungsten Wire Electron Beam Melting Electron Work Function Pure Tungsten 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Steurer W (1996) Crystal structure of the metallic elements. In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th ed., Vol. 1, pp. 1–46. Elsevier Science BV, AmsterdamGoogle Scholar
  2. 2.
    Cotton FA, Wilkinson G (1965) Advanced inorganic chemistry. Wiley, New York, LondonGoogle Scholar
  3. 3.
    Akhmetov NS (2001) Obschaya i neorganicheskaya khimiya (General and inorganic chemistry), 4th ed. Vysshaya Shkola, Moscow (in Russian)Google Scholar
  4. 4.
    Waseda Y, Hirata K, Ohtani M (1975) High-temperature thermal expansion of platinum, tantalum, molybdenum and tungsten measured by X-ray diffraction. High Temp High Pressures 7:221–226Google Scholar
  5. 5.
    Kotelnikov RB, Bashlykov SN, Galiakbarov ZG, Kashtanov AI (1968) Osobo tugoplavkie elementy i soedineniya (Extra refractory elements and compounds). Metallurgiya, Moscow (in Russian)Google Scholar
  6. 6.
    Zefirov AP (ed), Veryatin UD, Mashirev VP, Ryabtsev NG, Tarasov VI, Rogozkin BD, Korobov IV (1965) Termodinamicheskie svoistva neorganicheskikh veschestv (Thermodynamic properties of inorganic substances). Atomizdat, Moscow (in Russian)Google Scholar
  7. 7.
    Hoch M (1969) Thermal properties of tungsten at high temperatures. High Temp High Pressures 1:531–542Google Scholar
  8. 8.
    Speight JG, ed (2005) Lange’s handbook of chemistry, 16th ed. McGraw-Hill, New YorkGoogle Scholar
  9. 9.
    Rieck GD (1967) Tungsten and its compounds. Pergamon Press, Oxford, New YorkGoogle Scholar
  10. 10.
    Lide DR, ed (2010) CRC handbook of chemistry and physics, 90th ed. CRC Press, Boca Raton, New YorkGoogle Scholar
  11. 11.
    Martienssen W (2005) The elements. In: Martienssen W, Warlimont H (eds) Springer handbook of condensed matter and materials data, pp. 45–158. Springer, Berlin, HeidelbergGoogle Scholar
  12. 12.
    Plante ER, Sessoms AB (1973) Vapor pressure and heat of sublimation of tungsten. J Res Nat Bur Stand Sect A Phys Chem 77(2):237–242Google Scholar
  13. 13.
    Cezairliyan A (1972) Measurement of melting point and electrical resistivity (above 3600 K) of tungsten by a pulse heating method. High Temp Sci 4(3):248–252Google Scholar
  14. 14.
    Samsonov GV, ed (1976) Svoistva elementov (Properties of elements), 2nd ed., Vol. 1. Metallurgiya, Moscow (in Russian)Google Scholar
  15. 15.
    Backlund NG (1967) Measurement and analysis of the thermal conductivity of tungsten and molybdenum at 100–400 K. J Phys Chem Solids 28(11):2219–2223Google Scholar
  16. 16.
    Neimark BE, Voronin IK (1968) Teploprovodnost, udelnoe elektrosoprotivlenie i integralnaya stepen chernoty tugoplavkikh metallov pri vysokikh temperaturakh (Thermal conductivity, specific electrical resistance and integral emissivity of refractory metals at high temperatures). Teplofiz Vys Temp 6(6):1044–1056 (in Russian)Google Scholar
  17. 17.
    Taylor RE, Davis FE, Powell RW (1969) Direct heating methods for measuring thermal conductivity of solids at high temperatures. High Temp High Pressures 1(6):663–673Google Scholar
  18. 18.
    Vertogradskii VA, Chekhovskoi VYa (1970) Izmerenie teploprovodnosti volframa pri vysokikh temperaturakh dvukh-mostovym metodom (Measurement of the heat conductivity of tungsten at high temperatures using the ‘two bridge’ method). Teplofiz Vys Temp 8(4):784–788 (in Russian)Google Scholar
  19. 19.
    Marmer ÉN, Gurvich OS, Maltseva LF (1967) Vysokotemperaturnye materialy (High-temperature materials). Metallurgiya, Moscow (in Russian)Google Scholar
  20. 20.
    Conway JB, Losekamp AC (1966) Thermal expansion characteristics of several refractory metals to 2500 °C. Trans TMS-AIME 236:702–709Google Scholar
  21. 21.
    Conway JB (1984) Mechanical and physical properties of refractory metals and alloys. In: Cooper RH, Jr, Hoffman EE (eds) Refractory alloy technology for space nuclear power applications, pp. 227–251. Technical Information Center, Office of Scientific and Technical Information, US Department of Energy, Oak RidgeGoogle Scholar
  22. 22.
    Kittel C (1971) Introduction to solid state physics, 3rd ed. Wiley, New YorkGoogle Scholar
  23. 23.
    Cardarelli F (2008) Materials handbook, 2nd ed. Springer, LondonGoogle Scholar
  24. 24.
    Pisarenko GS, Borisenko VA, Kashtalyan (1962) The effect of temperature on the hardness and modulus of elasticity of tungsten and molybdenum (20–2700 °C). Powder Metall Met Ceram 1(5):371–374Google Scholar
  25. 25.
    Sell HG, Morcom WR, King GW (1966) Development of dispersion strengthened tungsten base alloys. Report AFML-TR-65–407, Part 2. Westinghouse Lamp Division, Bloomfield, New JerseyGoogle Scholar
  26. 26.
    Klopp WD, Raffo PL (1964) Effect of purity and structure on recrystallization, grain growth, ductility, tensile and creep properties of arc-melted tungsten. Report NASA-TND-2503. NASA Lewis Research Center, Cleveland, OhioGoogle Scholar
  27. 27.
    Klopp WD, Witzke WR (1966) Mechanical properties and recrystallization behaviour of electron-beam-melted tungsten compared with arc-melted tungsten. Report NASA-TND-3232. NASA Lewis Research Center, Cleveland, OhioGoogle Scholar
  28. 28.
    Taylor JL, Boone DH (1964) Tensile properties of pyrolytic tungsten from 1370 to 2980 °C in vacuum. J Less-Common Met 6:157–164Google Scholar
  29. 29.
    McDanels DL, Signorelli RA (1966) Stress-rupture properties of tungsten wire from 1200 to 2500 °F. Report NASA-TN-D-3467, Glenn Research Center, Cleveland, OhioGoogle Scholar
  30. 30.
    Wright PK (1978) The high temperature creep behavior of doped tungsten wire. Metall Trans A 9(7):955–963Google Scholar
  31. 31.
    Moon DM, Stickler R (1971) Creep behaviour of fine wires of P/M pure, doped and thoriated tungsten. High Temp High Pressures 3:503–518Google Scholar
  32. 32.
    Pugh JW (1973) On the short time creep rupture properties of lamp wire. Metall Trans 4:533–538Google Scholar
  33. 33.
    Plansee Aktiengesellschaft (2000) Materials data base. Reutte, AustriaGoogle Scholar
  34. 34.
    Lowrie R, Gonas AM (1965) Dynamic elastic properties of polycrystalline tungsten, 24–1800 °C. J Appl Phys 36:2189–2192Google Scholar
  35. 35.
    Lowrie R, Gonas AM (1967) Single-crystal elastic properties of tungsten from 24 to 1800 °C. J Appl Phys 38:4505–4509Google Scholar
  36. 36.
    Samsonov GV, ed (1976) Svoistva elementov (Properties of elements), 2nd ed., Vol. 2. Metallurgiya, Moscow (in Russian)Google Scholar
  37. 37.
    Lyakishev NP, ed (1997) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 2. Mashinostroenie, Moscow (in Russian)Google Scholar
  38. 38.
    Frauenfelder R (1969) Solution and diffusion of hydrogen in tungsten. J Vac Sci Technol 6(3):388–397Google Scholar
  39. 39.
    Mazaev AA, Avarbe RG, Vilk YuN (1968) O rastvorimosti vodoroda v volframe pri vysokikh temperaturakh i davleniyakh (On the solubility of hydrogen in tungsten at high temperatures and pressures). Izv AN SSSR Metally (6):223–226 (in Russian)Google Scholar
  40. 40.
    Lyakishev NP, ed (2001) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 3, Part 1. Mashinostroenie, Moscow (in Russian)Google Scholar
  41. 41.
    Sangster J, Pelton AD (1991) The Li-W (lithium-tungsten) system. J Phase Equilibria 12(2):203Google Scholar
  42. 42.
    Sangster J, Pelton AD (1991) The Na-W (sodium-tungsten) system. J Phase Equilibria 12(2):204Google Scholar
  43. 43.
    Lyakishev NP, ed (1996) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 1. Mashinostroenie, Moscow (in Russian)Google Scholar
  44. 44.
    Goldschmidt HJ, Ham WM (1966) The tungsten-rich end of the tungsten-beryllium system. J Less-Common Met 10(1):57–65Google Scholar
  45. 45.
    Okamoto H, Tanner LE (1986) The Be-W (beryllium-tungsten) system. Bull Alloy Phase Diagrams 7(4):356–358Google Scholar
  46. 46.
    Massalski TB, Subramanian PR, Okamoto H, Kacprzak L, eds (1990) Binary alloy phase diagrams, 2nd ed. ASM International, Metals Park, OhioGoogle Scholar
  47. 47.
    Lyakishev NP, ed (2000) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 3, Part 2. Mashinostroenie, Moscow (in Russian)Google Scholar
  48. 48.
    Pandian S, Naidu SVN, Rao PR (1988) The rare earth – tungsten systems. J Alloy Phase Diagrams 4(2):73–116Google Scholar
  49. 49.
    Dennison DH, Tschetter MJ, Gschneidner KA, Jr (1966) The solubility of tantalum and tungsten in liquid rare-earth metals. J Less-Common Met 11(6):423–435Google Scholar
  50. 50.
    De Boer FR, Dijkman WH, Mattens WCM, Miedema AR (1979) On the valence state of Yb and Ce in transition metal intermetallic compounds. J Less-Common Met 64(2):241–253Google Scholar
  51. 51.
    Miedema AR (1976) On the valence state of europium in alloys. J Less-Common Met 46(1):167–183Google Scholar
  52. 52.
    Chandrasekharaiah MS, Dharwadkar SR, Das D (1986) High-temperature phase diagrams of Re-U, Ta-U and W-U. Z Metallkd 77(8):509–514Google Scholar
  53. 53.
    Pandian S, Naidu SVN, Rao PR (1988) The W-U (tungsten-uranium) system. J Alloy Phase Diagrams 4(3):148–153Google Scholar
  54. 54.
    Pandian S, Naidu SVN, Rao PR (1988) The Pu-W (plutonium-tungsten) system. J Alloy Phase Diagrams 4(3):154–159Google Scholar
  55. 55.
    Murray JL (1981) The Ti-W (titanium-tungsten) system. Bull Alloy Phase Diagrams 2(2):192–196Google Scholar
  56. 56.
    Lee SK, Lee DN (1986) Calculation of phase diagram using partial phase diagram data. Calphad 10(1):61–76Google Scholar
  57. 57.
    Savitskii EM, Povarova KB, Makarov PV (1978) Metallovedenie volframa (Metallography of tungsten). Metallurgiya, Moscow (in Russian)Google Scholar
  58. 58.
    Chang YA (1969) Phase investigations in the system zirconium-tungsten. J Less-Common Met 17(3):325–328Google Scholar
  59. 59.
    Naidu SVN, Rao PR (1987) The W-Zr (tungsten-zirconium) system. J Alloy Phase Diagrams 3(1):47–56Google Scholar
  60. 60.
    Naidu SVN, Rao PR (1987) The Hf-W (hafnium-tungsten) system. J Alloy Phase Diagrams 3(1):38–46Google Scholar
  61. 61.
    Yeremenko VN, Velikanova TYa, Artyukh LV, Vishnevsky AS (1975) Phase diagram of ternary system hafnium-tungsten-carbon. Solidus surface projection. Rev Int Hautes Temp Refract 12(3):209–213Google Scholar
  62. 62.
    Naidu SVN, Sriramamurthy AM, Vijayakumar M, Rao PR (1988) The W-V (tungsten-vanadium) system. J Alloy Phase Diagrams 4(3):191–198Google Scholar
  63. 63.
    Rudy E (1969) Compendium of phase diagram data. In: Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Report AFML-TR-65–2, Contracts USAF 33(615)-1249 and USAF 33(615)-67-C-1513, Part 5, pp. 1–689. Air Force Materials Laboratory, Wright-Patterson Air Force Base, OhioGoogle Scholar
  64. 64.
    Naidu SVN, Sriramamurthy AM, Rao PR (1988) The Nb-W (niobium-tungsten) system. J Alloy Phase Diagrams 4(3):184–190Google Scholar
  65. 65.
    Krishnan R, Garg SP, Krishnamurthy N (1987) Tantalum-tungsten system. J Alloy Phase Diagrams 3(1):1–3Google Scholar
  66. 66.
    Den Broeder FJA (1972) Interface reaction and a special form of grain boundary diffusion in the Cr-W system. Acta Metall 20(3):319–332Google Scholar
  67. 67.
    Margaria T, Allbert CH, Ansara Y, Driole J (1976) Study of the W-Ni-Cr system at high temperature. High Temp High Pressures 8(4):451–459Google Scholar
  68. 68.
    Naidu SVN, Sriramamurthy AM, Rao PR (1984) The Cr-W (chromium-tungsten) system. Bull Alloy Phase Diagrams 5(3):289–292Google Scholar
  69. 69.
    Taylor A, Doyle NJ (1965) The constitution diagram of the tungsten-molybdenum-osmium system. J Less-Common Met 9(3):190–205Google Scholar
  70. 70.
    Naidu SVN, Sriramamurthy AM, Rao PR (1984) The Mo-W (molybdenum-tungsten) system. Bull Alloy Phase Diagrams 5(2):177–180Google Scholar
  71. 71.
    Gustafson P (1988) Experimental study and a thermodynamic evaluation of the Fe-Mo-W system. Z Metallkd 79(6):388–396Google Scholar
  72. 72.
    Naidu SVN, Rao PR (1986) The Mn-W (manganese-tungsten) system. J Alloy Phase Diagrams 2(1):38–40Google Scholar
  73. 73.
    Darby JB, Jr, Norton LJ, Downey JW (1964) Technetium compounds with the MgZn2 structure. J Less-Common Met 6(2):165–167Google Scholar
  74. 74.
    Savitskii EM, Tylkina MA, Levin AM (1980) Splavy reniya v elektronike (Rhenium alloys in electronics). Energiya, Moscow (in Russian)Google Scholar
  75. 75.
    Savitskii EM, Tylkina MA, Shishkina LL (1959) Diagramma sostoyaniya sistemy volfram-renii (The constitution diagram of the tungsten-rhenium system). Izv AN SSSR OTN Metallurgiya Toplivo (3):99–107 (in Russian)Google Scholar
  76. 76.
    Savitskii EM, Tylkina MA, Khamidov OKh (1969) Issledovanie rastvorimosti perekhodnykh metallov v renii i nekotorye svoistva splavov (A study of the solubility of transition metals in rhenium and some properties of the alloys). Izv AN SSSR Metally (4):200–208 (in Russian)Google Scholar
  77. 77.
    Khusainov MA, Lakhotkin YuV, Umidov DM, Krasovskii AI (1981) Struktura i fazovyi sostav splavov W-Re, poluchennykh gazofaznym osazhdeniem (The structure and phase composition of the W-Re alloys obtained by gas phase deposition). Izv AN SSSR Metally (4):191–196 (in Russian)Google Scholar
  78. 78.
    Swartzendruber LJ (1982) The Fe-W (iron-tungsten) system. Bull Alloy Phase Diagrams 3(2):161–165Google Scholar
  79. 79.
    Naidu SVN, Sriramamurthy AM, Rao PR (1986) The Fe-W (iron-tungsten) system. J Alloy Phase Diagrams 2(3):176–188Google Scholar
  80. 80.
    Taylor A, Kagle BJ, Doyle NJ (1961) The constitution diagram of the tungsten-osmium binary system. J Less-Common Met 3(4):333–347Google Scholar
  81. 81.
    King HW (1981) Crystal structures of the elements at 25 °C. Bull Alloy Phase Diagrams 2(3):401–402Google Scholar
  82. 82.
    Naidu SVN, Rao PR (1986) The Os-W (osmium-tungsten) system. J Alloy Phase Diagrams 2(2):93–96Google Scholar
  83. 83.
    Gabriel A, Lukas HL, Allbert CH, Ansara I (1985) Experimental and calculated phase diagrams of the Ni-W, Co-W and Co-Ni-W systems. Z Metallkd 76(9):589–595Google Scholar
  84. 84.
    Naidu SVN, Sriramamurthy AM, Rao PR (1986) The Co-W (cobalt-tungsten) system. J Alloy Phase Diagrams 2(1):43–52Google Scholar
  85. 85.
    Fernandez-Guillermet A (1988) Thermodynamic calculation of the Fe-Co-W phase diagram. Z Metallkd 79(10):638–642Google Scholar
  86. 86.
    Giessen BC, Jaehnigen U, Grant NJ (1966) Ordered AB and AB3 phases in T6-T9 alloy systems and a modified Mo-Ir phase diagram. J Less-Common Met 10(2):147–150Google Scholar
  87. 87.
    Lassner E, Schubert W-D (1999) Tungsten. Kluwer Academic / Plenum Publishers, New YorkGoogle Scholar
  88. 88.
    Tylkina MA, Polyakova VP, Shekhtman VSh (1963) Sistema iridii-volfram (The iridium-tungsten system). Zh Neorg Khim 8(11):2549–2555 (in Russian)Google Scholar
  89. 89.
    Muster WJ, Yoon DN, Hoppmann WJ (1979) Solubility and volume diffusion of nickel in tungsten at 1640 °C. J Less-Common Met 65(2):211–216Google Scholar
  90. 90.
    Naidu SVN, Sriramamurthy AM, Rao PR (1986) The Ni-W (nickel-tungsten) system. J Alloy Phase Diagrams 2(1):1–11Google Scholar
  91. 91.
    Savitskii EM, Polyakova VP, Gorina NB, Roshan NR (1975) Metallovedenie platinovykh metallov (Metallography of platinum metals). Metallurgiya, Moscow (in Russian)Google Scholar
  92. 92.
    Knapton AG (1980) Alloys of platinum and tungsten. Platinum Met Rev 24(2):64–69Google Scholar
  93. 93.
    FactSage (2007) Data from SGTE alloy database. Collection of phase diagrams. Accessed 4 July 2011.
  94. 94.
    Naidu SVN, Rao PR (1986) The W-Zn (tungsten-zinc) system. J Alloy Phase Diagrams 2(1):66–67Google Scholar
  95. 95.
    Fleitman AH, Romano AJ, Klamut CJ (1966) Boiling mercury corrosion of certain refractory metals and stainless steels from 593 to 703 °C. Corrosion 22(5):137–142Google Scholar
  96. 96.
    Rudy E, Benesovski F, Toth L (1963) Untersuchungen der Dreistoffsysteme der Va- und VIa-Metalle mit Bor und Kohlenstoff (Studies of the ternary systems of the group Va and VIa metals with boron and carbon). Z Metallkd 54(6):345–353 (in German)Google Scholar
  97. 97.
    Portnoi KI, Romashov VM, Levinskii YuV, Romanovich IV (1967) Phase diagram of the system tungsten-boron. Powder Metall Met Ceram 6(5):398–402Google Scholar
  98. 98.
    Kuzma YuB (1983) Kristallokhimiya boridov (The crystal chemistry of borides). Vyshcha Shkola, Lviv (in Russian)Google Scholar
  99. 99.
    Suryanarayana C (1973) Constitution of liquisol-quenched Al-W alloys. J Mater Sci 8(5):760–761Google Scholar
  100. 100.
    Popova SV, Fomitcheva LN (1981) Crystallization of tungsten-gallium alloys at high pressure. J Less-Common Met 77(1):137–140Google Scholar
  101. 101.
    Kocherzhinskii YuA, Kulik OG, Shishkin EA, Yupko LM (1973) Diagramma sostoyaniya sistemy volfram-kremnii (The constitution diagram of the tungsten-silicon system). Doklady AN SSSR 212(3):642–643 (in Russian)Google Scholar
  102. 102.
    Kosolapova TYa, ed (1990) Handbook of high-temperature compounds: properties, production and applications. Hemisphere, New YorkGoogle Scholar
  103. 103.
    Toth LE (1971) Transition metal carbides and nitrides. Academic Press, New York, LondonGoogle Scholar
  104. 104.
    Khitrova VI, Pinsker ZG (1961) Nekotorye voprosy kristallokhimii nitridov volframa i ryada drugikh faz vnedreniya (Some problems of the crystal chemistry of tungsten nitrides and series of other interstitial phases). Kristallografiya 6(6):882–891 (in Russian)Google Scholar
  105. 105.
    Wriedt HA (1989) The N-W (nitrogen-tungsten) system. Bull Alloy Phase Diagrams 10(4):358–367Google Scholar
  106. 106.
    Fromm E, Jehn H (1971) Gleichwichte und Ausgasung Kinetik in den Systemen Mo-N, W-N und Re-N (Equilibria and outgassing kinetics in the systems Mo-N, W-N and Re-N). High Temp High Pressures 3:553–564 (in German)Google Scholar
  107. 107.
    Fromm E, Jehn H (1971) Stickstoffloeslichkeit in Wolfram bei hohen Temperaturen (Nitrogen solubility in tungsten at high temperatures). Z Metallkd 62(5):378–381 (in German)Google Scholar
  108. 108.
    Fromm E, Jehn H (1969) Zur Hochtemperaturlöslichkeit von Stickstoff in Wolfram (On the high-temperature solubility of nitrogen in tungsten). J Less-Common Met 17(1):124–126 (in German)Google Scholar
  109. 109.
    Prevarskii AP, Kuzma YuB (1983) Fazovye ravnovesiya i kristallicheskie struktury soedinenii v sisteme W-Cu-Al (The phase equilibria and crystal structures of compounds in the W-Cu-Al system). Izv AN SSSR Metally (5):225–226 (in Russian)Google Scholar
  110. 110.
    Efimov YV, Frolova TM, Bodak OI, Kharchenko OI (1984) Sistema W-WS2-Cu (The W-WS2-Cu system). Izv AN SSSR Neorg Mater 20(9):1593–1595 (in Russian)Google Scholar
  111. 111.
    Niessen AK, De Boer FR, Boom R, De Chatel PF, Mattens WCM, Miedema AR (1983) The enthalpy of solution for solid binary alloys of two 4d-transition metals. Calphad 7(1):51–70Google Scholar
  112. 112.
    Vijayakumar M, Sriramamurthy AM, Naidu SVN (1987) Calculated phase diagrams of Cu-W, Ag-W and Au-W binary systems. Calphad 11(4):369–374Google Scholar
  113. 113.
    Vijayakumar M, Sriramamurthy AM, Naidu SVN (1988) Calculated phase diagrams of Cu-W, Ag-W and Au-W. Calphad 12(2):177–184Google Scholar
  114. 114.
    Qui C-A, Jin Z-P, Huang P-Y (1988) Phase equilibria in the W-Ni-Cu system: Part 2. Thermodynamic calculation. Z Metallkd 79(12):767–769Google Scholar
  115. 115.
    Jensen P, Kjekshus A, Skansen T (1966) The systems molybdenum-arsenic, tungsten-arsenic, molybdenum-antimony, tungsten-antimony, niobium-bismuth, tantalum-bismuth, molubdenum-bismuth and tungsten-bismuth. Acta Chem Scand 20(2):403–416Google Scholar
  116. 116.
    Kofstad P (1966) High-temperature oxidation of metals. Wiley, New York, LondonGoogle Scholar
  117. 117.
    Kofstad P (1988) High-temperature corrosion. Elsevier Applied Science, London, New YorkGoogle Scholar
  118. 118.
    Magneli A (1953) Structures of the ReO3-type with recurrent dislocations of atoms: ‘homologous series’ of molybdenum and tungsten oxides. Acta Crystallogr 6:495–500Google Scholar
  119. 119.
    Sundberg M (1976) The crystal and defect structures of W25O73, a member of the homologous series WnO3n–2. Acta Crystallogr B 32(7):2144–2149Google Scholar
  120. 120.
    Salye E (1977) The orthorhombic phase of WO3. Acta Crystallogr B 33(2):574–577Google Scholar
  121. 121.
    Sundberg M (1980) Structure and “oxidation behaviour” of W24O70, a new member of the {103} CS series of tungsten oxides. J Solid State Chem 35(1):120–127Google Scholar
  122. 122.
    Booth J, Ekstrom T, Iguchi E, Tilley RJD (1982) Notes on phases occurring in the binary tungsten-oxygen system. J Solid State Chem 41(3):293–307Google Scholar
  123. 123.
    Altstetter CJ (1984) Metal-oxygen systems. Bull Alloy Phase Diagrams 5(6):543–553Google Scholar
  124. 124.
    Wriedt HA (1989) The O-W (oxygen-tungsten) system. Bull Alloy Phase Diagrams 10(4):368–384Google Scholar
  125. 125.
    Ackerman RJ, Rauh EG (1963) A thermodynamic study of the tungsten-oxygen system at high temperatures. J Phys Chem 67(12):2596–2601Google Scholar
  126. 126.
    Raghavan V (1988) The Fe-S-W (iron-sulphur-tungsten) system. J Alloy Phase Diagrams 4(3):175–183Google Scholar
  127. 127.
    Bondarenko VP, Morozov VV, Chernyak LV (1971) Reaction of lanthanum and cerium hexaborides with refractory metals. Powder Metall Met Ceram 10(1):57–61Google Scholar
  128. 128.
    Chaban NF, Kuzma YuB (1990) Isothermal section of the system erbium-tungsten-boron at 1270 K. Powder Metall Met Ceram 29(10):845–847Google Scholar
  129. 129.
    Rogl P (2008) Boron–iron–tungsten system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. D, Part 1, pp. 455–463, Springer, Berlin, HeidelbergGoogle Scholar
  130. 130.
    Haschke H, Nowotny H, Benesovsky F (1966) Untersuchungen im der ternären Systeme (Mo,W)-(Fe,Co,Ni)-B (Investigations in the systems (Mo,W)-(Fe,Co,Ni)-B). Monatsh Chem 97:1459–1468 (in German)Google Scholar
  131. 131.
    Hasegawa M, Okamoto M (1966) A study on the ternary alloys of iron and boron. Nippon Kinzoku Gakkai-Si 30(6):533–540 (in Japanese)Google Scholar
  132. 132.
    Leithe-Jasper A, Klesnar H, Rogl P, Komai M, Takagi K-I (2000) Reinvestigation of isothermal section in M(M = Mo,W)-Fe-B ternary systems at 1323 K. J Jpn Inst Met 64(2)154–162 (in Japanese)Google Scholar
  133. 133.
    Rogl P (2009) Boron–hafnium–tungsten system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. E, Part 1, pp. 523–535. Springer, Berlin, HeidelbergGoogle Scholar
  134. 134.
    Harmon DP (1966) Hf-Mo-B and Hf-W-B systems. In: Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Report AFML-TR-65–2, Contract USAF 33(615)-1249, Part 2, Vol. 11, pp. 1–41. Air Force Materials Laboratory, Wright-Patterson Air Force Base, OhioGoogle Scholar
  135. 135.
    Kuzma YuB, Lakh VI, Stadnyk BI, Kovalyk DA (1970) Systems hafnium-tungsten-boron, hafnium-rhenium-boron and niobium-rhenium-boron. Powder Metall Met Ceram 9(12):1003–1006Google Scholar
  136. 136.
    Rogl P, Nowotny H, Benesovsky F (1971) Complex Boride in den Systemen Hf-Mo-B und Hf-W-B (Complex borides in the systems Hf-Mo-B and Hf-W-B). Monatsh Chem 104:182–193 (in German)Google Scholar
  137. 137.
    Rogl P, Nowotny H, Benesovsky F (1973) Novel κ-Boride und verwandte Phasen (Novel κ-borides and related phases). Monatsh Chem 104:182–193 (in German)Google Scholar
  138. 138.
    Ordanyan SS, Kosterova NV, Maksimova NM (1980) Interaction in the HfB2-W system. Inorg Mater 16(5):839–841Google Scholar
  139. 139.
    Povarova KB, Zavarzina EK (1994) Tungsten corner of W-Hf-B system. Russ Metall (2):126–130Google Scholar
  140. 140.
    Ordanyan SS (1988) O zakonomernostyakh vzaimodeistviya v sistemakh LaB6–MIV-VIB2 (Common aspects of phase relations in LaB6–MIV-VIB2 systems). Izv AN SSSR Neorg Mater 24(2):235–238 (in Russian)Google Scholar
  141. 141.
    Ordanyan SS, Nesmelov DD, Vikhman SV (2009) Phase relations in the LaB6–W2B5 system. Inorg Mater 45(7):754–757Google Scholar
  142. 142.
    Bulanova M, Heulens J (2010) Boron–molybdenum–tungsten system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. E, Part 2, pp. 61–71. Springer, Berlin, HeidelbergGoogle Scholar
  143. 143.
    Holleck H (1984) Binäre und ternäre Carbid- und Nitridsysteme der Ubergangsmetalle (Binary and ternary carbide and nitride systems of the transition metals). Gebrüder Bornträeger, Berlin, Stuttgart (in German)Google Scholar
  144. 144.
    Rogl P, Schuster JC (1992) Phase diagrams of ternary boron nitride and silicon nitride systems. ASM International, Materials Park, OhioGoogle Scholar
  145. 145.
    Artamonov AYa, Lapskov YuK, Kozachenko MV, Yurchenko DZ, Dudnik EM (1967) Physical and technical properties of alloys of the system W–BN. Powder Metall Met Ceram 6(9):727–731Google Scholar
  146. 146.
    Borisova AL, Martsenyuk IS (1975) Reactions of boron and aluminum nitrides and materials based on them with refractory metals. Powder Metall Met Ceram 14(10):822–826Google Scholar
  147. 147.
    Samsonov GV, ed (1978) Fiziko-khimicheskie svoistva okislov (Physico-chemical properties of oxides), 2nd ed. Metallurgiya, Moscow (in Russian)Google Scholar
  148. 148.
    Ordanyan SS, Vikhman SV, Nagaeva YuS (2009) Composite WSi2–MeVB2 in W-Si-MeV-B systems. Refract Industrial Ceram 50(2):127–130Google Scholar
  149. 149.
    Kieffer R, Schwarzkopf P (1953) Hartstoffe und Hartmetalle (Refractory hard metals). Springer, Vienna (in German)Google Scholar
  150. 150.
    Samsonov GV, Vinitskii IM (1980) Handbook on refractory compounds. IFI/Plenum, New YorkGoogle Scholar
  151. 151.
    Perrot P (2010) Boron–titanium–tungsten system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. E, Part 2, pp. 194–201. Springer, Berlin, HeidelbergGoogle Scholar
  152. 152.
    Telle R, Sigl LS, Takagi K (2000) Boride-based hard materials. In: Riedel R (ed) Handbook of ceramic hard materials, pp. 802–945. Wiley-VCH, WeinheimGoogle Scholar
  153. 153.
    Kosterova NV, Ordanyan SS (1977) The system Ti-B-W at 1400 °C. Inorg Mater 13(8):1140–1143Google Scholar
  154. 154.
    Ordanyan SS, Boldin AA, Vikhman SV, Prilutskii EV (2000) Interaction in the W2B5–TiB2 system. Russ J Appl Chem 73(12):2131–2132Google Scholar
  155. 155.
    Kumar KCH, Gröbner J, Malfliet A, Moelans N (2010) Boron–tungsten–zirconium system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. E, Part 2, pp. 223–229. Springer, Berlin, HeidelbergGoogle Scholar
  156. 156.
    Chang YA (1966) Zr-W-B system and the pseudobinary system TaB2-HfB2. In: Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Report AFML-TR-65–2, Contract USAF 33(615)-1249, Part 2, Vol. 9, pp. 1–26. Air Force Materials Laboratory, Wright Patterson Air Force Base, OhioGoogle Scholar
  157. 157.
    Ordanyan SS, Boldin AA, Suvorov SS, Smirnov VV (2005) Phase diagram of the W2B5–ZrB2 system. Inorg Mater 41(3):232–234Google Scholar
  158. 158.
    Chang LLY, Scroger MG, Phillips B (1966) Alkaline-earth tungstates: equilibrium and stability in the M-W-O systems. J Am Ceram Soc 49(7):385–390Google Scholar
  159. 159.
    Waring JL (1965) Phase equilibria in the system aluminium oxide–tungsten oxide. J Am Ceram Soc 48(9):493–494Google Scholar
  160. 160.
    Telegus VS, Kuzma YuB (1968) Phase equilibria in the systems tungsten-chromium-boron and tungsten-molybdenum- boron. Powder Metall Met Ceram 7(2):133–138Google Scholar
  161. 161.
    Kharitonov VI, Shamrai FI (1969) Ternary system Mo-W-B. Powder Metall Met Ceram 8(7):567–570Google Scholar
  162. 162.
    Kharitonov VI, Shamrai FI, Fedotov SG, Tkachev LG (1971) Solubility of boron in an Mo-W solid solution and properties of the alloys. Inorg Mater 7(2):201–203Google Scholar
  163. 163.
    Kharitonov VI, Shamrai FI (1971) Fazovaya diagramma Mo-W-B (The Mo-W-B phase diagram). In: Diagrammy sostoyaniya metallicheskikh sistem (The constitution diagrams of the metallic systems), pp. 109–112. Nauka, Moscow (in Russian)Google Scholar
  164. 164.
    Yasinskaya GA, Groisberg MS (1963) Interaction of titanium boride with niobium and tungsten. Powder Metall Met Ceram 2(6):457–458Google Scholar
  165. 165.
    Kuzma YuB, Svarichevskaya SI, Telegus VS (1971) Systems titanium-tungsten-boron, hafnium-tantalum-boron and tantalum-tungsten-boron. Powder Metall Met Ceram 10(6):478–481Google Scholar
  166. 166.
    Gorbacheva TB, Krylov YuI, Mikova NM (1973) Vysokotemperaturnoe vzaimodeistvie tugoplavkikh metallov s boridami (High-temperature interaction of refractory metals with borides). In: Kolchin OP (ed) Tverdye splavy i tugoplavkie metally (Hard alloys and refractory metals), Vol. 14, pp. 239–243. Metallurgia, Moscow (in Russian)Google Scholar
  167. 167.
    Telle R, Fendler E, Pettsov G (1993) The quasiternary TiB2-W2B5-CrB2 system and its possibilities in evolution of ceramic hard materials. Powder Metall Met Ceram 32(3):240–248Google Scholar
  168. 168.
    Pohl A, Kizler P, Telle R, Aldinger F (1994) EXAFS studies of (Ti,W)B2 compounds. Z Metallkd 85(9):658–663Google Scholar
  169. 169.
    Okada S, Kudom K, Lundström T (1995) Preparation and some Properties of W2B, δ-WB and WB2 crystals from high-temperature metal solutions. Jpn J Appl Phys 34:226–231Google Scholar
  170. 170.
    Schmalzried C, Telle R, Freitag B, Mader W (2001) solid state reactions in transition metal diboride-based materials. Z Metallkd 90(11):1197–1202Google Scholar
  171. 171.
    Shibuya M, Yoneda, T, Yamamoto Y, Ohyanagi M, Munir ZA (2003) Effect of Ni and Co additives on phase decomposition in TiB2-WB2 solid solutions formed by induction field activated combustion synthesis. J Am Ceram Soc 86(2):354–356Google Scholar
  172. 172.
    Shibuya M, Kawata M, Ohyanagi M, Munir ZA (2003) Titanium diboride–tungsten diboride solid solutions formed by induction-field-activated combustion synthesis. J Am Ceram Soc 86(4):706–710Google Scholar
  173. 173.
    Schmidt H, Fotsing RE, Borchardt G, Schmalzried C, Telle R (2006) Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities. Int J Mater Res 97(6):821–825Google Scholar
  174. 174.
    Sobol OV, Grigoryev ON, Kunitsky YA, Dub SN, Podtelezhnikov AA, Stetsenko AN (2006) Peculiarities of structure state and mechanical characteristics in ion-plasma condensates of quasibinary system borides W2B5-TiB2. Sci Sintering 38(1):63–72Google Scholar
  175. 175.
    Shibuya M, Ohyanagi M (2007) Effect of nickel boride additive on simultaneous densification and phase decomposition of TiB2-WB2 solid solutions by pressureless sintering using induction heating. J Eur Ceram Soc 27(1):301–306Google Scholar
  176. 176.
    Shibuya M, Yamamoto Y, Ohyanagi M (2007) Simultaneous densification and phase decomposition of TiB2-WB2 solid solutions activated by cobalt boride addition. J Eur Ceram Soc 27(1):307–312Google Scholar
  177. 177.
    Sobol OV (2007) Nanostructural ordering in W-Ti-B condensates. Phys Solid State 49(6):1161–1167Google Scholar
  178. 178.
    Helgorsky J (1961) Les réactions d’état solide dans le système Zr-W-B (Solid state reactions in the system Zr-W-B). Ann Chim 6:1339–1381 (in French)Google Scholar
  179. 179.
    Voroshilov YuV, Lakh VI, Stadnyk BI, Kuzma YuB (1967) The ternary system zirconium-chromium-boron. Inorg Mater 3(9):1390–1392Google Scholar
  180. 180.
    Gladyshevskii EI, Kuzma YuB, Kripyakevich PI, Skolozdra RV, Voroshilov YuV (1968) Fazovye ravnovesiya v nekotorykh troinykh sistemakh, soderzhaschikh perekhodnyi metal Va ili VIa podgrup s Si ili B (Phase equilibria in some ternary systems containing a transition metal of the Va or VIa sub-groups with Si or B). In: Diagrammy sostoyaniya metallicheskikh sistem (The constitution diagrams of the metallic systems), pp. 70–79. Nauka, Moscow (in Russian)Google Scholar
  181. 181.
    Voroshilov YuV, Kuzma YuB (1969) Reaction of zirconium with the transition metals and boron. Powder Metall Met Ceram 8(11):941–944Google Scholar
  182. 182.
    Avgustinik AI, Ordanyan SS, Serbezova RYa (1971) Reaction of ZrB2 with tungsten. Inorg Mater 7(5):686–687Google Scholar
  183. 183.
    Kisliy PS, Kuzenkova MA, Zaveruha OV (1971) On the sintering process of zirconium diboride with tungsten. Phys Sintering 3(1):29–44Google Scholar
  184. 184.
    Kuzenkova MA, Kislyi PS, Zaverukha OV, Kuzma YuB (1971) Structure and properties of zirconium diboride-tungsten alloys. Powder Metall Met Ceram 10(11):879–883Google Scholar
  185. 185.
    Kosterova NV, Ordanyan SS, Neshpor VS, Ostrovskii EK (1980) Thermionic emission properties of cermets of eutectic compositions in MeIV – (C, B) – (Mo, Re, W) systems. Powder Metall Met Ceram 19(1):61–66Google Scholar
  186. 186.
    McHale AE (1994) III. Boron plus two metals. In: McHale AE (ed) Phase equilibria diagrams, phase diagrams for ceramists, Vol. 10, pp. 174–175. NIST, Gaithersburg, MarylandGoogle Scholar
  187. 187.
    Telle R, Fendler E, Petzow G (1992) The quasi-binary systems CrB2-TiB2, CrB2-WB2 and TiB2-WB2. J Hard Mater 3:211–224Google Scholar
  188. 188.
    Mitra I, Telle R (1997) Phase formation during anneal of supersaturated TiB2-CrB2-WB2 solid solutions. J Solid State Chem 133:25–30Google Scholar
  189. 189.
    Kaufman L, Nesor H (1975) Calculation of superalloy phase diagrams: IV. Metall Trans A 6:2123–2131Google Scholar
  190. 190.
    McCormack R, De Fontaine D, Wolverton C, Ceder G. (1995) Nonempirical phase equilibria in the W-Mo-Cr system. Phys Rev B 51(22):15808–15822Google Scholar
  191. 191.
    Ordanyan SS, Chupov VD, Kirshina VYu, Fesenko LV (1985) Reactions of hafnium nitride with molybdenum, tungsten and tantalum. Powder Metall Met Ceram 24(9):714–719Google Scholar
  192. 192.
    Chang LLY, Scroger MG, Phillips B (1967) Condensed phase relations in the systems ZrO2-WO2-WO3 and HfO2-WO2-WO3. J Am Ceram Soc 50(4):211–215Google Scholar
  193. 193.
    Okamoto H (2009) The U-W (uranium-tungsten) system. J Phase Equilibria Diffusion 30(4):415Google Scholar
  194. 194.
    Naidu SVN, Rao PR (1987) Alkaline earth metals – tungsten systems. J Alloy Phase Diagrams 4(1):14–15Google Scholar
  195. 195.
    Vrestal J (2010) Iron– molybdenum – tungsten system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. E, Part 3, pp. 270–277. Springer, Berlin, HeidelbergGoogle Scholar
  196. 196.
    Kirchner G, Harvig H, Uhrenius B (1973) Experimental and thermodynamic study of the equilibria between ferrite, austenite and intermediate phases in the Fe-Mo, Fe-W, and Fe- Mo-W systems. Metall Trans 4:1059–1067Google Scholar
  197. 197.
    Raynor GV, Rivlin VG (1981) Critical evaluations of constitution of certain ternary alloys containing iron, tungsten and a third metal. Int Met Rev 4:213–249Google Scholar
  198. 198.
    Ischenko TV, Meshkov LL, Leonov AV (1984) Diagramma fazovogo ravnovesiya systemy zhelezo-molibden-volfram pri 900 °C (The phase-equilibrium diagram of the iron- molybdenum-tungsten system at 900 °C). Vestn Mosk Univ Ser 2 Khim 25(5):503–504 (in Russian)Google Scholar
  199. 199.
    Ishchenko TV, Meshkov LL, Sokolovskaya YeM (1984) On the interaction of μ phases in systems formed by transition metals. J Less-Common Met 97:145–150Google Scholar
  200. 200.
    Meshkov LL, Nesterenko SN, Ishchenko TV (1985) Structural features of phase diagrams formed by molybdenum and tungsten with iron group metals. Russ Metall (2):204–207Google Scholar
  201. 201.
    Gustafson P (1988) An experimental study and a thermodynamic evaluation of the Fe-Mo-W system. Z Metallkd 79(7):388–396Google Scholar
  202. 202.
    Raynor GV, Rivlin VG (1988) Fe-Mo-W system. In: Phase equilibria in iron ternary alloys. Part 4, pp. 414–416, The Institute of Metals, LondonGoogle Scholar
  203. 203.
    Raghavan V (1994) The Fe-Mo-W (iron-molybdenum-tungsten). J Phase Equilibria 15(6):627–628Google Scholar
  204. 204.
    Barama SE, Harabi A, Cizeron G (1997) Identification of intermetallic compounds formed during sintering of the Fe-Mo-W ternary system. J Mater Sci Lett 16:1240–1244Google Scholar
  205. 205.
    Kozlov A (2010) Molybdenum – nickel – tungsten system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. E, Part 3, pp. 377–384. Springer, Berlin, HeidelbergGoogle Scholar
  206. 206.
    Guzei LS, Meshkov LL, Kazakov VA, Sokolovskaya EM (1973) Izotermicheskiy razrez fazovoy diagrammy sistemy Ni-Mo-W pri 1200 i 700 °C (Isothermal sections of the phase diagram of the Ni-Mo-W system at 1200 and 700 °C). In: Obshchie zakonomernosti stroeniya diagram sostoyaniya metallicheskikh sistem (The general structure regularities of the constitution diagrams of metallic systems), pp. 160–162. Nauka, Moscow (in Russian)Google Scholar
  207. 207.
    Potapov LP, Yedneral AF, Kiriyenko VI, Nikandrova EA (1976) Structure transformation in nickel-molybdenum-tungsten alloys. Phys Met Metallogr 42(1):76–83Google Scholar
  208. 208.
    Maslenkov SB, Nikandrova EA (1980) Examination of the Ni-Mo-W phase diagram. Russ Metall (2):184–187Google Scholar
  209. 209.
    Plastun NA, Sidorenko FA (1988) Ordering in ternary alloys based on Ni4Mo. Phys Met Metallogr 65(5):196–199Google Scholar
  210. 210.
    Otani S, Ohashi H, Ishizawa Y (1995) Lattice constants and nonstoichiometry of WB2–x. J Alloys Compd 221(1–2):L8-L10Google Scholar
  211. 211.
    Ariel E, Barta J, Niedzwiedz S (1970) Tungsten-titanium-boron metastable phase diagram at room temperature. J Less-Common Met 20:199–206Google Scholar
  212. 212.
    Kaga H, Heian EM, Munir ZA, Schmalzried C, Telle R (2001) Synthesis of hard materials by field activation: the synthesis of solid solutions and composites in the TiB2-WB2-CrB2 system. J Am Ceram Soc 84(12):2764–2770Google Scholar
  213. 213.
    Tyushevskaya GI, Afonskii NS, Spitsyn VI (1966) Issledovanie fazovogo sostava sistemy La2O3–WO3 (A study of phase composition in the La2O3–WO3 system). Doklady AN SSSR 170(4):859–860 (in Russian)Google Scholar
  214. 214.
    Rode EYa, Balagina GM, Ivanova MM, Karpov VN (1968) Sistemy obrazuemye volframatami redkozemelnykh elementov s volframatami natriya i strontsiya (The systems formed by rare earth elements tungstates with sodium and strontium tungstates). Zh Neorg Khim 13(5):1451–1456 (in Russian)Google Scholar
  215. 215.
    Ivanova MM, Balagina GM, Rode EYa, (1970) Diagramma sostoyanoya sistemy La2O3 –WO3 (The constitution diagram of the La2O3 –WO3 system). Izv AN SSSR Neorg Mater 6(5):914–919 (in Russian)Google Scholar
  216. 216.
    Yoshimura M, Rouanet A (1976) High temperature phase relation in the system La2O3-WO3. Mater Res Bull 11(2):151–158Google Scholar
  217. 217.
    Casteels FG, Brabers MJ, DePaus R (1980) Thermodynamic stability and phase equilibriums in the system lanthanum-thorium-tungsten-oxygen. Rev Int Hautes Temp Refract 16(4):424–436Google Scholar
  218. 218.
    Yanovskii VK, Voronkova VI (1983) Utochnenie fazovykh ravnovesii v sisteme La2O3-WO3 vblizi sostava 1:1 (The refinement of phase equilibria in the La2O3-WO3 system near the 1:1 composition). Izv AN SSSR Neorg Mater 19(3):416–421 (in Russian)Google Scholar
  219. 219.
    Andrievskii RA, Spivak II (1989) Prochnost tugoplavkikh soedinenii i materialov na ikh osnove (Strength of refractory compounds and materials based on them). Metallurgiya, Chelyabinsk (in Russian)Google Scholar
  220. 220.
    Raaijmakers IJ, Setalvad T, Bhansali AS, Burrow BJ, Gutai L, Kim KB (1990) Microstructure and barrier properties of reactively sputtered Ti-W nitride. J Electron Mater 19(11):1221–1230Google Scholar
  221. 221.
    Semikina LE, Limonov VE (1968) Rentgenograficheskoe issledovanie sistemy MoO3–WO3 (An x-ray study in the MoO3–WO3 system). Zh Neorg Khim 13(7):1932–1935 (in Russian)Google Scholar
  222. 222.
    Knox AK (1967) Properties of WO3 by substitution of Mo and Cr. Trans Brit Ceram Soc 66(2):85–91Google Scholar
  223. 223.
    Gloeikler D, Jeannot F, Gleitzer C (1974) The MoO3-WO3 and Li2O-MoO3-WO3 systems. J Less-Common Met 36(1–2):41–45Google Scholar
  224. 224.
    Gardinier CF, Chang LLY (1978) Phase relationships in the systems Mo-Sn-S, W-Sn-S and Mo-W-S. J Less-Common Met 61(2):221–229Google Scholar
  225. 225.
    Rokhlin L (2010) Molybdenum – silicon – tungsten system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. E, Part 3, pp. 417–427. Springer, Berlin, HeidelbergGoogle Scholar
  226. 226.
    Kieffer R, Schob O, Nowotny H, Benesovsky F (1962) Investigation on the ternary systems Cr-W-Si and Mo-W-Si. Monats Chem 9(2):517–521Google Scholar
  227. 227.
    Verkhoglyadova TS, Vivchar OI, Gladyshevskii EI (1966) Solubility of the disilicides of the transition metals in MoSi2 and WSi2. Powder Metall Met Ceram 5(4):316–319Google Scholar
  228. 228.
    Setton M, Van Der Spiegel J (1991) A review of some aspects of ternary metal-metal-Si and metal-B-Si systems. J Appl Phys 69(2):994–999Google Scholar
  229. 229.
    Boettinger WJ, Peperezko JH, Frankwicz PS (1992) Application of ternary phase diagrams to the development of MoSi2-based materials. Mater Sci Eng A 155(1):33–44Google Scholar
  230. 230.
    Schwartz RB, Srinivasan SR, Petrovic JJ, Maggiore CJ (1992) Synthesis of molybdenum disilicide by mechanical alloying. Mater Sci Eng A 155(1)75–83Google Scholar
  231. 231.
    Harada Y, Funato Y, Morinaga M, Ito A, Sugita Y (1994) Solid solubilities of ternary elements and their effects on microstructure of MoSi2. J Jpn Inst Met 58(11):1239–1247 (in Japanese)Google Scholar
  232. 232.
    Subrahmanyam J, Rao RM (1994) Combustion synthesis of MoSi2-WSi2 alloys. Mater Sci Eng A 183(1–2):205–210Google Scholar
  233. 233.
    Hojo J, Ishizaka Y (1997) Formation of MoSi2-WSi2 alloy powder by carbothermal reduction method. J Ceram Soc Jpn 105(12):1053–1056Google Scholar
  234. 234.
    Gnesin BA, Gurzhiyants PA, Borisenko EB (2003) (Mo,W)5Si3-(Mo,W)Si2 eutectics: properties and application in composite materials. Inorg Mater 39(7):701–709Google Scholar
  235. 235.
    Zhang H, Chen P, Yan J, Tang S (2004) Fabrication and wear characteristics of MoSi2 matrix composite reinforced by WSi2 and La2O3. Int J Refract Met Hard Mater 22(6):271–275Google Scholar
  236. 236.
    Hayashi T, Ito K, Takamoto M, Tanaka K (2005) The effect of Nb and W alloying to the thermal expansion anisotropy and elastic properties of Mo5Si3. Metall Mater Trans A 36(3):533–538Google Scholar
  237. 237.
    Li KZ, Hou DS, Li HJ, Fu QG, Jiao GS (2007) Si-W-Mo coating for SiC coated carbon/carbon composites against oxidation. Surf Coat Techn 201(24):9598–9602Google Scholar
  238. 238.
    Taylor A, Doyle NJ (1967) The solid solubility of oxygen in Nb and Nb-rich Nb-Hf, Nb-Mo and Nb-W alloys: Part III: The ternary systems Nb-Mo-O and Nb-W-O. J Less-Common Met 13(3):338–351Google Scholar
  239. 239.
    Roth RS, Waring JL (1966) Phase equilibria as related to crystal structure in the system niobium pentoxide–tungsten trioxide. J Res Natl Bur Stand Sect A 70(4):281–303Google Scholar
  240. 240.
    Yoshimura M, Sibieude F, Rouanet A, Foex M (1976) Identification of binary compounds in the system Ce2O3-WO3. J Solid State Chem 16(3–4):219–232Google Scholar
  241. 241.
    English JJ (1961) Binary and ternary phase diagrams of columbium, molybdenum and tungsten. Report AD-TR-257–739, Contract AF 33(616)-7747, pp. 1–241. Defence Metals Information Center, Battelle Memorial Institute, Columbus, OhioGoogle Scholar
  242. 242.
    Cornish L, Watson A (2010) Niobium–silicon–tungsten system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. E, Part 3, pp. 523–532. Springer, Berlin, HeidelbergGoogle Scholar
  243. 243.
    Dokukina NV, Shamrai FI (1962) Phase equilibrium in the system W-Nb-Si and some properties of alloys. Powder Metall Met Ceram 1(6):427–435Google Scholar
  244. 244.
    Dokukina NV, Gladyshevskii EI, Shamrai FI (1964) The Nb-Si-W System. Russ J Inorg Chem 9:1031–1034Google Scholar
  245. 245.
    Gladyshevskii EI, Lakh VI, Skolozdra RV, Stadnik BI (1964) The mutual solubility of disilicides of the transition metals from group IV, V and VI. Powder Metall Met Ceram 3(4):278–282Google Scholar
  246. 246.
    Ma C, Tan Y, Kasama A, Hanada S (2002) Phase equilibria in Nb-W-rich zone of the Nb-W-Si ternary system. Mater Trans JIM 43(4):688–693Google Scholar
  247. 247.
    Sha J, Hirai H, Tabaru T, Kitahara A, Ueno H, Hanada S (2003) Toughness and strength characteristics of Nb-W-Si ternary alloys prepared by arc melting. Metall Mater Trans A 34(12):2861–2871Google Scholar
  248. 248.
    Ma CL, Li JG, Tan Y, Tanaka R, Hanada S (2004) Microstructure and mechanical properties of Nb/Nb5Si3 in situ composites in Nb-Mo-Si and Nb-W-Si systems. Mater Sci Eng A 386:375–383Google Scholar
  249. 249.
    Levanov VI, Mikheyev VS, Chernitsyn AI (1977) Investigation of the Ti-Nb-W system (Nb + W up to 50 wt.%). Russ Metall (1):186–191Google Scholar
  250. 250.
    Rode EYa, Karpov VN (1966) Fazovaya diagramma sistemy Nd2(WO4)3–Na2WO4 (The phase diagram of the Nd2(WO4)3–Na2WO4 system). Izv AN SSSR Neorg Mater 2(4):688–692 (in Russian)Google Scholar
  251. 251.
    Gordon AR, Muchnik GF (1964) Opredelenie integralnoi stepeni chernoty metallov v zavisimosti ot stepeni sherokhovatosti poverkhnosti (The determination of the integral emittance of metals affected on surface roughness grade). Teplofiz Vys Temp 2(2):292–294 (in Russian)Google Scholar
  252. 252.
    Belyaev IN, Voropanova LA (1976) Sistema Nd2O3–WO3–W (The Nd2O3–WO3–W system). Zh Neorg Khim 21(11):3107–3110 (in Russian)Google Scholar
  253. 253.
    Yoshimura M, Yamaguchi M, Somiya S (1984) Partial phase diagram of the WO3-rich region of the system Nd2O3-WO3. Yogyo Kyokaishi 92(8)425–430 (in Japanese)Google Scholar
  254. 254.
    Ekstroem T, Tilley RJD (1976) Structural relations in the Nb-W-O and Ta-W-O systems for the phase region near WO3. J Solid State Chem 18(2):123–131Google Scholar
  255. 255.
    Cordfunke EHP (1969) The phase diagram of the system WO3-UO3. J Inorg Nucl Chem 31(5):1542–1543Google Scholar
  256. 256.
    Hauck J (1974) Uranates (VI) and tungstates (VI) within the system Li2O-UO3-WO3. J Inorg Nucl Chem 36(10):2291–2298Google Scholar
  257. 257.
    Kuribayashi K, Yoshimura M, Ohta T, Sata T (1980) High-temperature phase relations in the system Y2O3-WO3. J Am Ceram Soc 63(11–12):644–647Google Scholar
  258. 258.
    Field AL, Jr, Ammon RL, Lewis AI, Richardson LS (1961) Research and development of tantalum- and tungsten-base alloys. Report AD-TR-259–116, Contract NOas 58–852-C, pp. 1–199. Westinghouse Research Laboratories, Pittsburgh, PennsylvaniaGoogle Scholar
  259. 259.
    Goldschmidt HJ (1967) Interstitial alloys. Butterworths, London, New YorkGoogle Scholar
  260. 260.
    Gas P, Tardy J, LeGoues FK, D’Heurie FM (1987) Disilicide solid solutions, phase diagram and resistivities. II. TaSi2–WSi2. J Appl Phys 61(6):2203–2211Google Scholar
  261. 261.
    Pease LF, Brophy JH (1964) The zirconium-tungsten-tantalum system. J Less-Common Met 6:118–131Google Scholar
  262. 262.
    Fomenko VS, Podchernyaeva IA (1975) Emissionnye i adsorbtsionnye svoistva veshchestv i materialov (The thermoionic emission and absorptance properties of substances and materials). Atomizdat, Moscow (in Russian)Google Scholar
  263. 263.
    Fomenko VS (1981) Emissionnye svoistva materialov (The thermoionic emission properties of materials). Naukova Dumka, Kyiv (in Russian)Google Scholar
  264. 264.
    Samsonov GV (1966) Berillidy (Beryllides). Naukova Dumka, Kyiv (in Russian)Google Scholar
  265. 265.
    Savitskii EM, Burkhanov GS (1971) Metallovedenie splavov tugoplavkikh i redkih metallov (Metallography of refractory and less-common metal alloys), 2nd ed. Nauka, Moscow (in Russian)Google Scholar
  266. 266.
    Savitskii EM, Zakharov AM (1962) Diagramma sostoyaniya troinoi sistemy niobii-volfram-tsirkonii (The constitution diagram of the niobium-tungsten-zirconium ternary system). Zh Neorg Khim 7(11):2575–2580 (in Russian)Google Scholar
  267. 267.
    Savitskii EM, Zakharov AM (1964) Splavy razreza W2Zr-Mo2Zr (Alloys in the W2Zr-Mo2Zr cross section). Zh Neorg Khim 9(9):2261–2263 (in Russian)Google Scholar
  268. 268.
    Zakharov AM, Savitskii EM (1965) Issledovanie troinoi diagrammy sostoyaniya sistemy W-Mo-Zr (A study of the constitution diagram of the W-Mo-Zr ternary system). Izv AN SSSR Metally (1):151–159 (in Russian)Google Scholar
  269. 269.
    Savitskii EM, Zakharov AM (1964) Sistema niobii-volfram-molibden-tsirkonii (The niobium-tungsten-molybdenum-zirconium system). Zh Neorg Khim 9(10):2424–2432 (in Russian)Google Scholar
  270. 270.
    Audi G, Wapstra AH, Thibault C, Blachot J, Bersillon O (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729:3–128Google Scholar
  271. 271.
    De Laeter JR, Bohlke JK, De Bievre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements. Review 2000 (IUPAC Technical report). Pure Appl Chem 75(6):683–800Google Scholar
  272. 272.
    Wieser ME (2006) Atomic weights of the elements 2005. (IUPAC Technical report). Pure Appl Chem 78(11):2051–2066Google Scholar
  273. 273.
    Savitskii EM, Tylkina MA, Povarova KB (1970) Rhenium alloys. IPST Press, JerasalemGoogle Scholar
  274. 274.
    Ordanyan SS (1980) Reactions of HfB2 with Re and Cr. Powder Metall Met Ceram 19(4):273–277Google Scholar
  275. 275.
    Gehlig R, Salje E, Carley AF, Roberts MW (1983) XPS studies on WO2.90 and WO2.72 and the influence of metallic impurities. J Solid State Chem 49:318–324Google Scholar
  276. 276.
    Goodwin F, Guruswamy S, Kainer KU, Kammer C, Knabl W, Koethe A, Leichtfried G, Schlamp G, Stickler R, Warlimont H (2005) Metals. In: Martienssen W, Warlimont H (eds) Springer handbook of condensed matter and materials data, pp. 161–430. Springer, Berlin, HeidelbergGoogle Scholar
  277. 277.
    Roth RS, Waring JL, Parker HS (1970) Effect of oxide additions on the polymorphism of tantalum pentoxide. IV. The system Ta2O5-Ta2WO8. J Solid State Chem 2(3):445–461Google Scholar
  278. 278.
    Roth RS (1980) Thermal stability of long range order in oxides. Prog Solid State Chem 13(2):159–192Google Scholar
  279. 279.
    Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulphide. Nature 360:444–446Google Scholar
  280. 280.
    Feldman Y, Wasserman E, Srolovotz DJ, Tenne R (1995) High-rate gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267:222–225Google Scholar
  281. 281.
    Ohtani T (2010) Synthesis and applications of chalcogenide nanotubes. In: Kijima T (ed) Inorganic and metallic nanotubular materials, pp. 191–200. Springer, Berlin, HeidelbergGoogle Scholar
  282. 282.
    Rundqvist A, Harsta S (1987) The crystal chemistry of κ-phases. J Solid State Chem 70:210–218Google Scholar
  283. 283.
    Carney CM, Parthasarathy TA, Cinibulk MK (2011) Oxidation resistance of hafnium diboride ceramics with additions of silicon carbide and tungsten boride or tungsten carbide. J Am Ceram Soc 94(8):2600–2607Google Scholar
  284. 284.
    English JJ (1961) Binary and ternary phase diagrams of columbium, molybdenum, tantalum and tungsten. Report DMIC-152, Contract AF-33(616)-7747, pp. 1–226. Defence Metals Information Center, Battelle Memorial Institute, Columbus, OhioGoogle Scholar
  285. 285.
    Skolozdra RV, Fedorov TF, Popova NM, Gladyshevskii EI (1969) Tungsten–rhenium–silicon system. Powder Metall Met Ceram 8(9):743–745Google Scholar
  286. 286.
    Mikhalenko SI, Zavalii LV, Kuzma YuD, Boiko LI (1991) The phase diagrams of Sc-W-B and Sc-Re-B systems at 1000 °C. Powder Metall Met Ceram 30(8):681–683Google Scholar
  287. 287.
    Turchi PEA, Drchal V, Kudrnovsky J, Colinet C, Kaufman L, Liu Z-K (2005) Application of ab initio and CALPHAD thermodynamics to Mo-Ta-W alloys. Phys Rev B 71:094206Google Scholar
  288. 288.
    Ventura J, Portillo B, Varma SK (2009) Oxidation resistant NbCr2 phase in Nb-W-Cr system. J Alloys Compd 476(1–2):257–262Google Scholar
  289. 289.
    Schuster JC (1988) Silicon nitride–metal joints: phase equilibria in the systems Si3N4–Cr, Mo, W and Re. J Mater Sci 23(8):2792–2796Google Scholar
  290. 290.
    Yoshida M, Takasugi T (1999) Phase relation and microstructure of the Nb–Cr–W alloy system. Mater Sci Eng A 262:107–114Google Scholar
  291. 291.
    Asrar N, Meshkov LL, Sokolovskaya EM (1988) Phase equilibria in ternary alloys based on iron-group metals and containing refractory metals (Mo, W, Nb, Ta). J Less-Common Met 144:41–52Google Scholar
  292. 292.
    Kaufman L (1991) Calculation of multicomponent tantalum based phase diagrams. Calphad 15(3):261–282Google Scholar
  293. 293.
    Tolmacheva EI, Kornilova VI (1972) Granitsy fazovykh polei v sisteme W-Ta-Ti pri 1600 °C (The boundaries of phase fields in the W-Ta-Ti system at 1600 °C). Izv AN SSSR Metally (3):211–214 (in Russian)Google Scholar
  294. 294.
    Ekström T, Salje E, Tilley RJD (1981) Phase relations in the ternary W-Mo-O system. J Solid State Chem 40:75–84Google Scholar
  295. 295.
    Portemer F, Sundberg M, Kihlborg L, Figlarz M (1993) Homologues of Mo4O11 (mon) in the Mo-W-O system prepared by soft chemistry. J Solid State Chem 103:403–414Google Scholar
  296. 296.
    Kihlborg L, Marinder B-O, Sundberg M, Portemer F, Ringaby O (1994) Ordered and disoredered homologues of orthorhombic Mo4O11 in the Mo-W-O system. J Solid State Chem 111:111–117Google Scholar
  297. 297.
    Yatsenko SP, Dieva EN (1973) Rastvorimost tugoplavkikh metallov v zhidkom indii (The solubility of refractory metals in liquid indium). Zh Fiz Khim 47(11):2948 (in Russian)Google Scholar
  298. 298.
    Hershfinkel M, Gheber LA, Volterra V, Hutchison JL, Margulis L, Tenne R (1994) Nested polyhedra of MX2 (M = W, Mo; X = S, Se) probed by high-resolution electron microscopy and scanning tunneling microscopy. J Am Chem Soc 116(5):1914–1917Google Scholar
  299. 299.
    Gladyshevskii EI (1962) Crystal structure of compounds and phase equilibria in ternary systems of two transition metals and silicon. Powder Metall Met Ceram 1(4):262–265Google Scholar
  300. 300.
    Salje E, Gehlig R, Viswanathan K (1978) Structural phase transition in mixed crystals WxMo1–xO3. J Solid State Chem 25:239–250Google Scholar
  301. 301.
    Ilnitskaya ON, Kuzma YuB (1984) Investigation of the ternary systems W-B-P and W-Si-P in the range 0–0.66 P. Powder Metall Met Ceram 23(8):622–623Google Scholar
  302. 302.
    Chaban NF, Mikhalenko SI, Kuzma YuB (2000) X-ray studies on phase equilibria in (Tm, Lu)–W–B ternary systems at 1070 K. Powder Metall Met Ceram 39(5–6):251–255Google Scholar
  303. 303.
    Kuzma YuB, Chepiga MV (1969) An x-ray diffraction investigation of the systems Ti-Ni-B, Mo-Ni-B and W-Ni-B. Powder Metall Met Ceram 8(10):832–835Google Scholar
  304. 304.
    Kazakov VK (1965) The character of reaction of titanium nitride with the iron group metals, molybdenum and tungsten. Powder Metall Met Ceram 4(10):845–848Google Scholar
  305. 305.
    Kuzma YuB, Lakh VI, Stadnyk BI, Voroshilov YuV (1966) X-ray diffraction study of the system niobium–tungsten–boron. Powder Metall Met Ceram 5(6):491–493Google Scholar
  306. 306.
    Musatov MI, Ivanov AO (1970) Vzaimodeistvie rasplava okislov alyuminiya i khroma s molibdenom, volframom, iridiem i niobiem (The interaction of aluminium and chromium oxides with molybdenum, tungsten, iridium and niobium). Izv AN SSSR Neorg Mater 6(12):2166–2170 (in Russian)Google Scholar
  307. 307.
    Storozh BD, Kislyi PS (1974) Sintering of tungsten–alumina cermets in the presence of a liquid phase. Powder Metall Met Ceram 13(9):712–716Google Scholar
  308. 308.
    Ordanyan SS (1975) Reactions of rhenium and other refractory metals with some metal-like compounds. Powder Metall Met Ceram 14(2):125–129Google Scholar
  309. 309.
    Mikhalenko SI, Kuzma YuB (1976) Reactions of molybdenum and tungsten with rare-earth metals and boron. Powder Metall Met Ceram 15(2):128–130Google Scholar
  310. 310.
    Kuzma YuB, Svarichevskaya SI, Sobolev AS (1973) Sistemy ittrii-molibden-bor i ittrii-volfram-bor (The yttrium-molybdenum-boron and yttrium-tungsten-boron systems). Izv AN SSSR Neorg Mater 9(10):1697–1702 (in Russian)Google Scholar
  311. 311.
    Samsonov GV, Lapshov YuK, Podchernyaeva IA, Fomenko VS, Erosov YuI, Dudnik EM (1966) Preparation and physical properties of alloys of the W-LaB6 system. Powder Metall Met Ceram 5(6):446–451Google Scholar
  312. 312.
    Kuzma YuB, Valovka IP (1981) Uranium–tungsten–boron system. Powder Metall Met Ceram 20(8):574–576Google Scholar
  313. 313.
    Chaban NF (1982) Ternary systems Cr(Mo,W)–Gd–B. Powder Metall Met Ceram 21(1):53–54Google Scholar
  314. 314.
    Chaban NF, Bilonizhko NS (1993) Isothermal sections of phase equilibrium diagrams for the systems (terbium, dysprosium)–tungsten–boron at 1270 K. Powder Metall Met Ceram 32(11–12):928–929Google Scholar
  315. 315.
    Mikhalenko SI, Chaban NF, Kuzma YuB (1992) Novye boridy so strukturoi tipa Er3CrB7 i utochnenie ravnovesnoi fazovoi diagramy sistemy Y–W–B (New borides with a structure of the type Er3CrB7 and refinement of the phase equilibrium diagram for the system Y–W–B). Izv Akad Nauk Rossii Neorg Mater 28(5):2092–2095 (in Russian)Google Scholar
  316. 316.
    Farr JD (1968) Phase diagrams of selected refractory compounds. In: Hausner HH, Bowman MG (eds) Fundamentals of refractory compounds, pp. 33–48. Plenum Press, New YorkGoogle Scholar
  317. 317.
    Nowotny H, Rogl P (1977) Ternary metal borides. In: Matkovich VI (ed) Boron and refractory borides, pp. 413–438. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  318. 318.
    Rieger W, Nowotny H, Benesovsky F (1966) Die Kristallstruktur von W2CoB2 und isotypen Phasen (The crystal structure of W2CoB2 and isotypic phases). Monatsh Chem 97(2):378–382 (in German)Google Scholar
  319. 319.
    Telegus VS, Kuzma YuB (1971) Phase equilibrium in the systems vanadium-manganese-boron, molybdenum-manganese-boron and tungsten-manganese-boron. Powder Metall Met Ceram 10(1):52–56Google Scholar
  320. 320.
    Rogl P, Benesovsky F, Nowotny H (1972) Über einige Komplexboride mit Platinmetallen (About complex borides with some platinum metals). Monatsh Chem 103(4):965–989 (in German)Google Scholar
  321. 321.
    Rogl P, Nowotny H (1975) Uran-haltige Komplexboride (Complex borides with uranium). Monatsh Chem 106(2):381–387 (in German)Google Scholar
  322. 322.
    Argon AS (1996) Mechanical properties of single-phase crystalline media: deformation at low temperatures. In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th ed., Vol. 3, pp. 1877–1955. Elsevier Science BV, AmsterdamGoogle Scholar
  323. 323.
    Zaleski-Ejgierd P, Labet V, Strobel TA, Hoffman R, Ashcroft NW (2012) WHn under pressure. J Phys Condens Matter 24:155701 (15pp)Google Scholar
  324. 324.
    Timoshchuk VI (1989) Magnetic properties of alloys of the system (Mn1−xWx)3B4. Phys Met Metallogr 65(4):102–106Google Scholar
  325. 325.
    Timoshchuk VI (1990) Magnetic phase diagram of Mn2.7W0.3B4. Phys Met Metallogr 69(5):188–191Google Scholar
  326. 326.
    Hasapis AA, Panish MB, Rosen C (1960) The vaporization and physical properties of certain refractories. Technical Report WADD-TR-60–463, Contract AF 33(616)-6840, Part 1, pp 1–67. Wright Air Development Division, Wright-Patterson Air Force Base, OhioGoogle Scholar
  327. 327.
    Vahlas C, Chevalier PY, Blanquet E (1989) A thermodynamic evaluation of four Si-M (M = Mo, Ta, Ti, W) binary systems. Calphad 13(3):273–292Google Scholar
  328. 328.
    Gupta KP, Rajendraprasad SB (1992) The Nb-Ni-W system (niobium-nickel-tungsten). J Phase Equilibria 13(1):87–91Google Scholar
  329. 329.
    Duschanek H, Rogl P (1995) Critical assessment and thermodynamic calculation of the binary system boron-tungsten. J Phase Equilibria 16(2):150–161Google Scholar
  330. 330.
    Mikhalenko SI, Chaban NF, Kuzma YuB (1998) Reaction of rare earth metals with VI- and VII-group transition metals and boron. Powder Metall Met Ceram 37(1–2):99–106Google Scholar
  331. 331.
    Raghavan V (2003) The B-Fe-W (boron-iron-tungsten) system. J Phase Equilibria 24(5):457–458Google Scholar
  332. 332.
    Gupta KP (2003) The Co-Nb-W (cobalt-niobium-tungsten) system. J Phase Equilibria 24(1):82–85Google Scholar
  333. 333.
    Raskolenko LG, Gerulskii AYu (2008) Compounds WAl4, WAl3, W3Al7 and WAl2 in Al-W-N combustion products. Inorg Mater 44(1):30–39Google Scholar
  334. 334.
    Leitnaker JM, Bowman MG, Gilles PW (1962) Thermodynamic properties of the Ta and W borides. J Electrochem Soc 109(5):441–443Google Scholar
  335. 335.
    Udovskii AL (1990) Computer modelling of phase diagrams, thermodynamic properties and structure of multicomponent systems. Russ Metall (2):132–153Google Scholar
  336. 336.
    Tortorici PC, Dayananda MA (1998) Interdiffusion and diffusion structure development in selected refractory metal silicides. Mater Sci Eng A 261(1–2):64–77Google Scholar
  337. 337.
    Fucke W, Seydel U (1980) Improved experimental determination of critical-point data for tungsten. High Temp High Pressures 12(4):419–432Google Scholar
  338. 338.
    Hiernaut J-P, Beukers R, Hoch M, Matsu T, Ohse RW (1986) Determination of the melting point and of the spectral and total emissivities of tungsten, tantalum and molybdenum in the solid and liquid states with a six-wavelength pyrometer. High Temp High Pressures 18(6):627–633Google Scholar
  339. 339.
    Shabalin IL, Tomkinson DM, Shabalin LI (2007) High-temperature hot-pressing of titanium carbide–graphite hetero-modulus ceramics. J Eur Ceram Soc 27(5):2171–2181Google Scholar
  340. 340.
    Liu N, Ma GF, Zhang HF, Li H, Ding BZ, Wang AM, Hu ZQ (2008) Wetting behavior of Zr-based bulk metallic glasses on W substrate. Mater Lett 62:3195–3197Google Scholar
  341. 341.
    Ma GF, Li ZK, He CL, Zhu ZW, Fu HM, Wang AM, Li H, Zhang HF, Hu ZQ (2013) Wetting behaviours and interfacial characteristics of TiZr-based bulk metallic glass / W substrate. J Alloys Compd 549:254–259Google Scholar
  342. 342.
    Bondi A (1953) The spreading of liquid metals on solid surfaces: surface chemistry of high-energy substances. Chem Rev 52(2):417–458Google Scholar
  343. 343.
    Toyota H, Ide T, Yagi H, Mori Y, Hirose K (1998) A new measurement and evaluation of wettability between solid and liquid metals in ultra-high vacuum. Seimutsu Kogaku Kaishi (J Japan Soc Precision Eng) 64(5):753–757 (in Japanese)Google Scholar
  344. 344.
    Beyers R (1984) Thermodynamic considerations in refractory metal – silicon – oxygen systems. J Appl Phys 56(1):147–152Google Scholar
  345. 345.
    Phillips B, Chang LLY, Scroger MG (1964) Research on criteria for selection of alloys and surface treatments for inhibition of tungsten oxidation. Report ML-TDR-640230, Contract AF 33(657)-11235, Part I, pp. 1–34. Tem-Pres Research Inc., State College, PennsylvaniaGoogle Scholar
  346. 346.
    Kuzma YuB, Lakh VI, Stadnyk BI, Voroshilov YuV (1968) Phase equilibria in the systems Zr-Re-B and W-Re-B. Powder Metall Met Ceram 7(6):462–466Google Scholar
  347. 347.
    Havinga EE, Damsma H, Kannis JM (1972) Compounds and pseudo-binary alloys with the CuAl2 (C16)-type structure. IV. Superconductivity. J Less-Common Met 27(3):281–291Google Scholar
  348. 348.
    Okamoto H (2002) Pr-W (praseodymium-tungsten) J Phase Equilibria 23(1):113Google Scholar
  349. 349.
    Okamoto H (2002) Lu-W (lutetium-tungsten) J Phase Equilibria 23(2):197Google Scholar
  350. 350.
    Okamoto H (2001) La-W (lanthanum-tungsten) J Phase Equilibria 22(6):693Google Scholar
  351. 351.
    Okamoto H (2001) Ce-W (cerium-tungsten) J Phase Equilibria 22(6):690Google Scholar
  352. 352.
    Okamoto H (2002) Tb-W (terbium-tungsten) J Phase Equilibria 23(1):114Google Scholar
  353. 353.
    Bauer AA, Rough FA (1959) Thorium alloy systems. Prog Nucl Energy Ser 5 2:612–619Google Scholar
  354. 354.
    Pandian S, Naidu SVN, Rao PR (1987) The Th-W (thorium-tungsten) system. J Alloy Phase Diagrams 3:152–155Google Scholar
  355. 355.
    Chiotti P, Akhachinskij VV, Ansara I, Rand MH (1982) The Th-W (thorium-tungsten) system. Bull Alloy Phase Diagrams 3:104–105Google Scholar
  356. 356.
    Ackerman RJ, Rauh EG (1972) Determination of liquidus curves for the Th-W, Th-Ta, Zr-W and Hf-W systems: anomalous behaviour of metallic thorium. High Temp Sci 4:272–282Google Scholar
  357. 357.
    Schramm CH, Gordon P, Kaufman AR (1950) The alloy systems uranium-tungsten, uranium-tantalum and tungsten-tantalum. Trans Am Inst Min Metall Pet Eng 188:195–204Google Scholar
  358. 358.
    Schonfeld FW (1961) Plutonium phase diagrams studied at Los Alamos. In: Coffinberry AS, Miner WN (eds) The metal plutonium, pp. 240–265. University of Chicago Press, ChicagoGoogle Scholar
  359. 359.
    Schonfeld FW, Cramer EM, Miner WN, Ellinger FH, Coffinberry AS (1959) Plutonium constitutional diagrams. Prog Nucl Energy Ser 5 2:579–599Google Scholar
  360. 360.
    Autler SH, Hulm JK, Kemper RS (1965) Superconducting technetium-tungsten alloys. Phys Rev 140:A1177-A1180Google Scholar
  361. 361.
    Okamoto H, Massalski TB (1985) The Au-W (gold-tungsten) system. Bull Alloy Phase Diagrams 6(2):136–137Google Scholar
  362. 362.
    Yvon K, Feschotte P (1979) Constitution et structure des alliages du gallium avec les metaux de transition (Constitution and structure of gallium alloys with transition metals) J Less-Common Met 63(1):1–13 (in French)Google Scholar
  363. 363.
    Naidu SVN, Sriramamurthy AM, Rao PR (1989) The Ge-W (germanium-tungsten) system. J Alloy Phase Diagrams 5:159–163Google Scholar
  364. 364.
    Fernandez Guillermet A, Jonsson S (1993) Thermodynamic analysis of stable and metastable W nitrides and calculation of the W-N phase diagram. Z Metallkd 84:106–117Google Scholar
  365. 365.
    Huang W (1997) Thermodynamic properties of the Nb-W-C-N system. Z Metallkd 84:63–68Google Scholar
  366. 366.
    Moffat WG (1978) The handbook of binary phase diagrams. General Electric Company, Schenectady, New YorkGoogle Scholar
  367. 367.
    Opperman H, Stover G, Wolf E (1985) On the preparation of tungsten oxides by chemical transport with TeCl4. Cryst Res Technol 20:883–887Google Scholar
  368. 368.
    Nanjundaswamy KS, Gopalakrishnan J (1987) Formation of novel molybdenum and tungsten sulfides by reduction of MoS2 and WS2: a new route to Chevrel phases. J Solid State Chem 68:188–191Google Scholar
  369. 369.
    Siegel S, Northrop DA (1966) X-ray diffraction studies of some transition metal hexafluorides. Inorg Chem 5:2187–2188 Google Scholar
  370. 370.
    Levy JH, Taylor JC, Wilson PW (1975) The structures of fluorides. XIII. The orthorhombic form of tungsten hexafluoride at 193 K by neutron diffraction. J Solid State Chem 15:360–365Google Scholar
  371. 371.
    Marx R, Seppelt K, Ibberson RM (1996) Time-of-flight neutron powder diffraction study on the third row transition metal hexafluorides WF6, OsF6, and PtF6. J Chem Phys 104:7658–7664Google Scholar
  372. 372.
    Drews T, Supel J, Hagenbach A, Seppelt K (2006) Solid state molecular structures of transitional metal hexafluorides. Inorg Chem 45:3782–3788Google Scholar
  373. 373.
    Taylor JC, Wilson PW (1974) The structure of β-tungsten hexachloride by powder neutron and x-ray diffraction. Acta Crystallogr B 30:1216–1220Google Scholar
  374. 374.
    Siepmann R, Von Schnering HG (1968) Die Kristallstruktur von W6Br16 Eine Verbindung mit Polykationen [W6Br8]6+ und Polyanionen [Br4]2− (The crystal structure of a compound with polycations [W6Br8]6+ and polyanions [Br4]2−). Z Anorg Allg Chem 357:289–298 (in German)Google Scholar
  375. 375.
    Willing W, Müller U (1987) Wolframhexabromid (Tungsten hexabromide). Acta Crystallogr C 43:1425–1426 (in German)Google Scholar
  376. 376.
    Sassmannshausen J, Von Schnering HG (1994) Synthese und Kristallstruktur der molekularen Clusterverbindung W6Br14 (Synthesis and crystal structure of the molecular cluster W6Br14). Z Anorg Allg Chem 620:1312–1320 (in German)Google Scholar
  377. 377.
    Staelmaier HH, Lowder JT (1967) Die tau-Phase im Dreistoffsystem Kobalt-Wolfram-Bor (The tau-phase in the cobalt-tungsten-boron ternary system) Metall (Heidelberg) 21:1023–1024 (in German)Google Scholar
  378. 378.
    Rogl P, Benesovsky F, Nowotny H (1970) Komplexboride mit ReB2-Struktur (Complex borides with ReB2-structure), Monatsh. Chem. 101:27–31 (in German)Google Scholar
  379. 379.
    Omori S, Koyama K, Hashimoto Y, Yamashita M (1984) Phase relationships in Ni-Mo-B and Ni-W-B systems at 1223 K. J Jpn Inst Met 48:682–687 (in Japanese)Google Scholar
  380. 380.
    Rogl P, Nowotny H, Benesovsky F (1970) Ternäre Komplexboride in den Dreistoffen: (Mo,W)-(Ru,Os)-B und W-Ir-B (Ternary complex borides in ternary systems: (Mo,W)-(Ru,Os)-B and W-Ir-B). Monatsh Chem 101:850–854 (in German)Google Scholar
  381. 381.
    Rogl P, Rudy E (1978) New complex borides with ReB2- and Mo2IrB2-type structure. J Solid State Chem 24:175–181Google Scholar
  382. 382.
    Nowotny H, Haschke H, Benesovsky F (1967) Bor-reiche Wolframboride (Boron-rich tungsten borides). Monatsh Chem 98:547–554 (in German)Google Scholar
  383. 383.
    Kuzma YuB, Mikhalenko SI, Chaban NF (1983) Vzaimodeistvie Mo, W i Re s redkozemelnymi metallami i borom (Interaction of Mo, W and Re with rare-earth metals and boron). In: Savitskii EM (ed) Issledovaniya i primenenie splavov tugoplavkikh metallov (Studies and application of refractory metal alloys), pp. 5–11. Nauka, Moscow (in Russian)Google Scholar
  384. 384.
    Van Den Berg JM, Matthias BT, Corenzwit E, Barz H (1975) Superconductivity of some binary and ternary transition-metal borides. Mater Res Bull 10:889–894Google Scholar
  385. 385.
    Nowotny H, Kieffer R, Benesovsky F (1957) Silicoboride der Übergangsmetalle Vanadin, Niob, Tantal, Molybdän und Wolfram (Silicoborides of the transition metals vanadium, niobium, tantalum, molybdenum and tungsten). Planseeber Pulvermetall 5:86–93Google Scholar
  386. 386.
    Pitman DT, Das DK (1960) A study of the thorium-tungsten-boron system. J Electrochem Soc 107:763–766Google Scholar
  387. 387.
    Gupta KP (2002) The Co-Mo-W (cobalt-molybdenum-tungsten) system. J Phase Equilib 23:274–277Google Scholar
  388. 388.
    Banik G, Ettmayer P, Vendl A, Kieffer R (1979) Investigation of the Mo-W-N system. High Temp High Pressures 11:349–352Google Scholar
  389. 389.
    Waterstrat RM, Kuntzler R (1988) Stabilization of α-Mn structures in new ternary χ phases. J Less-Common Met 142:163–168Google Scholar
  390. 390.
    Taylor A, Doyle NJ (1967) The solid solubility of nitrogen in Nb and Nb-rich Nb-Hf, Nb-Mo and Nb-W alloys. Part II: The ternary systems Nb-Hf-N, Nb-Mo-N and Nb-W-N. J Less-Common Met 13:413–430Google Scholar
  391. 391.
    Rozanova ON, Trunov VK, Kovba LM (1966) New binary oxides of uranium and tungsten. Inorg Mater 2:273–274Google Scholar
  392. 392.
    Winter M (2012) WebElements: the periodic table on the WWW. Tungsten: enthalpies and thermodynamic properties. Accessed 20 May 2013.Google Scholar
  393. 393.
    Okamoto H (2010) The Cl-W (chlorine-tungsten) system. J Phase Equilib Diffus 31(4):402–403Google Scholar
  394. 394.
    Okamoto H (2010) The V-W (vanadium-tungsten) system. J Phase Equilib Diffus 31(3):324Google Scholar
  395. 395.
    Raghavan V (2009) The Al-Mo-Ni-W (aluminium-molybdenum-nickel-tungsten) system. J Phase Equilib Diffus 30(3):291Google Scholar
  396. 396.
    Okamoto H (2008) The Co-W (cobalt-tungsten) system. J Phase Equilib Diffus 29(1):119Google Scholar
  397. 397.
    Okamoto H (2000) The W-Y (tungsten-yttrium) system. J Phase Equilib 21(6):575Google Scholar
  398. 398.
    Okamoto H (2000) The Sc-W (scandium-tungsten) system. J Phase Equilib 21(6):574Google Scholar
  399. 399.
    Okamoto H (1991) The Ni-W (nickel-tungsten) system. J Phase Equilib 12(6):706Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Materials and Research CentreThe University of SalfordSalfordUK

Personalised recommendations