Advertisement

Chemical Wave Structures

  • Jan C. A. Boeyens

Abstract

The wave structure of the electron lends itself to the formulation of chemical phenomena in terms of number theory. Without a particle concept the behaviour of elementary units of matter, in the form of solitons, is described directly in the wave formalism originally proposed by Schrödinger and Madelung in hydrodynamic analogy. The quantum condition appears naturally as a minimum action principle. All atoms are alike with nuclei bathed in a uniform electronic fluid, the spherical wave structure of which is revealed by optimization on a logarithmic spiral. The density distribution pattern has much in common with the Bohr–de Broglie model of atomic structure and predicts a number of important atomic properties, including atomic size, ionization radius, electronegativity and atomic polarizability. The intimate connection between atomic properties and space-time curvature is convincingly demonstrated by derivation of atomic radii as a periodic function optimized on Fibonacci spirals. Details of covalent interaction are elucidated by the manipulation of ionization radii and the golden ratio as parameters to predict interatomic distance, bond order, dissociation energy, stretching force constant and dipole moments. Extended to molecules the matter-wave approach demonstrates that the concepts of structure and shape of a free molecule are strictly four-dimensional. Molecular structure observed and modelled in three dimensions only applies to condensed phases. Molecules involved in chemical change are essentially in the free state and their mode of interaction is not always obvious as a function of assumed three-dimensional structure. Proposed mechanisms for synthetic processes serve to rationalize the apparent discrepancies.

Keywords

Ionization Radius Bond Order Wave Structure Atomic Size Covalent Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sommerfeld, A.: Simplified deduction of the field and the forces of an electron moving in any given way. Proc. Kon. Acad. Wet. Amst. 8, 346–367 (1904) Google Scholar
  2. 2.
    Lorentz, H.A.: Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proc. Kon. Acad. Wet. Amst. 8, 809–831 (1904) Google Scholar
  3. 3.
    Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Phys. 40, 322–326 (1926) Google Scholar
  4. 4.
    Boeyens, J.C.A.: Chemistry from First Principles. www.springer.com (2008) CrossRefGoogle Scholar
  5. 5.
    Schutte, C.J.H.: Is the Rydberg-Ritz relationship valid? Struct. Bond. 148, 49–69 (2013) CrossRefGoogle Scholar
  6. 6.
    Boeyens, J.C.A.: Commensurability in the solar system. Phys. Essays 22, 493–499 (2009) CrossRefGoogle Scholar
  7. 7.
    Boeyens, J.C.A.: A molecular-structure hypothesis. Int. J. Mol. Sci. 11, 4267–4284 (2010) CrossRefGoogle Scholar
  8. 8.
    Boeyens, J.C.A.: Calculation of atomic structure. Struct. Bond. 148, 71–91 (2013) CrossRefGoogle Scholar
  9. 9.
    Stodolna, A.S., Rouzée, A., Lépine, F., Cohen, S., Ribocheaux, F., Gijsbertsen, A., Jungman, J.H., Bordas, C., Vrakking, M.J.J.: Hydrogen atoms under magnification: Direct observation of the nodal structure of Stark states. Phys. Rev. Lett. 110, 213001 (2013) CrossRefGoogle Scholar
  10. 10.
    Hashimoto, K., Champel, T., Florens, S., Sohrmann, C., Wiebe, J., Hirayama, Y., Römer, R.A., Wiesendanger, R., Morgenstern, M.: Robust nodal structure of Landau level wave functions revealed by Fourier transform scanning tunneling spectroscopy. Phys. Rev. Lett. 109, 116805 (2012) CrossRefGoogle Scholar
  11. 11.
    Bransden, B.H., Joachain, C.J.: Physics of Atoms and Molecules. Longman, London (1983) Google Scholar
  12. 12.
    Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry, 2nd edn. Interscience, New York (1966) Google Scholar
  13. 13.
    Nagaoka, H.: On a dynamical system illustrating the spectrum lines and the phenomena of radioactivity. Nature 69, 392–393 (1904) CrossRefGoogle Scholar
  14. 14.
    Boeyens, J.C.A.: Ionization radii of compressed atoms. J. Chem. Soc. Faraday Trans. 90, 3377–3381 (1994) CrossRefGoogle Scholar
  15. 15.
    Boeyens, J.C.A.: The periodic electronegativity table. Z. Naturforsch. 63b, 199–209 (2008) Google Scholar
  16. 16.
    Boeyens, J.C.A., Levendis, D.C.: All is number. Struct. Bond. 148, 161–179 (2013) CrossRefGoogle Scholar
  17. 17.
    Boeyens, J.C.A.: Covalent interaction. Struct. Bond. 148, 93–135 (2013) CrossRefGoogle Scholar
  18. 18.
    Lide, D.R. (ed.): Handbook of Chemistry and Physics, 86th edn. CRC Press, Boca Raton (2005–2006) Google Scholar
  19. 19.
    Miller, T.M., Bederson, B.: Atomic and molecular polarizabilities. Adv. At. Mol. Opt. Phys. 13, 1–55 (1977) Google Scholar
  20. 20.
    Kirkwood, J.G.: Polarisierbarkeiten, Suszeptibilitäten und van der Waalssche Kräfte der Atome mit mehreren Elektronen. Phys. Z. 33, 57–60 (1932) Google Scholar
  21. 21.
    Hirschfelder, J.O., Curtis, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1954) Google Scholar
  22. 22.
    Sims, J.S., Rumble, J.R.: Upper and lower bounds to atomic and molecular properties. Phys. Rev. A 8, 2231–2235 (1973) CrossRefGoogle Scholar
  23. 23.
    Atoji, M.: Atomic polarizability. J. Chem. Phys. 25, 174 (1956) CrossRefGoogle Scholar
  24. 24.
    Heslop, R.B., Robinson, P.L.: Inorganic Chemistry. Elsevier, Amsterdam (1960) Google Scholar
  25. 25.
    Mann, J.B.: Atomic structure calculations II. Los Alamos Scientific Report, LA-3691 (1968) Google Scholar
  26. 26.
    Boeyens, J.C.A., Comba, P.: Chemistry by number theory. Struct. Bond. 148, 1–24 (2013) CrossRefGoogle Scholar
  27. 27.
    Stanbury, P.: The alleged ubiquity of π. Nature 304, 11 (1983) Google Scholar
  28. 28.
    Comba, P., Boeyens, J.C.A.: Molecular shape. Struct. Bond. 148, 137–159 (2013) CrossRefGoogle Scholar
  29. 29.
    Boeyens, J.C.A., Levendis, D.C.: The structure lacuna. Int. J. Mol. Sci. 13, 9081–9096 (2012) CrossRefGoogle Scholar
  30. 30.
    Rehder, D.: Chemistry in Space. Wiley-VCH, Weinheim (2010) CrossRefGoogle Scholar
  31. 31.
    Comba, P., Hambley, T.W., Martin, B.: Molecular Modeling of Inorganic Compounds, 3rd edn. Wiley-VCH, Weinheim (2009) CrossRefGoogle Scholar
  32. 32.
    Sykes, P.: A Guidebook to Mechanism in Organic Chemistry. Longman, London (1961) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jan C. A. Boeyens
    • 1
  1. 1.Centre for Advancement of ScholarshipUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations