Advertisement

Theoretical Response

  • Jan C. A. Boeyens

Abstract

Classical science reached maturity in the discovery of the electromagnetic field and the periodic variation of the chemical properties of atoms, for which no theoretical explanations existed. The theory of relativity and quantum theory, in the form of wave mechanics, developed in response. The details are briefly discussed and critically examined. By design, the theory of relativity provided a common basis for mechanical and electromagnetic motion, which could be refined into a model for gravitational interaction. The search for an equivalent space-time origin of the electromagnetic field resulted in the recognition of gauge fields, one of which gave birth to wave mechanics. As a theory that underpins atomic periodicity and chemistry it has only been partially successful and, reduced to a scheme of quantum chemistry, based on real linear functions, has failed completely.

Keywords

Minkowski Space Light Cone Gauge Field Lorentz Transformation World Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boeyens, J.C.A.: The Theories of Chemistry. Elsevier, Amsterdam (2003) Google Scholar
  2. 2.
    Weyl, H.: Gravitation und Elektrizität. Sitz.ber. Preuss. Akad. Wiss. Berl. 465–480 (1918) Google Scholar
  3. 3.
    Schrödinger, E.: Über eine bemerkenswerte Eigenschaft eines einzelnen Elektrons. Z. Phys. 12, 13–23 (1922) Google Scholar
  4. 4.
    London, F.: Quantenmechanische Deutung der Theorie von Weyl. Z. Phys. 42, 375–389 (1927) CrossRefGoogle Scholar
  5. 5.
    Weyl, H.: Elektron und Gravitation. Z. Phys. 56, 330–352 (1929) CrossRefGoogle Scholar
  6. 6.
    Goldstein, H.: Classical Mechanics, 2nd edn., p. 401. Addison-Wesley, Reading (1980) Google Scholar
  7. 7.
    Coughlan, G.D., Dodd, J.E.: The Ideas of Particle Physics, 2nd edn. Cambridge University Press, Cambridge (1991) Google Scholar
  8. 8.
    Higgs, P.W.: Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1163 (1966) CrossRefGoogle Scholar
  9. 9.
    Boeyens, J.C.A.: Cosmology and science, in [10, pp. 129–157] Google Scholar
  10. 10.
    Travena, A., Soren, B. (eds.) Recent Advances in Cosmology. Nova Publ. (Nova Science Publishers), New York (2013) Google Scholar
  11. 11.
    Boeyens, J.C.A.: A molecular-structure hypothesis. Int. J. Mol. Sci. 11, 4267–4284 (2010) CrossRefGoogle Scholar
  12. 12.
    Rozema, L.A., Darabi, A., Mahler, D.H., Hayat, A., Soudagar, Y., Steinberg, A.M.: Violation of Heisenberg’s measurement-disturbance relationship by weak measurements. Phys. Rev. Lett. 109, 100404 (2012) CrossRefGoogle Scholar
  13. 13.
    Plichta, P.: God’s Secret Formula. Element Books, Boston (1998) Google Scholar
  14. 14.
    Boeyens, J.C.A.: Periodicity of the stable isotopes. J. Radioanal. Nucl. Chem. 257, 33–43 (2003) CrossRefGoogle Scholar
  15. 15.
    Boeyens, J.C.A., Levendis, D.C.: Number Theory and the Periodicity of Matter. www.springer.com (2008) CrossRefGoogle Scholar
  16. 16.
    Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1956) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jan C. A. Boeyens
    • 1
  1. 1.Centre for Advancement of ScholarshipUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations