Skip to main content

TILLING for Improved Starch Composition in Wheat

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Starch, the main component of wheat flour, is known to significantly influence the quality of wheat-based food products. In the last 20 years, research efforts have enabled the development of a number of wheat lines differing in starch composition and characterized by new chemical physical properties potentially able to confer new added value to food products. Scientists have focused on the opportunity to modify starch composition by targeting the main actors of its biosynthetic pathway: switching off the various starch synthetic enzymes has allowed for the production of a set of wheat starches with an amylose content ranging from 0 up to 75 %. Actually, amylose/amylopectin (AM/AP) ratio is considered the main factor affecting starch properties. Low amylose wheat is currently being investigated for its potential to improve the shelf life of baked products, frozen quality and the texture of noodles. High amylose wheat is of great interest for its healthy and nutritional properties comparable to those of a functional dietary fiber. In this context, reverse-genetics approaches based on the discovery and investigation of new allelic variants are becoming increasingly important. In particular, TILLING (Targeting Induced Local Lesions IN Genomes) has been widely adopted in wheat as well as in other important crops. Herewith, we review how TILLING is being exploited to improve starch composition in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aal ESM, Hucl P, Chibbar RN et al (2002) Physicochemical and structural characteristics of flours and starches from waxy and nonwaxy wheats. Cereal Chem 79:458–464

    CAS  Google Scholar 

  • Ainsworth C, Clark J, Balsdon J (1993) Expression, organization and structure of the genes encoding the waxy protein (granule-bound starch synthase) in wheat. Plant Mol Biol 22:67–82

    CAS  PubMed  Google Scholar 

  • Ao Z, Jane JL (2007) Characterization and modeling of the A-and B-granule starches of wheat, triticale, and barley. Carbohyd Polym 67:46–55

    CAS  Google Scholar 

  • Avella M, Errico ME, Rimedio R, Sadocco P (2002) Preparation of biodegradable polyesters/high-amylose-starch composites by reactive blending and their characterization. J Appl Polym Sci 83:1432–1442

    CAS  Google Scholar 

  • Båga M, Glaze S, Mallard CS, Chibbar RN (1999) A starch-branching enzyme gene in wheat produces alternatively spliced transcripts. Plant Mol Biol 40:1019–1030

    PubMed  Google Scholar 

  • Baldwin PM (2001) Starch granule-associated proteins and polypeptides: a review. Starch 53:475–503

    Google Scholar 

  • Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Ann Rev Plant Biol 54:207–233

    CAS  Google Scholar 

  • Bhattacharya M, Erazo-Castrejón SV, Doehlert DC, McMullen MS (2002) Staling of bread as affected by waxy wheat flour blends. Cereal Chem 79:178–182

    CAS  Google Scholar 

  • Blauth SL, Kim KN, Klucinec J et al (2002) Identification of mutator insertional mutants of starch-branching enzyme 1 (sbe1) in Zea mays L. Plant Mol Biol 48:287–297

    CAS  PubMed  Google Scholar 

  • Botticella E, Sestili F, Hernandez-Lopez A et al (2011) High Resolution Melting analysis for the detection of EMS induced mutations in wheat Sbella genes. BMC Plant Biol 11:156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bovina R, Brunazzi A, Gasparini G et al (2013) Development of a TILLING resource in durum wheat for forward- and reverse-genetics analyses. Crop & Pasture Sci. In press

    Google Scholar 

  • Bovina R, Talamè V, Silvio S et al (2011) Starch metabolism mutants in barley: A TILLING approach. Plant Genet Resour 9:170–173

    CAS  Google Scholar 

  • Brown IL, Wang X, Topping DL et al (1998) High amylose maize starch as a versatile prebiotic for use with probiotic bacteria. Food Aust 50:603–610

    Google Scholar 

  • Burton RA, Bewley JD, Smith AM et al (1995) Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J 7:3–15

    CAS  PubMed  Google Scholar 

  • Burton RA, Jenner H, Carrangis L et al (2002) Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. Plant J 31:97–112

    CAS  PubMed  Google Scholar 

  • Candido EPM, Reeves R, Davies JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–113

    CAS  PubMed  Google Scholar 

  • Chanvrier H, Appelqvist IAM, Bird AR et al (2007) Processing of novel elevated amylose wheats: functional properties and starch digestibility of extruded products. J Agric Food Chem 55:10248–10257

    CAS  PubMed  Google Scholar 

  • Chiotelli E, Le Meste M (2002) Effect of small and large wheat starch granules on thermomechanical behavior of starch. Cereal Chem 79:286–293

    CAS  Google Scholar 

  • Colbert T, Till BJ, Tompa R et al (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delvalle D, Dumez S, Wattebled F et al (2005) Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. Plant J 43:398–412

    CAS  PubMed  Google Scholar 

  • Dong C, Dalton-Morgan J, Vincent K, Sharp P (2009a) A modified TILLING method for wheat breeding. Plant Gen 2:10–12

    Google Scholar 

  • Dong C, Vincent K, Sharp S (2009b) Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor. BMC Plant Biol 9:143

    Google Scholar 

  • Edwards A, Fulton DC, Hylton CM et al (1999) A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J 17:251–261

    CAS  Google Scholar 

  • Ellis RP, Cochrane MP, Dale MFB et al (1998) Starch production and industrial use. J Sci Food Agr 77:289–311

    CAS  Google Scholar 

  • Freire A, Podczeck F, Veiga F, Sousa J (2009) Starch-based coatings for colon-specific delivery Part II: Physicochemical properties and in vitro drug release from high amylose maize starch films C. Eur J Pharmac Biopharmac 72:587–594

    CAS  Google Scholar 

  • Fujita N, Kubo A, Suh DS et al (2003) Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm. Plant Cell Physiol 44:607–618

    CAS  PubMed  Google Scholar 

  • Fujita N, Yoshida M, Asakura N et al (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol 140:1070–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gady ALF, Hermans FWK, Van de Wal MHBJ et al (2009) Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations. Plant Methods 5:13

    PubMed Central  PubMed  Google Scholar 

  • Garwood DL, Shannon J, Creech R (1976) Starches of endosperms possessing different alleles at the amylose-extender locus in Zea mays L. Cereal Chem 53:355–364

    CAS  Google Scholar 

  • Geigenberger P, Stitt M, Fernie AR (2004) Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant Cell Environ 27:655–673

    CAS  Google Scholar 

  • Gianibelli MC, Sissons MJ, Batey IL (2005) Effect of source and proportion of waxy starches on pasta cooking quality. Cereal Chem 82:321–327

    CAS  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    CAS  PubMed  Google Scholar 

  • Hallström E, Sestili F, Lafiandra D et al (2011) Novel wheat variety with elevated content of amylose beneficially influence glycaemia in healthy subjects. Food Nutr Res 55:7074

    Google Scholar 

  • Hannah LC, Greene TW (1998) Maize seed weight is dependent on the amount of endosperm ADP-glucose pyrophosphorylase. J Plant Physiol 152:649–652

    CAS  Google Scholar 

  • Hazard B, Zhang X, Colasuonno P et al (2012) Induced Mutations in the starch branching enzyme II (SBEII) genes increase amylose and resistant starch content in durum wheat. Crop Sci 52:1754–1766

    CAS  Google Scholar 

  • Hofinger BJ, Jing HC, Hammond KE, Kanyuka K (2009) High-resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley. Theor Appl Genet 119:851–865

    CAS  PubMed  Google Scholar 

  • James MG, Robertson DS, Myers AM (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417–429

    CAS  PubMed Central  PubMed  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    CAS  PubMed  Google Scholar 

  • Jemal A, Ward E, Hao Y, Thun M (2005) Trends in the leading causes of death in the United States. JAMA 294:1255–1259

    CAS  PubMed  Google Scholar 

  • Jobling SA, Schwall GP, Westcott RJ et al (1999) A minor form of starch branching enzyme in potato (Solanum tuberosum L) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of SBEA. Plant J 18:163–171

    CAS  PubMed  Google Scholar 

  • Jonnala RS, MacRitchie F, Smail VW et al (2010) Protein and quality characterization of complete and partial near-isogenic lines of waxy wheat. Cereal Chem 87:538–545

    CAS  Google Scholar 

  • Kasarda DD, Dupont FM, Vensel WH, Altenbach SB et al (2008) Surface-associated proteins of wheat starch granules: suitability of wheat starch for celiac patients. J Agric Food Chem 56:10292–10302

    CAS  PubMed  Google Scholar 

  • Kubo A, Fujita N, Harada K et al (1999) The starch debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol 121:399–409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lafiandra D, Sestili F, D’Ovidio R et al (2010) Approaches for modification of starch composition in Durum wheat. Cereal Chem 87:28–34

    CAS  Google Scholar 

  • Lafiandra D, Sestili F, Botticella E, Phillips A (2012) Improving wheat health benefits through manipulation of starch composition. In: Bedo Z and Làng L (eds) Proceedings of the 19th EUCARPIA General Congress. Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Màrtonvàsar, Hungary Canada pp 180–183

    Google Scholar 

  • Le Leu RK, Brown IL, Hu Y et al (2005) A symbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen damaged cells in rat colon. J Nutr 135:996–1001

    CAS  PubMed  Google Scholar 

  • Leterrier M, Holappa LD, Broglie KE, Beckles DM (2008) Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: Functional and evolutionary implications. BMC Plant Biol 8:98

    PubMed Central  PubMed  Google Scholar 

  • Li N, Zhang S, Zhao Y, Li B, Zhang J (2011) Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta 233:241–250

    CAS  PubMed  Google Scholar 

  • Li ZY, Chu XS, Mouille G et al (1999) The localization and expression of the class II starch synthases of wheat. Plant Physiol 120:1147–1155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li ZY, Mouille G, Kosar-Hashemi B et al (2000) The structure and expression of the wheat starch synthase III gene. Motifs in the expressed gene define the lineage of the starch synthase III gene family. Plant Physiol 123:613–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Q, Gu Z, Donner E et al (2007) Investigation of digestibility in vitro and physicochemical properties of A-and B-type starch from soft and hard wheat flour. Cereal Chem 84:15–21

    CAS  Google Scholar 

  • Mascie-Taylor NCG, Karim E (2003) The burden of chronic disease. Sci 302:1921–1922

    Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miura H, Tanii S, Nakamura T, Watanabe N (1994) Genetic control of amylose content in wheat endosperm starch and differential effects of three Wx genes. Theor Appl Genet 89:276–280

    CAS  PubMed  Google Scholar 

  • Mizuno K, Kawasaki T, Shimada H et al (1993) Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice. J Biol Chem 268:19084–19091

    CAS  PubMed  Google Scholar 

  • Mohammadkhani A, Stoddard FL, Marshall DR (1998) Survey of amylose content in Secale cereale, Triticum monococcum, T. turgidum and T. tauschii. J Cereal Sci 28:273–280

    CAS  Google Scholar 

  • Morita N, Maeda T, Miyazaki M et al (2002) Dough and baking properties of high-amylose and waxy wheat flours. Cereal Chem 79:491–495

    CAS  Google Scholar 

  • Mouille G, Maddelein ML, Ball S (1996) Preamylopectin processing: a mandatory step for starch biosynthesis in plants. Plant Cell 8:1353–1366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S (1993) Decrease of waxy (Wx) protein in two common wheat cultivars with low amylose content. Plant Breeding 111:99–105

    CAS  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H et al (1995) Production of waxy (amylose-free) wheats. Mol Gen Genet 248:253–259

    CAS  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874

    CAS  PubMed  Google Scholar 

  • Nugent AP (2005) Health properties of resistant starch. Nutr Bulletin 30:27–54

    Google Scholar 

  • Park CS, Baik BK (2004) Significance of amylose content of wheat starch on processing and textural properties of instant noodles. Cereal Chem 81:521–526

    CAS  Google Scholar 

  • Park SH, Wilson JD, Chung OK, Seib PA (2004) Size distribution and properties of wheat starch granules in relation to crumb grain score of pup-loaf bread. Cereal Chem 81:699–704

    CAS  Google Scholar 

  • Parker ML (1985) The relationship between A-type and B-type starch granules in the developing endosperm of wheat. J Cereal Sci 3:271–278

    Google Scholar 

  • Parry MAJ, Madgwick PJ, Bayon C et al (2009) Mutation discovery for crop improvement. J Exp Bot 60:2817–2825

    Google Scholar 

  • Patron NJ, Greber B, Fahy BE et al (2004) The lys5 mutations of barley reveal the nature and importance of plastidial ADP-Glc transporters for starch synthesis in cereal endosperm. Plant Physiol 135:2088–2097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng M, Gao M, Baga M et al (2000) Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm. Plant Physiol 124:265–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Preiss J (1991) Biology and molecular biology of starch synthesis and its regulation. In: Miflin BJ (ed) Oxford Survey of Plant Molecular and Cellular Biology, vol 7. Oxford University Press, Oxford, pp. 59–114

    Google Scholar 

  • Preiss J (1988) Biosynthesis of starch and its regulation. In: Preiss J (ed) The biochemistry of plants, carbohydrates, vol 14. Academic Press, San Diego, pp. 181–254

    Google Scholar 

  • Preiss J, Sivak M (1996) Starch synthesis in sinks and sources. In: Zamski E, Schaffter AA (eds) Photoassimilate distribution in plants and crops: sink-source relationships. M Dekker, New York, pp. 63–96

    Google Scholar 

  • Rahman S, Kosar-Hashemi B, Samuel MS et al (1995) The major proteins of wheat endosperm starch granules. Aust J Plant Physiol 22:793–803

    CAS  Google Scholar 

  • Rawat N, Sehqal SK, Rothe N et al (2012) A diploid wheat TILLING resource for wheat functional genomics. BMC Plant Biol 12:205

    Google Scholar 

  • Regina A, Kosar-Hashemi B, Li Z et al (2004) Multiple isoforms of starch branching enzyme-I in wheat: lack of the major Sbe-I isoform does not alter starch phenotype. Funct Plant Biol 31:591–601

    CAS  Google Scholar 

  • Regina A, Kosar-Hashemi B, Li Z et al (2005) Starch branching enzyme IIb in wheat is expressed at low levels in the endosperm compared to other cereals and encoded at a non-syntenic locus. Planta 222:899–909

    CAS  PubMed  Google Scholar 

  • Regina A, Bird A, Topping D et al (2006) High-amylose wheats generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551

    CAS  PubMed  Google Scholar 

  • Roldán I, Wattebled F, Lucas MM et al (2006) The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J 49:492–504

    Google Scholar 

  • Sahlstrom S, Brathen E, Lea P, Autio K (1998) Influence of starch granule size distribution on bread characteristics. J Cereal Sci 28:157–164

    CAS  Google Scholar 

  • Sahlstrom S, Baevre AB, Brathen E (2003) Impact of starch properties on hearth bread characteristics. II. Purified A-and B-granule fractions. J Cereal Sci 37:285–293

    CAS  Google Scholar 

  • Sajilata MG, Singhal RS, Kulkarni PR (2006) Resistant starch: a review. Compr Rev Food Sci Food Safety 5:5–17

    Google Scholar 

  • Satoh H, Nishi A, Yamashita K et al (2003) Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol 133:1111–1121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sestili F, Botticella E, Bedo Z et al (2010) Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Mol Breed 25:145–154

    CAS  Google Scholar 

  • Sharma A, Yadav BS, Ritika (2008) Resistant starch: physiological roles and food applications. Food Rev Int 24:193–234

    CAS  Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    CAS  PubMed  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D et al (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    CAS  PubMed  Google Scholar 

  • Slade AJ, McGuire C, Loeffler D et al (2012) Development of high amylose wheat through TILLING. BMC Plant Biol 12:69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smidansky ED, Clancy M, Meyer FD et al (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci USA 99:1724–1729

    CAS  PubMed  Google Scholar 

  • Soh NH, Sissons MJ, Turner MA (2006) Effect of starch granule size distribution and elevated amylose content on durum dough rheology and spaghetti cooking quality. Cereal Chem 83:513–519

    CAS  Google Scholar 

  • Stahl Y, Coates S, Bryce JH, Morris PC (2004) Antisense downregulation of the barley limit dextrinase inhibitor modulates starch granule size distribution, starch composition and amylopectin structure. Plant J 39:599–611

    CAS  PubMed  Google Scholar 

  • Stitt M, Lunn J, Usadel B (2010) Arabidopsis and primary photosynthetic metabolism: more than the icing on the cake. Plant J 61:1067–1091

    CAS  PubMed  Google Scholar 

  • Stoddard FL (2003) Genetics of starch granule size distribution in tetraploid and hexaploid wheats. Aust J Agric Res 54:637–648

    Google Scholar 

  • Stoddard FL, Sarker R (2000) Characterization of starch in Aegilops species. Cereal Chem 77:445–447

    CAS  Google Scholar 

  • Taylor NE, Greene EA (2003) PARSESNP: a tool for the analysis of nucleotide polymorphisms. Nucleic Acids Res 31:3808–3811

    CAS  PubMed Central  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA et al (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    CAS  PubMed  Google Scholar 

  • Toden S, Bird AR, Topping DL, Conlon MA (2007) Dose-dependent reduction of dietary protein induced colonocyte DNA damage by resistant starch in rats correlates more highly with caecal butyrate than with other short chain fatty acids. Cancer Biol Ther 6:253–258

    CAS  PubMed  Google Scholar 

  • Topping D (2007) Cereal complex carbohydrates and their contribution to human health. Trends Food Sci Technol 46:220–229

    CAS  Google Scholar 

  • Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064

    CAS  PubMed  Google Scholar 

  • Tsai H, Howell T, Nitcher R et al (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 27:1254–1268

    Google Scholar 

  • Uauy C, Paraiso F, Colasuonno P et al (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheats. BMC Plant Biol 9:115

    PubMed Central  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    CAS  PubMed  Google Scholar 

  • Vignaux N, Doehlert DC, Elias EM et al (2005) Quality of spaghetti made from full and partial waxy durum wheat. Cereal Chem 82:93–100

    CAS  Google Scholar 

  • Vriet C, Welham T, Brachmann A et al (2010) A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism. Plant Physiol 154:643–655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang TL, Uauy C, Robson F, Till B (2012) TILLING in extremis. Plant Biotech J doi: 10.1111/j.1467-7652.2012.00708

    Google Scholar 

  • Waring S (2005) Functionality of resistant starch in food applications. http://www.foodinnovations.com/pdf/functresist.pdf

  • Wittwer CT, Reed GH, Gundry CN et al (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

    CAS  PubMed  Google Scholar 

  • Yamamori M (1998) Selection of a wheat lacking a putative enzyme for starch synthesis, SGP-1. In: Slinkard AE (ed) Proceedings of the Ninth International Wheat Genetics Symposium. University Extension Press, University of Saskatchewan, Saskatoon, Canada, pp 300–302

    Google Scholar 

  • Yamamori M, Endo TR (1996) Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theor Appl Genet 93:275–281

    CAS  PubMed  Google Scholar 

  • Yamamori M, Nakamura T, Kuroda A (1992) Variations in the content of starch-granule bound protein among several Japanese cultivars of common wheat (Triticum aestivum L). Euphytica 64:215–219

    CAS  Google Scholar 

  • Yamamori M, Nakamura T, Endo TR, Nagamine T (1994) Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theor Appl Genet 89:179–184

    CAS  PubMed  Google Scholar 

  • Yamamori M, Fujita S, Hayakawa K et al (2000) Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theor Appl Genet 101:21–29

    CAS  Google Scholar 

  • Yasui T, Matsuki J, Sasaki T, Matsuki J (1999) Milling and flour pasting properties of waxy endosperm mutant lines of bread wheat (Triticum aestivum L.). J Sci Food Agric 79:687–692

    CAS  Google Scholar 

  • Zeeman SC, Umemoto T, Lue WL, Auyeung P et al (1998) A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell 10:1699–1711

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234

    CAS  PubMed  Google Scholar 

  • Zeng M, Morris CF, Batey IL, Wrigley CW (1997) Sources of variation for starch gelatinization, pasting, and gelation properties in wheat. Cereal Chem 74:63–71

    CAS  Google Scholar 

  • Zhao XC, Batey IL, Sharp PJ et al (1998) A single genetic locus associated with starch granule properties and noodle quality in wheat. J Cereal Sci 27:7–13

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lafiandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sestili, F., Botticella, E., Lafiandra, D. (2014). TILLING for Improved Starch Composition in Wheat. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7575-6_20

Download citation

Publish with us

Policies and ethics