Advertisement

Enhancing Nutritional Quality in Crops Via Genomics Approaches

Chapter

Abstract

Micronutrient malnutrition—also known as hidden hunger—is a growing public health concern that affects especially women and children in the developing world. Worldwide, at least 2 billion people suffer from vitamin A, iron, and zinc deficiencies. Here we review recent advances in the application of genomic approaches for biofortification of staple crops to enhance their nutritional quality and thus reduce ‘hidden hunger’. The application of genomic tools such as marker-assisted selection in conventional breeding or genetic modification offers sustainable and cost-effective ways to provide essential micronutrients (here provitamin A or iron) to people in developing countries. To maximize the benefits of genomic approaches for biofortification, we need to extend our understanding of the genetic control mechanisms and relative contribution from different rate-limiting steps for both provitamin A and iron accumulation in edible plant parts.

Keywords

Quantitative Trait Locus Transgenic Rice Cassava Root Cassava Cultivar Carotenoid Biosynthesis Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anuradha K, Agarwal SY, Rao YV et al (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene 508:233–240PubMedCrossRefGoogle Scholar
  2. Bhullar NK, Gruissem W (2012) Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol Adv. doi.org/10.1016/j.biotechadv.2012.02.001Google Scholar
  3. Black RE, Allen LH, Bhutta ZA et al, for the Maternal and Child Undernutrition Study Group (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371:243–260PubMedCrossRefGoogle Scholar
  4. Borg S, Brinch-Pedersen H, Tauris B, Holm PB (2009) Iron transport, deposition and bioavailability in the wheat and barley grain. Plant Soil 325:15–24CrossRefGoogle Scholar
  5. Bouis HE, Hotz C, McClafferty B et al (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(Suppl 1):31S–40SGoogle Scholar
  6. Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S1–S13CrossRefGoogle Scholar
  7. Briat JF, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10:276–282PubMedCrossRefGoogle Scholar
  8. Cakmak I, Pfeiffer WH, McClafferty B (2010) Review: biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20CrossRefGoogle Scholar
  9. Ceballos H, Fregene M, Pérez JC et al (2007) Cassava genetic improvement. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Ames, pp 365–391CrossRefGoogle Scholar
  10. Ceballos H, Hershey C, Becerra López-LavalleLA (2012a) New approaches to cassava breeding. In: Janick J (ed) Plant Breeding Reviews, vol 36, chapter 6. Wiley, New York, pp 427–504CrossRefGoogle Scholar
  11. Ceballos H, Morante N, Sanchez T et al (2012b) Progress increasing carotenoids content in cassava roots through fast recurrent selection. In: Global Cassava Partnership Second Scientific Conference GCP21-II. Cassava: Overcoming challenges of global climatic change. National Crops Resources Research Institute. Namulonge, Uganda. June 18–22, 2012Google Scholar
  12. Chandel G, Samuel P, Dubey M, Meena R (2011) In silico expression analysis of QTL specific candidate genes for grain micronutrient (Fe/Zn) content using ESTs and MPSS signature analysis in rice (Oryza sativa L.). J Plant Genet Transgenics 2:11–22Google Scholar
  13. Chávez AL, Sánchez T, Jaramillo G et al (2005) Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica 143:125–133CrossRefGoogle Scholar
  14. Cheng L, Wang F, Shou H et al (2007) Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice. Plant Physiol 145:1647–1657PubMedCentralPubMedCrossRefGoogle Scholar
  15. Cichy KA, Forster S, Graft KF, Hosfield GL (2005) Inheritance of seed zinc accumulation in navy bean. Crop Sci 45:864–870CrossRefGoogle Scholar
  16. Courtney M, McHaro M, Bonte D, Grüneberg W (2008) Heritability estimates for micronutrient composition of sweetpotato storage roots. HortScience 43:1382–1384Google Scholar
  17. Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206PubMedCrossRefGoogle Scholar
  18. Curie C, Cassin G, Couch D et al (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11PubMedCrossRefGoogle Scholar
  19. Cuttriss AJ, Cazzonelli CI, Wurtzel ET, Pogson BJ (2011) Carotenoids. In: Rébeillé F, Douce R (eds) Adv Bot Res 58:1–36Google Scholar
  20. DellaPenna D (1999) Nutritional genomics: manipulating plant micronutrients to improve human health. Science 285:375–379PubMedCrossRefGoogle Scholar
  21. Douchkov D, Gryczka C, Stephan UW et al (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ 28:365–374CrossRefGoogle Scholar
  22. Egesel CO, Wong JC, Lambert RJ, Rocheford TR (2003) Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci 43:818–823CrossRefGoogle Scholar
  23. Esuma W, Rubaihayo P, Pariyo A et al (2012) Genetic diversity of provitamin A cassava in Uganda. J Plant Stud 1:60–71CrossRefGoogle Scholar
  24. Ferguson ME, Hearne SJ, Close TJ et al (2012) Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theor Appl Genet 124:685–695PubMedCrossRefGoogle Scholar
  25. Gómez-Galera S, Rojas E, Sudhakar D et al (2010) Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19:165–180PubMedCrossRefGoogle Scholar
  26. Goto F, Yoshihara T, Shigemoto N et al (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286PubMedCrossRefGoogle Scholar
  27. Gross J, Stein RJ, Fett-Neto AG, Fett JP (2003) Iron homeostasis related genes in rice. Genetics Mol Biol 26:477–497CrossRefGoogle Scholar
  28. Grüneberg WJ, Manrique K, Zhang D, Hermann M (2005) Genotype × environment interactions for a diverse set of sweetpotato clones evaluated across varying ecogeographic conditions in Peru. Crop Sci 45:2160–2171CrossRefGoogle Scholar
  29. Grusak MA (1994) Iron transport to developing ovules of Pisum sativum. I. Seed import characteristics and phloem iron-loading capacity of source regions. Plant Physiol 104:649–655PubMedCentralPubMedGoogle Scholar
  30. Grusak MA (2002) Enhancing mineral content and bioavailability in plant food products. J Am Coll Nutr 21:178S–183SPubMedCrossRefGoogle Scholar
  31. Grusak MA, Pearson JN, Marentes E (1999) The physiology of micronutrient homeostasis in field crops. Field Crops Res 60:41–56CrossRefGoogle Scholar
  32. Guerinot ML (2007) It’s elementary: enhancing Fe3 + reduction improves rice yields. Proc Natl Acad Sci USA 104:7311–7312PubMedCrossRefGoogle Scholar
  33. Harjes CE, Rocheford TR, Bai L et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333PubMedCentralPubMedCrossRefGoogle Scholar
  34. Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551PubMedGoogle Scholar
  35. Higuchi K, Takahashi M, Nakanishi H et al (2001) Analysis of transgenic rice containing barley nicotianamine synthase gene. Soil SciPlant Nutr 47:315–322CrossRefGoogle Scholar
  36. Higuchi K, Suzuki K, Nakanishi H et al (2009) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479CrossRefGoogle Scholar
  37. Hotz C, McClafferty B (2007) From harvest to health: challenges for developing biofortified staple foods and determining their impact on micronutrient status. Food Nutr Bull 28:S271–S279PubMedGoogle Scholar
  38. Ishimaru Y, Suzuki M, Tsukamoto T et al (2006) Rice plants take up iron as an Fe3+ -phytosiderophore and as Fe2+. Plant J 45:335–346PubMedCrossRefGoogle Scholar
  39. Ishimaru Y, Kim S, Tsukamoto T et al (2007) Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc Natl Acad Sci US A 104:7373–7378CrossRefGoogle Scholar
  40. Johnson AAT (2010) Strategies for increasing micronutrient mineral levels in cereal crops. Online Proceedings First Global Conference on Biofortification, November 9–11, 2010, Washington, DC. http://biofortconf.ifpri.info/conference-agenda/symposia-november-10/
  41. Johnson AAT, Kyriacou B, Callahan DL et al (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective Iron- and Zinc-biofortification of rice endosperm. PLoS ONE 6(9):e24476. doi:10.1371/journal.pone.0024476PubMedCentralPubMedCrossRefGoogle Scholar
  42. Kennedy G, Nantel G, Shetty P (2003) The scourge of “hidden hunger”: global dimensions of micronnutrient deficiencies. Food Nutr Agric 32:8–16Google Scholar
  43. Khalekuzzaman M, Datta K, Oliva N et al (2006) Stable integration, expression and inheritance of the ferritin gene in transgenic elite indica rice cultivar BR29 with enhanced iron level in the endosperm. Indian J Biotechnol 5:26–31Google Scholar
  44. Khush G, Lee S, Cho JI, Jeon JS (2012) Biofortification of crops for reducing malnutrition. Plant Biotechnol Rep 6:195–202CrossRefGoogle Scholar
  45. Koike S, Inoue H, Mizuno D et al (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424PubMedCrossRefGoogle Scholar
  46. Lee S, Jeon US, Lee SJ et al (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci US A 106:22014–22019CrossRefGoogle Scholar
  47. Long JK, Bänziger M, Smith ME (2004) Diallel analysis of grain iron and zinc density in Southern African-adapted maize inbreds. Crop Sci 44:2019–2026CrossRefGoogle Scholar
  48. Lopez C, Piégu B, Cooke R et al (2005) Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot sculenta Crantz). Theor Appl Genet 110:425–431PubMedCrossRefGoogle Scholar
  49. Lucca P, Hurrell R, Potrykus I (2001) Approaches to improving the bioavailability and level of iron in rice seeds. J Sci Food Agric 81:828–834CrossRefGoogle Scholar
  50. Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21:184S–190SPubMedCrossRefGoogle Scholar
  51. Marr KM, Batten GD, Blakeney AB (1995) Relations between minerals in Australian brown rice. J Sci Food Agric 68:285–291CrossRefGoogle Scholar
  52. Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9:695–713CrossRefGoogle Scholar
  53. Masuda H, Usuda K, Kobayashi T et al (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2:155–166CrossRefGoogle Scholar
  54. Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170PubMedCrossRefGoogle Scholar
  55. Mba REC, Stephenson P, Edwards K et al (2001) Single sequence repeat (SSR) marker survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 1002:21–31CrossRefGoogle Scholar
  56. Meenakshi JV, Johnson NL, Manyong VM et al (2010) How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev 38:64–75CrossRefGoogle Scholar
  57. Menkir A, Maziya-Dixon B (2004) Influence of genotype and environment on β-carotene content of tropical yellow-endosperm maize genotypes. Maydica 49:313–318Google Scholar
  58. Menkir A, Pixley K, Maziya-Dixon B, Gedil M (2012) Recent advances in breeding maize for enhanced pro-vitamin A content. In: Worku M, Twumasi-Afriyie S, Wolde L et al (eds) Meeting the challenges of global climate change and food security through innovative maize research. Proceedings of the Third National Maize Workshop of Ethiopia. Addis Ababa, Ethiopia, pp 66–73Google Scholar
  59. Micronutrient Initiative (2009) Investing in the future: a united call to action on vitamin and mineral deficiencies, Global Report 2009. Micronutrient Initiative, Ontario, CanadaGoogle Scholar
  60. Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2:250–253PubMedCrossRefGoogle Scholar
  61. Morillo Coronado Y (2009) Herencia del contenido de carotenos en raíces de yuca (Manihot esculenta Crantz). Dissertation, National University of ColombiaGoogle Scholar
  62. Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567PubMedCentralPubMedCrossRefGoogle Scholar
  63. Nirupa N, Prasad MNV (2008) Iron bioavailability, homeostasis through phytoferritins and fortification strategies: implications for human health and nutrition. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, New York, pp 233–265CrossRefGoogle Scholar
  64. Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47(Suppl 3):S88–S105Google Scholar
  65. Pich A, Scholz G, Stephan UW (1994) Iron-dependent changes of heavy metals, nicotianamine, and citrate in different plant organs in the xylem exudate of two tomato genotypes. Nicotianamine as possible copper translocator. Plant Soil 165:189–196CrossRefGoogle Scholar
  66. Pixley K, Palacios N, Babu R, Menkir A (2011) Maize harvestplus: biofortifying maize with provitamin A carotenoids. In: Zaidi PH, Babu R, Cairns J et al (eds) Addressing climate change effects and meeting maize demand for Asia. Book of extended summaries of the 11th Asian Maze Conference, Nanning, China, 7–11 November 2011. CIMMYT, Mexico, pp 317–319Google Scholar
  67. Prochnik S, Marri PR, Desany B et al (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94PubMedCentralPubMedCrossRefGoogle Scholar
  68. Qu LQ, Yoshihara T, Ooyama A et al (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225–233CrossRefGoogle Scholar
  69. Raji AA, Anderson JV, Kolade OA et al (2009) Gene-based microsatellites for cassava (Manihot esculenta Crantz): prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biol 9:118PubMedCentralPubMedCrossRefGoogle Scholar
  70. Roa AC, Chavarriaga-Aguirre P, Duque MC et al (2000) Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. Am J Bot 87:1647–1655PubMedCrossRefGoogle Scholar
  71. Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180PubMedCentralPubMedCrossRefGoogle Scholar
  72. Schurr U (1999) Dynamics of nutrient transport from the root to the shoot. Prog Bot 60:234–253CrossRefGoogle Scholar
  73. Sperotto RA, Boff T, Duarte GL et al (2010) Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains. J Plant Physiol 167:1500–1506PubMedCrossRefGoogle Scholar
  74. Sperotto RA, Ricachenevsky FK, Waldow VdA, Fett JP (2012) Iron biofortification in rice: it’s a long way to the top. Plant Sci 190:24–39PubMedCrossRefGoogle Scholar
  75. Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plant. J Plant Nutr 7:469–477CrossRefGoogle Scholar
  76. Takahashi M, Nakanishi H, Kawasaki S et al (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469PubMedCrossRefGoogle Scholar
  77. Tangphatsornruang S, Sraphet S, Singh R et al (2008) Development of polymorphic markers from expressed sequence tags of Manihot esculenta Crantz. Mol Ecol Resour 8:682–685PubMedCrossRefGoogle Scholar
  78. Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315PubMedCrossRefGoogle Scholar
  79. Theil EC (2004) Iron, ferritin, and nutrition. Annu Rev Nutr 24:327–343PubMedCrossRefGoogle Scholar
  80. Usuda K, Wada Y, Ishimaru Y et al (2009) Genetically engineered rice containing larger amounts of nicotianamine to enhance the antihypertensive effect. Plant Biotechnol J 71:87–95CrossRefGoogle Scholar
  81. Vasconcelos M, Datta K, Oliva N et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378CrossRefGoogle Scholar
  82. von Wiren N, Klair S, Bansal S et al (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107–1114PubMedCentralPubMedCrossRefGoogle Scholar
  83. Walker SP, Wachs TD, Gardner JM et al (2007) Child development: risk factors for adverse outcomes in developing countries. Lancet 369:145–157PubMedCrossRefGoogle Scholar
  84. Welch RM (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82Google Scholar
  85. Welsch R, Arango J, Bär C et al (2010) Provitamin A-accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356PubMedCentralPubMedCrossRefGoogle Scholar
  86. WHO and FAO (2006) Guidelines on food fortification with micronutrients. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  87. Wirth J, Poletti S, Aeschlimann B et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:631–644PubMedCrossRefGoogle Scholar
  88. Yan JB, Kandianis CB, Harjes CE et al (2010) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. ure Genet 42:322–327Google Scholar
  89. Zhang X, Pfeiffer W, Palacios-Rojas N et al (2012) Probability of success of breeding strategies for improving pro-vitamin A content in maize. Theor Appl Genet 125:235–246PubMedCrossRefGoogle Scholar
  90. Zhao FJ, Shewry PR (2011) Recent developments in modifying crops and agronomic practice to improve human health. Food Pol 36(Suppl 1):S94–S101CrossRefGoogle Scholar
  91. Zheng L, Cheng Z, Ai C et al (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One 5(4):e10190. doi:10.1371/journal.pone.0010190PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.HarvestPlusCaliColombia
  2. 2.CIATCaliColombia

Personalised recommendations