Skip to main content

Production and Molecular Cytogenetic Identification of Wheat-Alien Hybrids and Introgression Lines

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Barley, rye, Aegilops and Thinopyrum (syn. Agropyron) species belonging to the Triticeae tribe have large genetic diversity and serve as a valuable genetic reservoir for wheat improvement. Many of these species have been used for more than a century for the production of wheat × alien hybrids and introgression lines. The most up-to-date molecular cytogenetic techniques make it possible to detect and identify alien chromosomes in the wheat genome. The first methods used to identify rye, barley, Aegilops and Thinopyrum chromosomes in the wheat genome were C- and N-banding. Genomic in situ hybridization (GISH) is the most accurate way of detecting the translocation breakpoint in introgression lines. Alien chromosomes can be identified in the wheat genome using fluorescence in situ hybridization (FISH) with the help of repetitive DNA probes.Multicolor GISH (mcGISH) was developed to demonstrate the various genomes in polyploid plant species and in interspecific and intergeneric hybrids, amphiploids and derivatives. Sequential GISH and FISH are useful methods for identifying alien translocations in the wheat genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghaee-Sarbarzeh M, Ferrahi M, Singh S et al (2002) Ph 1-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127:377–382. doi:10.1023/A:1020334821122

    CAS  Google Scholar 

  • Alfares W, Bouguennec A, Balfourier F, Gay G, Bergès H, Vautrin S, Sourdille P, Bernard M, Feuillet C (2009) Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.). Genetics 183(2):469–481. doi: 10.1534/genetics.109.107706

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anamthawat-Jonsson K, Schwarzacher T, Heslop-Harrison JS (1993) Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol Gen Genet 240:151–158. doi:10.1007/BF00277052

    CAS  PubMed  Google Scholar 

  • Badaeva ED, Friebe B, Gill BS (1996a) Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39:293–306. doi:10.1139/g96–040

    CAS  Google Scholar 

  • Badaeva ED, Friebe B, Gill BS (1996b) Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S-26S ribosomal RNA gene families in diploid species. Genome 39:1150–1158. doi:10.1139/g96–145

    CAS  Google Scholar 

  • Badaeva ED, Amosova AV, Muravenko OV et al (2002) Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Syst Evol 231:163–190. doi:10.1007/s006060200018

    CAS  Google Scholar 

  • Badaeva ED, Amosova AV, Samatadze TE et al (2004) Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst Evol 246:45–76. doi:10.1007/s00606–003-0072–4

    CAS  Google Scholar 

  • Badaeva ED, Dedkova OS, Zoshchuk SA et al (2011) Comparative analysis of the N-genome in diploid and polyploid Aegilops species. Chrom Res 19:541–548. doi:10.1007/s10577–011-9211-x

    CAS  PubMed  Google Scholar 

  • Bedӧ Z, Balla L, Szunics L et al (1993) Agronomic properties of Martonvásár wheat varieties bearing the 1B/1R translocation. (A martonvásári 1B/1R transzlokációs búzafajták agronómiai tulajdonságai. Abstract in English) Növénytermelés 42:391–398

    Google Scholar 

  • Belea A (1992) Interspecific and intergeneric crosses in cultivated plants. Akadémiai Kiadó, Budapest, p 255

    Google Scholar 

  • Belyayev A, Raskina O, Nevo E (2001) Detection of alien chromosomes from S-genome species in the addition/substitution lines of bread wheat and visualization of A-, B- and D-genomes by GISH. Hereditas 135:119–122. doi:10.1111/j.1601–5223.2001.00119.x

    Google Scholar 

  • Benavente E, Alix K, Dusautoir JC et al (2001) Early evolution of the chromosomal structure of Triticum turgidum-Aegilops ovata amphiploids carrying and lacking the Ph1 gene. Theor Appl Genet 103:1123–1128. doi:10.1007/s001220100666

    CAS  Google Scholar 

  • Biagetti M, Vitellozzi F, Ceoloni C (1999) Physical mapping of wheat-Aegilops longissima breakpoints in mildew-resistant recombinant lines using FISH with highly repeated and low-copy DNA probes. Genome 42:1013–1019. doi:10.1139/gen-42–5-1013

    CAS  Google Scholar 

  • Busch W, Martin R, Herrmann RG, Hohmann U (1995) Repeated DNA sequences isolated by microdissection. I. Karyotyping of barley (Hordeum vulgare L.). Genome 38:1082–1090. doi:10.1139/g95-144

    CAS  PubMed  Google Scholar 

  • Cainong JC, Zavatsky LE, Chen MS et al (2010) Wheat-rye T2BS·2BL-2RL recombinants with resistance to Hessian Fly (H21). Crop Sci 50:920–925. doi:10.2135/cropsci2009.06.0310

    Google Scholar 

  • Caspersson T, Farber S, Foley GE et al (1968) Chemical differentiation along metaphase chromosomes. Exp Cell Res 49:219–222. doi:10.1016/0014-4827(68)90538-7

    CAS  PubMed  Google Scholar 

  • Castilho A, Miller TE, Heslop-Harrison JS (1996) Physical mapping of translocation breakpoints in a set of wheat-Aegilops umbellulata recombinant lines using in situ hybridization. Theor Appl Genet 93:816–825. doi:10.1007/BF00224081

    CAS  PubMed  Google Scholar 

  • Chang SB, de Jong H (2005) Production of alien chromosome additions and their utility in plant genetics. Cytogenet Genome Res 109:335–343. doi:10.1159/000082417

    CAS  PubMed  Google Scholar 

  • Chen Q, Conner RL, Laroche A (1995) Identification of the parental chromosomes of the wheat-alien amphiploid Agrotana by genomic in situ hybridization. Genome 38:1163–1169. doi:10.1139/g95–154

    CAS  PubMed  Google Scholar 

  • Chen Q, Conner RL, Ahmad F et al (1998) Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum × Thinopyrum ponticum and T. aestivum × Th. intermedium as sources of resistance to wheat streak mosaic virus and its vector, Aceria tosichella. Theor Appl Genet 97:1–8. doi:10.1007/s001220050860

    CAS  Google Scholar 

  • Chen Q, Conner RL, Laroche A et al (1999) Genomic in situ hybridization analysis of Thinopyrum chromatin in a wheat—Th. intermedium partial amphiploid and six derived chromosome addition lines. Genome 42:1217–1223. doi:10.1139/gen-42-6-1217

    CAS  PubMed  Google Scholar 

  • Cho S, Garvin DF, Muehlbauer (2006) Transcriptome analysis and physical mappping of barley genes in wheat-barley addition lines. Genetics 172:1277–1285. doi:10.1534/genetics.105.049908

    PubMed Central  PubMed  Google Scholar 

  • Cifuentes M, Blein M, Benavente E (2006) A cytomolecular approach to assess the potential of gene transfer from a crop (Triticum turgidum L.) to a wild relative (Aegilops geniculata Roth.). Theor Appl Genet 112:657–664. doi:10.1007/s00122-005-0168-z

    CAS  PubMed  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078. doi:10.1093/jxb/erj124

    CAS  PubMed  Google Scholar 

  • Cox TS, Raupp WJ, Gill BS (1994) Leaf rust-resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339–343. doi:10.2135/cropsci1994.0011183X003400020005x

    Google Scholar 

  • Cseh A, Kruppa K, Molnár I et al (2011) Characterization of a new 4BS.7HL wheat/barley translocation line using GISH, FISH and SSR markers and its effect on the β-glucan content of wheat. Genome 54: 795-804. DOI: 10.1139/g11-044

    Google Scholar 

  • Cseh A, Soós V, Rakszegi M, Türkösi E, Balázs E, Molnár-Láng M (2013) Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat β-glucan content. Ann Appl Biol 163:142–150. doi:10.1111/aab.12043

    Google Scholar 

  • Cuadrado A, Jouve N (2007) The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes. Chromosome Res 15:711–720. doi:10.1007/s10577-007-1156-8

    CAS  PubMed  Google Scholar 

  • Damania AB, Pecetti L (1990) Variability in a collection of Aegilops species and evaluation for yellow rust resistance at two locations in Northern Syria. J Genet Breed 44:97–102

    Google Scholar 

  • Darkó É, Molnár-Láng M, Barnabás B (2010) Aluminium tolerance in wheat/barley introgression lines and in their parental genotypes. Society for Experimental Biology Annual Main Meeting, Abstracts, 30th June-3rd July, 2010. Prague, pp 359

    Google Scholar 

  • de Jong JH, Fransz P, Zabel P (1999) High resolution FISH in plants – techniques and applications. Trends Plant Sci 4:258–263

    Google Scholar 

  • Driscoll CJ, Anderson LM (1967) Cytogenetic studies in Transec—a wheat-rye translocation line. Can J Genet Cytol 9:375–380. doi:10.1139/g67-038

    Google Scholar 

  • Dubcovsky J, Dvorak J (1994) Genome origins of Triticum cylindricum, Triticum triunciale, and Triticum ventricosum (Poaceae) inferred from variation in restriction patterns of repeated nucleotide sequences: a methodological study. Am J Bot 81:1327–1335. doi:10.2307/2445408

    Google Scholar 

  • Dulai S, Molnár I, Prónay J et al (2005) Effects of drought on thermal stability of photosynthetic apparatus in bread wheat and in Aegilops species originating from various habitats. Acta Biol Szegediensis 49:215–217

    Google Scholar 

  • Dulai S, Molnár I, Haló B, Molnár-Láng M (2010) Photosynthesis in the 7H Asakaze komugi/Manas wheat/barley addition line during salt stress. Acta Agron Hung 58:367–376. doi:10.1556/AAgr.58.2010.4.5

    Google Scholar 

  • Dvorak J (1998) Genome analysis in the Triticum—Aegilops alliance. Proc 9th Int Wheat Genet Symp, Saskatoon, Saskatchewan, Canada pp 8–11

    Google Scholar 

  • Dvorák J, Knott DR (1974) Disomic and ditelosomic additions of diploid Agropyron elongatum chromosomes to T. aestivum. Can J Genet Cytol 16:399–417. doi:10.1139/g74-043

    Google Scholar 

  • Endo TR (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. J Hered 79:366–370

    Google Scholar 

  • Endo TR (2009) Cytological dissection of barley genome by the gametocidal system. Breed Sci 59:481–486. doi:10.1270/jsbbs.59.481

    Google Scholar 

  • Endo TR, Gill BS (1984) The heterochromatin distribution and genome evolution in diploid species of Elymus and Agropyron. Can J Genet Cytol 26:669–678. doi:10.1139/g84-106

    Google Scholar 

  • Fedak G (1980) Production, morphology and meiosis of reciprocal barley-wheat hybrids. Can J Genet Cytol 22:117–123. doi:10.1139/g80-014

    Google Scholar 

  • Fedak G, Han F (2005) Characterization of derivatives from wheat-Thinopyrum wide crosses. Cytogenet Genome Res 109(1–3):360–367

    CAS  PubMed  Google Scholar 

  • Fedak G, Jui PY (1982) Chromosomes of Chinese Spring wheat carrying genes for crossability with Betzes barley. Can J Genet Cytol 24:227–233. doi:10.1139/g82-024

    Google Scholar 

  • Friebe B, Gill BS (1996) Chromosome banding and genome analysis in diploid and cultivated polyploid wheats. In: Jauhar PP (ed) Methods of genome analysis in plants. CRC Press, Inc, Boca Raton, Florida, pp 39–60

    Google Scholar 

  • Friebe B, Larter EN (1988) Identification of a complete set of isogenic wheat-rye D-genome substitution lines by means of Giemsa C-banding. Theor Appl Genet 76:473–479. doi:10.1007/BF00265353

    CAS  PubMed  Google Scholar 

  • Friebe B, Hatchett JH, Gill BS et al (1991) Transfer of Hessian fly resistance from rye to wheat via radiation induced terminal and intercalary chromosomal translocations. Theor Appl Genet 83:33–40. doi:10.1007/BF00229223

    CAS  PubMed  Google Scholar 

  • Friebe B, Jiang J, Knott DR, Gill BS (1994) Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci 34:400–404. doi:10.2135/cropsci1994.0011183X003400020018x

    Google Scholar 

  • Friebe B, Jiang J, Raupp WJ et al (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87. doi:10.1007/BF00035277

    Google Scholar 

  • Gale MD, Miller TE (1987) The introduction of alien genetic variation into wheat. In: Lupton FGH (ed) Wheat Breeding: its scientific basis. Chapman and Hall, UK, pp 173–210

    Google Scholar 

  • Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 63:378–383. doi:10.1073/pnas.63.2.378

    CAS  PubMed Central  PubMed  Google Scholar 

  • García P, Monte JV, Casanova C, Soler C (2002) Genetic similarities among Spanisch populations of Agropyron, Elymus and Thinopyrum, using PCR-based markers. Genet Resour Crop Evol 49:103–109. doi:10.1023/A:1013898119274

    Google Scholar 

  • Gay G, Bernard M (1994) Production of intervarietal substitution lines with improved interspecific crossability in the wheat cv Courtot. Agronomie 14:27–32. doi:10.1051/agro:19940103

    Google Scholar 

  • Georgieva M, Sepsi A, Tyankova N, Molnár-Láng M (2011) Molecular cytogenetic characterization of two high protein wheat-Thinopyrum intermedium partial amphiploids. J Appl Gen 52:269–277. doi:10.1007/s13353-011-0037-1

    Google Scholar 

  • Gill BS, Friebe B (2009) Cytogenetic analysis of wheat and rye genomes. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer, Dordrecht, pp 121–135. doi:10.1007/978-0-387-77489-3_4

    Google Scholar 

  • Gill BS, Kimber G (1974) Giemsa C-banding evolution of wheat. Proc Nat Acad Sci USA 71:4086–4090. doi:10.1073/pnas.71.10.4086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gill BS, Browder E, Hatchett JH et al (1983) Disease and insect resistance in wild wheats. Proc 6th Int Wheat Genet Symp, Kyoto, Japan, pp 785–792

    Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum L.). Genome 34:830–839. doi:10.1139/g91-128

    Google Scholar 

  • Gill BS, Hatchett JH, Raupp WJ (1987) Chromosomal mapping of Hessian fly resistance gene H13 in the D genome of wheat. J Heredity 78:97–100

    Google Scholar 

  • Gill BS, Sharma HC, Raupp WJ et al (1985) Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly and greenbug. Plant Breeding 69:314–316. doi:10.1094/PD-69-314

    Google Scholar 

  • Hadlaczky G, Belea A (1975) C-banding in wheat evolutionary cytogenetics. Plant Sci Lett 4:85–88. doi:10.1016/0304-4211(75)90252-7

    Google Scholar 

  • Han FP, Fedak G, Benabdelmouna A et al (2003) Characterization of six wheat x Thinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH. Genome 46:490–495. doi:10.1139/g03-032

    CAS  PubMed  Google Scholar 

  • Han FP, Liu B, Fedak G, Liu Z (2004) Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolour GISH and seed storage protein analysis. Theor Appl Genet 109:1070–1076. doi:10.1007/s00122-004-1720-y

    CAS  PubMed  Google Scholar 

  • Hsiao C, Wang RRC, Dewey DR (1986) Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. Can J Genet Cytol 28:109–120

    Google Scholar 

  • Islam AKMR, Shepherd KW (1988) Induced pairing between wheat and barley chromosomes. In: Miller TE, Koebner RMD (eds) Proc 7th Int Wheat Genet Symp. England, Cambridge, pp 309–314

    Google Scholar 

  • Islam AKMR, Shepherd KW (1990) Incorporation of barley chromosomes into wheat. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, Vol 13. Wheat. Springer-Verlag, Berlin Heidelberg, pp 128–151

    Google Scholar 

  • Islam AKMR, Shepherd KW (1992) Production of wheat-barley recombinant chromosomes through induced homoeologous pairing. 1. Isolation of recombinants involving barley arms 3HL and 6HL. Theor Appl Genet 83:489–494. doi:10.1007/BF00226538

    CAS  PubMed  Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1978) Production and characterization of wheat-barley addition lines. In: Ramunujam S (ed) Proc 5th Int Wheat Genet Symp. India, New Delhi, pp 356–371

    Google Scholar 

  • Iqbal N, Reader SM, Caligari PDS, Miller TE (2000) Characterization of Aegilops uniaristata chromosomes by comparative DNA marker analysis and repetitive DNA sequence in situ hybridization. Theor Appl Genet 101:173–1179. doi:10.1007/s001220051594

    Google Scholar 

  • Jaaska V (1981) Aspartate aminotransferase and alcohol dehydrogenase isozymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Plant Syst Evol 137:259–273. doi:10.1007/BF00982790

    CAS  Google Scholar 

  • Jauhar PP (1990) Dilemma of genome relationship in the diploid species Thinopyrum bessarabicum and Thinopyrum elongatum (Triticeae:Poaceae). Genome 33:944–946

    Google Scholar 

  • Jauhar PP (1995) Morphological and cytological characteristics of some wheat × barley hybrids. Theor Appl Genet 90:872–877. doi:10.1007/BF00222025

    CAS  PubMed  Google Scholar 

  • Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37:717–725. doi:10.1139/g94-102

    CAS  PubMed  Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068. doi:10.1139/G06-076

    CAS  PubMed  Google Scholar 

  • Jiang JM, Friebe B, Gill BS (1994) Recent advances in alien gene-transfer in wheat. Euphytica 73:199–212. doi:10.1007/BF00036700

    Google Scholar 

  • John HA, Birnstiel ML, Jones KW (1969) RNA-DNA hybrids at the cytological level. Nature (London) 223:582–587 doi:10.1038/223582a0

    Google Scholar 

  • Johnson BL (1967) Confirmation of the genome donors of Aegilops cylindrica. Nature 216:859–862. doi:10.1038/216859a0

    Google Scholar 

  • Katterman G (1937) Zur Cytologie halmbehaarter Stämme aus Weizenroggenbastardierung. Züchter 9:196–199. doi:10.1007/BF01884284

    Google Scholar 

  • Kellogg EA, Appels R, Mason-Gamer RJ (1996) When genes tell different stories: the diploid genera of Triticeae. Syst Bot 21:321–347. doi:10.2307/2419662

    Google Scholar 

  • Kihara H (1931) Genomanalyse bei Triticum and Aegilops. II. Aegilotricum and Aegilops cylindrica. Cytologia 2:106–156

    Google Scholar 

  • Kilian B, Mammen K, Millet E et al (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Cereals. Springer-Verlag, Berlin Heidelberg, pp 1–76. doi: 10.1007/978-3-642-14228-4_1

    Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat, an introduction. Special Report 353, College of Agriculture, University of Missouri–Columbia, USA

    Google Scholar 

  • Kimber G, Sears ER (1983) Assignment of genome symbols in the Triticeae. Proc 6th Int Wheat Genet Symp, Kyoto, Japan, pp 1195–1196

    Google Scholar 

  • King IP, Reader SM, Purdie KA et al (1994) A study of the effect of a homoeologous pairing promoter on chromosome pairing in wheat/rye hybrids using genomic in situ hybridization. Heredity 72:318–321

    CAS  Google Scholar 

  • Kiss Á (1966) Neue Richtung in der Triticale-Züchtung. Z Pflanzenzüchtg 55:309–329

    Google Scholar 

  • Kiss Á, Rajháthy T (1956) Unterscuhungen über die Kreuzbarkeit innerhalb des Subtribus Triticinae. Züchter 26:127–136. doi:10.1007/BF00713460

    Google Scholar 

  • Knüpffer H (2009) Triticeae genetic resources in ex situ genebank collections. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer, Dordrecht, pp 31–79. doi:10.1007/978-0-387-77489-3_2

    Google Scholar 

  • Kruppa K, Sepsi A, Szakács É, Röder MS, Molnár-Láng M (2013) Characterization of a 5HS-7DS.7DL wheat-barley translocation line and physical mapping of the 7D chromosome using SSR markers. J Appl Genetics 54:251–258. doi:10.1007/s13353-013-0152-2

    Google Scholar 

  • Kruse A (1973) Hordeum × Triticum hybrids. Hereditas 73:157–161. doi:10.1111/j.1601-5223.1973.tb01078.x

    Google Scholar 

  • Ko JM, Seo BB, Suh DY et al (2002) Production of a new wheat line possessing the 1BL.1RS wheat-rye translocation derived from Korean rye cultivar Paldanghomil. Theor Appl Genet 104:171–176. doi:10.1007/s00122-001-0783-2

    PubMed  Google Scholar 

  • Koba T, Takumi S, Shimada T (1997) Isolation, identification and characterization of disomic and translocated barley chromosome addition lines of common wheat. Euphytica 96:289–296. doi:10.1023/A:1003081619338

    Google Scholar 

  • Kölreuter JG (1761–1766) Vorläufige Nachricht von einigen das Geschlecht der Pflanzen betreffenden Versuchen, und Beobachtungen, nebst Fortsetzungen 1, 2 und 3. In: Ostwald’s Klassikker der Exacten Wissenschaften No 41. Verlag & Engelmann, Leipzig

    Google Scholar 

  • Lange W, Riley R (1973) The position on chromosome 5B of wheat of the locus determining crossability with rye. Genet Res 22:143–153. doi:10.1017/S0016672300012933

    Google Scholar 

  • Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A 79:4381–4385. doi:10.1073/pnas.79.14.4381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le HT, Armstrong KC, Miki B (1989) Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep 7:150–158. doi:10.1007/BF02669770

    Google Scholar 

  • Lelley T (2006) Triticale: a low-input cereal with untapped potential. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement. Cereals, Volume 2. CRC Press, Taylor and Francis, Boca Raton, Florida, USA, pp 395–430. doi:10.1201/9780203489260.ch13

    Google Scholar 

  • Lelley T, Eder C, Grausgruber H (2004) Influence of 1BL.1RS wheat-rye chromosome translocation on genotype by environment interaction. J Cereal Sci 39:313–320. doi:10.1016/j.jcs.2003.11.003

    CAS  Google Scholar 

  • Lein A (1943) Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. Zeitschr. indukt. Abstamm. und Vererb. Lehre 81:28–81. doi:10.1007/BF01847441

    Google Scholar 

  • Leitch IJ, Heslop-Harrison JS (1992) Physical mapping of the 18S–5.8S–26S rRNA genes in barley by in situ hybridization. Genome 35:1013–1018. doi:10.1139/g92-155

    CAS  Google Scholar 

  • Leitch AR, Schwarzacher T, Jackson D, Leitch IJ (1994) In situ hybridization: a practical guide. Bios Scientific Publishers, Oxford, UK, p 118

    Google Scholar 

  • Leitch IJ, Schwarzacher T, Mosgöller W et al (1991) Parental genomes are separated throughout the cell cycle in a plant hybrid. Chromosoma 101:206–213. doi:10.1007/BF00365152

    CAS  Google Scholar 

  • Li H, Wang X (2009) Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genom Res 36:557–565. doi:10.1016/S1673-8527(08)60147-2

    CAS  Google Scholar 

  • Li H, Chen Q, Conner RL et al (2003) Molecular characterization of a wheat–Thinopyrum ponticum partial amphiploid and its derivatives for resistance to leaf rust. Genome 46:906–913. doi:10.1139/g03-053

    CAS  PubMed  Google Scholar 

  • Lichter P, Tang CC, Call K et al (1990) High resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science (Washington DC) 247:64–69. doi:10.1126/science.2294592

    Google Scholar 

  • Linc G, Friebe BR, Kynast RG et al (1999) Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome 42:497–503. doi:10.1139/g98-151

    CAS  PubMed  Google Scholar 

  • Linc G, Sepsi A, Molnár-Láng M (2012) A FISH karyotype to study chromosome polymorphisms for the Elytrigia elongata E genome. Cytogenet Genome Res 136:138–144.

    Google Scholar 

  • Linde-Laursen I (1975) Giemsa C-banding of the chromosomes of 'Emir' barley. Hereditas 81:285-289. doi:10.1111/j.1601-5223.1975.tb01040.x

    Google Scholar 

  • Liu Z, Li DY, Zhang XY (2007) Genetic relationships among five basic genomes St, E, A, B and D in Triticeae revealed by genomic southern and in situ hybridization. J Integr Plant Biol 49:1080–1086. doi:10.1111/j.1672-9072.2007.00462.x

    CAS  Google Scholar 

  • Logojan A, Molnár-Láng M (2000) Production of Triticum aestivumAegilops biuncialis chromosome additions. Cereal Res Commun 28:221–228

    Google Scholar 

  • Lukaszewski AJ (1988) A comparison of several approaches in the development of disomic addition lines of wheat. In: Miller TE, Koebner RMD (eds) Proc 7th Int Wheat Genet Symp Cambridge, UK, pp 363–367

    Google Scholar 

  • Lukaszewski AJ (1991) Development of aneuploid series in hexaploid triticale. In: Baier A (ed) Proc 2nd Int Tritical Symp PASSO Fundo, Brazil pp 397–400

    Google Scholar 

  • Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40:216–225. doi:10.2135/cropsci2000.401216x

    CAS  Google Scholar 

  • Lukaszewski AJ, Gustafson JP (1983) Translocations and modifications of chromosomes in triticale × wheat hybrids. Theor Appl Genet 64:239–248. doi:10.1007/BF00303771

    CAS  PubMed  Google Scholar 

  • Maan SS (1976) Cytoplasmic homology between Aegilops squarrosa L. and Ae. cylindrica Host. Crop Sci 16:757–761. doi:10.2135/cropsci1976.0011183X001600060004x

    Google Scholar 

  • Makkouk KM, Comeau A, Ghulam W (1994) Resistance to barley yellow dwarf luteovirus in Aegilops species. Can J Plant Sci 74:631–634. doi 10.4141/cjps94-113

    Google Scholar 

  • Marais GF, Horn M, Du Toit F (1994) Intergeneric transfer (rye to wheat) of a gene(s) for Russian wheat aphid resistance. Plant Breeding 113:265–271. doi:10.1111/j.1439-0523.1994.tb00735.x

    Google Scholar 

  • Mettin D, Bluthner WD, Schlegel G (1973) Additional evidence on spontaneous 1B/1R wheat–rye substitutions and translocation. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Gen Symp, Mo Agric Exp Stn Columbia, pp 179–184

    Google Scholar 

  • Miller TE, Riley R (1972) Meiotic chromosome pairing in wheat-rye combinations. Genet. Ibér 24:1–10

    Google Scholar 

  • Miller TE, Reader SM, Purdie KA, King IP (1994) Determination of the frequency of wheat-rye chromosome pairing in wheat × rye hybrids with and without chromosome 5B. Theor Appl Genet 98:255-258. doi:10.1007/BF00225150

    Google Scholar 

  • Molnár I, Benavente E, Molnár-Láng M (2009) Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum/Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 52:156–165. doi:10.1139/G08-114

    PubMed  Google Scholar 

  • Molnár I, Dulai S, Molnár-Láng M (2008) Can the drought tolerance traits of Ae. biuncialis manifest even in the wheat genetic background? Acta Biol Szeged 52:175–178

    Google Scholar 

  • Molnár I, Gáspár L, Sárvári É et al (2004) Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct Plant Biol 31:1149–1159. doi:10.1071/FP03143

    Google Scholar 

  • Molnár I, Cifuentes M, Schneider A, Benavente E, Molnár-Láng M (2011a) Association between SSR-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann Bot 107:65-76. doi:10.1093/aob/mcq215

    Google Scholar 

  • Molnár I, Kubaláková M, Šimková H, Cseh A, Molnár-Láng M, Doležel J (2011b) Chromosome isolation by flow sorting in Aegilops umbellulata and Ae. comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. PLoS ONE 6:e27708. doi:10.1371/journal.pone.0027708

    Google Scholar 

  • Molnár I, Šimková H, Leverington-Waite M, Goram R, Cseh A, Vrána J, Farkas A, Doležel J, Molnár-Láng M, Griffiths S (2013) Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS ONE 8:e70844. doi:10.1371/journal.pone.0070844

    Google Scholar 

  • Molnár I, Schneider A, Molnár-Láng M (2005) Demonstration of Aegilops biuncialis chromosomes in a wheat background by genomic in situ hybridization (GISH) and identification of U chromosomes by FISH using GAA sequences. Cereal Res Commun 33:673–680. doi:10.1556/CRC.33.2005.2-3.134

    Google Scholar 

  • Molnár-Láng M, Sutka J (1994) The effect of temperature on seed set and embryo development in reciprocal crosses of wheat and barley. Euphytica 78:53–58. doi:10.1007/BF00021397

    Google Scholar 

  • Molnár-Láng M, Cseh A, Szakács É, Molnár I (2010) Development of a wheat genotype combining the recessive crossability alleles kr1kr1kr2kr2 and the 1BL.1RS translocation, for the rapid enrichment of 1RS with new allelic variation. Theor Appl Genet 120:1535–1545. doi:10.1007/s00122-010-1274-0

    Google Scholar 

  • Molnár-Láng M, Kruppa K, Cseh A et al (2012) Identification and phenotypic description of new wheat - six-rowed winter barley disomic additions. Genome 55:302-311. doi:10.1139/G2012-013

    Google Scholar 

  • Molnár-Láng M, Linc G, Nagy ED et al (2002) Molecular cytogenetic analysis of wheat-alien hybrids and derivatives. Acta Agron Hung 50:303–311. doi:10.1556/AAgr.50.2002.3.8

    Google Scholar 

  • Molnár-Láng M, Linc G, Sutka J (1996) Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90:301–305. doi:10.1007/BF00027480

    Google Scholar 

  • Molnár-Láng M, Linc G, Logojan A, Sutka J (2000a) Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) x winter barley (Hordeum vulgare). Genome 43:1045–1054. doi:10.1139/g00-079

    Google Scholar 

  • Molnár-Láng M, Linc G, Friebe BR, Sutka J (2000b) Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica 112:117–123. doi:10.1023/A:1003840200744

    Google Scholar 

  • Molnár-Láng M, Novotny C, Linc G, Nagy DE (2005) Changes in the meiotic pairing behaviour of a winter wheat-winter barley hybrid maintained for a long term in tissue culture, and tracing the barley chromatin in the progenies using GISH and SSR markers. Plant Breeding 124:247–252. doi:10.1111/j.1439-0523.2005.01097.x

    Google Scholar 

  • Molski BA, Luckzak W, Zych J (1985) Protein quantity and quality in rye collections and in agricultural production in Poland. In: EUCARPIA meeting of the cereal section on rye. Svalof, Sweden, pp 491–523

    Google Scholar 

  • Mukade K, Kamio M, Hosoda K (1970) The transfer of leaf rust resistance from rye to wheat by intergeneric addition and translocation. Gamma Field Symp. No. 9. Mutagenesis in Relation to Ploidy Level. pp 69–87

    Google Scholar 

  • Mukai Y, Friebe B, Gill BS (1992) Comparison of C-banding patterns and in situ hybridization sites using highly repetitive and total genomic rye DNA probes of ‘Imperial’ rye chromosomes added to ‘Chinese Spring’ wheat. Jpn J Genet 67:71–83. doi:10.1266/jjg.67.71

    Google Scholar 

  • Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repetitive DNA probes. Genome 36:489–494. doi:10.1139/g93-067

    CAS  PubMed  Google Scholar 

  • Mullan DJ, Mirzaghaderi G, Walker E et al (2009) Development of wheat-Lophopyrum elongatum recombinant lines for enhanced sodium ‘exclusion’ during salinity stress. Theor Appl Genet 119:1313–1323. doi: 10.1007/s00122-009-1136-9

    CAS  PubMed  Google Scholar 

  • Nagy DE, Linc G, Molnár-Láng M (1998) Molecular cytogenetic analysis of a new wheat-rye hybrid with C-banding and genomic in situ hybridization (GISH). (Új búza-rozs amfidiploid molekuláris genetikai elemzése C-sávozással és genomikus in situ hibridizációval (GISH). Abstract in English). Növénytermelés 3:253–260

    Google Scholar 

  • Nagy DE, Molnár-Láng M, Linc G, Láng L (2002) Identification of wheat-barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome 45:1238–1247. doi:10.1139/g02-068

    CAS  PubMed  Google Scholar 

  • Nagy DE, Eder C, Molnár-Láng M, Lelley T (2003) Genetic mapping of sequence specific PCR-based markers in the short arm of the 1BL.1RS wheat-rye translocation. Euphytica 132:243–250. doi:10.1023/A:1025002919746

    CAS  Google Scholar 

  • Nakai Y (1981) D genome donors for Aegilops cylindrica (CCDD) and Triticum aestivum (AABBDD) deduced from esterase isozyme analysis. Theor Appl Genet 60:11–16. doi:10.1007/BF00275172

    CAS  PubMed  Google Scholar 

  • Nasuda S, Friebe B, Busch W et al (1998) Structural rearrangement in chromosome 2M of Aegilops comosa has prevented the utilization of the Compair and related wheat-Ae. comosa translocations in wheat improvement. Theor Appl Genet 96:780–785. doi:10.1007/s001220050802

    CAS  Google Scholar 

  • Oliver RE, Xu SS, Stack RW et al (2006) Molecular cytogenetic characterization of four partial wheat–Thinopyrum ponticum amphiploids and their reaction to Fusarium head blight, tan spot, and Stagonospora nodorum blotch. Theor Appl Genet 112:1473–1479. doi:10.1007/s00122-006-0250-1

    CAS  PubMed  Google Scholar 

  • O’Mara JG (1940) Cytogenetic studies on Triticeae. I. A method for determining the effect of individual Secale chromosomes on Triticum. Genetics 25:401–408

    PubMed Central  PubMed  Google Scholar 

  • O’Mara JG (1947) The substitution of a specific Secale cereale chromosome for a specific Triticum aestivum chromosome. Genetics 32:99–100

    Google Scholar 

  • Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 168:1356–1358. doi:10.1126/science.168.3937.1356

    CAS  PubMed  Google Scholar 

  • Pedersen C, Linde-Laursen I (1994) Chromosomal location of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Res 2:65–71. doi:10.1007/BF01539456

    CAS  PubMed  Google Scholar 

  • Rabinovich SV (1998) Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica 100:323–340. doi:10.1023/A:1018361819215

    Google Scholar 

  • Rajaram S, Villareal R, Mujeeb-Kazi A (1990) Global impact of 1B/1R spring wheats. In: Agronomy Abstracts, ASA, Madison, WI, USA, p. 105

    Google Scholar 

  • Rao MVP (1978) The transfer of alien genes for stem rust resistance to durum wheat. In: Ramanujam (ed) Proc 5th Int Wheat Genet Symp New Delhi, India. pp 338–341

    Google Scholar 

  • Raupp WJ, Amri A, Hatchett JH et al (1993) Chromosomal location of Hessian fly-resistance genes H22, H23 and H24 derived from Triticum tauschii in the D genome of wheat. J Heredity 84:142–145

    Google Scholar 

  • Raupp WJ, Gill BS, Friebe B, Wilson DL, Cox TS, Sears RG (1995) The Wheat Genetics Resource Center: germ plasm conservation, evaluation and utilization. In: Li ZS, Xin ZY (eds) Proc 8th Int Wheat Genet Symp, China Agricultural Scientech Press, Beijing, China pp 469–475

    Google Scholar 

  • Ren TH, Chen F, Yan BJ et al (2011) Genetic diversity of wheat–rye 1BL.1RS translocation lines derived from different wheat and rye sources. Euphytica (online) doi 10.1007/s10681-011-0412-3

    Google Scholar 

  • Ribeiro-Carvalho C, Guedes-Pinto H, Harrison G, Heslop-Harrison JS (1997) Wheat-rye chromosome translocations involving small terminal and intercalary rye chromosome segments in the Portuguese wheat landrace Barbela. Heredity 78:539–546. doi:10.1038/hdy.1997.84

    Google Scholar 

  • Riley R, Chapman V (1967) The inheritance in wheat of crossability with rye. Genet Res Cambridge 9:259–267. doi:10.1017/S0016672300010569

    Google Scholar 

  • Sánchez-Morán E, Benavente E, Orellana J (1999) Simultaneous identification of A, B, D and R genomes by genomic in situ hybridization in wheat–rye derivatives. Heredity 83:249–252. doi:10.1038/sj.hdy.6885570

    PubMed  Google Scholar 

  • Sarma NP, Natarajan AT (1973) Identification of heterochromatic regions in the chromosomes of rye. Hereditas 74:233–237. doi:10.1111/j.1601-5223.1973.tb01124.x

    Google Scholar 

  • Sax K, Sax MJ (1924) Chromosome behaviour in a genus cross. Genetics 9:454–464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schlegel R (1997) Current list of wheats with rye introgressions of homoeologous group I. Wheat Inf Serv 84:64–69

    Google Scholar 

  • Schlegel R (2006) Rye (Secale cereale L.): a younger crop plant with a bright future. In: Sing RJ, Jauhar P (eds) Genetic resources, chromosome engineering, and crop improvement: vol. II cereals. CRC Press, Boca Raton, pp 365–394

    Google Scholar 

  • Schlegel R, Korzun V (1997) About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breeding 116:537–540. doi:10.1111/j.1439-0523.1997.tb02186.x

    Google Scholar 

  • Schlegel R, Kynast R, Schwarzacher T et al (1993) Mapping of genes for copper efficiency in rye and the relationship between copper and iron efficiency. Plant Soil 154:61–65. doi:10.1007/BF00011072

    CAS  Google Scholar 

  • Schneider A, Molnár I, Molnár-Láng M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19. doi:10.1007/s10681-007-9624-y

    CAS  Google Scholar 

  • Schubert I, Shi F, Fuchs J, Endo TR (1998) An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J 14:489–495. doi:10.1046/j.1365-313X.1998.00125.x

    CAS  Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Google Scholar 

  • Schwarzacher T, Anamthawat-Jónsson K, Harrison GE et al (1992) Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet 84:778–786. doi:10.1007/BF00227384

    CAS  PubMed  Google Scholar 

  • Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–22

    Google Scholar 

  • Sears RG, Hatchett JH, Cox TS, Gill BS (1992) Registration of Hamlet, a Hessian fly resistant hard red winter wheat germplasm. Crop Sci 32:506. doi:10.2135/cropsci1992.0011183X003200020061x

    Google Scholar 

  • Schneider A, Linc G, Molnár I, Molnár-Láng M (2005) Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of five derived wheat/Aegilops biuncialis disomic addition lines. Genome 48:1070–1082. doi:10.1139/G05-062

    PubMed  Google Scholar 

  • Sepsi A, Molnár I, Szalay D, Molnár-Láng M (2008) Characterization of a leaf rust resistant wheat-Th. ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor Appl Genet 116:825–834. DOI:10.1007/s00122-008-0716-4

    CAS  PubMed  Google Scholar 

  • Sepsi A, Molnár I, Molnár-Láng M (2009) Physical mapping of a 7A.7D translocation using multicolour genomic in situ hybridization and microsatellite marker analysis. Genome 52:748–754

    CAS  PubMed  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H et al (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759. doi:10.1105/tpc.13.8.1749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma D, Knott D (1966) The transfer of leaf rust resistance from Agropyron to Triticum. Can J Genet Cytol 8:137–143. doi:10.1139/g66–018

    Google Scholar 

  • Shepherd KW (1973) Homeology of wheat and alien chromosomes controlling endosperm protein phenotypes. In: Sears ER, Sears LMS (eds), Proc 4th Int Wheat Genet Symp, Columbia, Missouri, USA, pp 745–760

    Google Scholar 

  • Shepherd KW, Islam AKMR (1981) Wheat:barley hybrids—the first eighty years. In: Evans LT, Peacock WJ (eds) Wheat Science—today and tomorrow. Cambridge University Press, Cambridge, pp 107–128

    Google Scholar 

  • Shepherd KW, Islam AKMR (1988) Fourth compendium of wheat-alien chromosome lines. In: Miller TE, Koebner RMD (eds) Proc 7th Int Wheat Genet Symp, Cambridge pp 1373–1395

    Google Scholar 

  • Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement. CRC Press, Taylor and Francis, Boca Raton, Florida, USA, pp 365–394. doi:10.1201/9780203489260.ch12

    Google Scholar 

  • Slageren MW van (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University, Wageningen; International Center for Agricultural Research in Dry Areas, Aleppo, Syria

    Google Scholar 

  • Snape JW, Parker BB, Leckie D (1987) Progress report. Intervarietal transfer of crossability genes. In: Sutka J, Worland AJ (eds) Proc EWAC Conference, EWAC Newsletter, Agric Res Inst Hung Acad Sci, Martonvásár, Inst Plant Sci Res, Cambridge Laboratory pp 17–18

    Google Scholar 

  • Somers DJ, Isaak P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1005–1014. doi:10.1007/s00122-004-1740-7

    Google Scholar 

  • Szakács É, Molnár-Láng M (2007) Development and molecular cytogenetic identification of new winter wheat/winter barley (Martonvásári 9 kr1/Igri) disomic addition lines. Genome 50:43–50. doi:10.1139/g06-134

    PubMed  Google Scholar 

  • Szakács É, Molnár-Láng M(2010a) Identification of new winter wheat—winter barley addition lines (6HS and 7H) using fluorescence in situ hybridization and the stability of the whole ‘Martonvásári 9 kr1’—‘Igri’ addition set. Genome 53:35–44. doi:10.1139/G09-085

    Google Scholar 

  • Szakács É, Molnár-Láng M(2010b) Molecular cytogenetic evaluation of chromosome instability in Triticum aestivumSecale cereale disomic addition lines. J Appl Gen 51:149–152. doi:10.1007/BF03195723

    Google Scholar 

  • Szalay D (1979) Faj- és nemzetséghibridek felhasználása a búzanemesítésben (Use of interspecific and intergeneric hybrids in wheat breeding). In: Bálint A (ed) A búza jelene és jövője (The present and future of wheat). Mezőgazdasági Kiadó, Budapest, pp 61–66

    Google Scholar 

  • Thomas J, Chen Q, Talbert L (1998) Genetic segregation and the detection of spontaneous wheat-alien translocations. Euphytica 100:261–267. doi:10.1023/A:1018320710129

    Google Scholar 

  • Tixier MH, Sourdille P, Charmet G et al (1998) Detection of QTLs for crossability in wheat using a doubled haploid population. Theor Appl Genet 97:1076–1082. doi: 10.1007/s001220050994

    CAS  Google Scholar 

  • Tsitsin NV (1960) The significance of wide hybridization in the evolution and production of new species and forms of plants and animals. in Tsitsin NV (ed) Wide hybridization in plants. Jerusalem: Israel Program for Science (Translation) pp 2–30

    Google Scholar 

  • Tsunewaki K (1964) Genetic studies of a 6×-derivative from an 8×-Triticale. Can J Genet Cytol 6:1–11. doi:10.1139/g64-001

    Google Scholar 

  • Villareal RL, Banuelos O, Mujeeb-Kazi A, Rajaram S (1998) Agronomic performance of chromosome 1B and T1BL.1RS, near-isolines in the spring bread wheat Seri M82. Euphytica 103:195–202. doi:10.1023/A:1018392002909

    Google Scholar 

  • Wang RRC (2011) Agropyron and Psathyrostachys. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Cereals. Springer-Verlag, Berlin Heidelberg, pp 1–76. doi:10.1007/978-3-642-14228-4_1

    Google Scholar 

  • Wang RRC, Jensen KB (2009) Wheatgrasses and wildryes, Chap. 3. In: Singh RJ (ed) Genetic resources, chromosome engineering and crop improvement, vol 5, Forage Crop. CRC, Boca Raton USA, pp 42–79

    Google Scholar 

  • Wang ZN, Hang A, Hansen J et al (2000) Visualization of A- and B-genome chromosomes in wheat (Triticum aestivum L.) × jointed goatgrass (Aegilops cylindrica Host) backcross progenies. Genome 43:1038–1044. doi:10.1139/g00-080

    CAS  PubMed  Google Scholar 

  • Wojciechowska B, Pudelska H (1993) Hybrids from reciprocal barley-wheat crosses. Gen Polonica 34:1–13

    Google Scholar 

  • Zeller FJ (1973) 1B/1R chromosome substitutions and translocation. In: ER S, LMS S (eds) Proc 4th Int Wheat Genet Symp, Columbia, Missouri, USA pp 209–221

    Google Scholar 

  • Zeller FJ, Fuchs E (1983) Cytologie und Krankheitsresistenz einer 1A/1R- und mehrerer 1B/1R-Weizen-Roggen-Translokationssorten. Z. Pflanzenzücht 90:285–296

    Google Scholar 

  • Zeven AC (1987) Crossability percentages of some 1,400 bread wheat varieties and lines with rye. Euphytica 36:299–319. doi:10.1007/BF00730677

    Google Scholar 

  • Zhong G, McGuire PE, Qualset CO, Dvorak J (1994) Cytological and molecular characterization of a Triticum aestivum/Lophopyrum ponticum backcross derivative resistant to barley yellow dwarf. Genome 37:876–881(1994). http://dx.doi.org/10.1139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Bedö .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Molnár-Láng, M., Molnár, I., Szakács, É., Linc, G., Bedö, Z. (2014). Production and Molecular Cytogenetic Identification of Wheat-Alien Hybrids and Introgression Lines. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7572-5_11

Download citation

Publish with us

Policies and ethics