Skip to main content

Management of Metastatic Bone Disease in the Elderly with Bisphosphonates and RANKL Inhibitors: Effectiveness and Safety

  • Chapter
  • First Online:
Bone Metastases

Abstract

In the last decades life expectancy of western populations has increased considerably, resulting in a steep rise in the number of elderly patients diagnosed with cancer. Metastatic bone disease (MBD) is a major concern in such patients since it may be associated with the development of skeletal related events (SREs) including fractures and cord compression. These complications may deteriorate the quality of life (Qol) of affected patients and also reduce expected survival. Due to the fact that in elderly patients there is an increased risk for the development of SREs, maintaining bone health and using effective therapies for MBD is of vital importance. Through numerous clinical trials Bisphosphonates (Bps) have proved to be effective in reducing the risk for SREs significantly in patients with MBD. Moreover, they have shown to decrease pain and improve Qol of treated patients. In elderly patients Bps should be used with caution since their use may cause serious complications such as renal function deterioration. Denosumab is a monoclonal antibody that targets and inhibits RANKL and has shown superiority over zoledronic acid in decreasing the risk of SREs. The elimination of denosumab is done through the immunoglobulin clearance pathway through the reticuloendothelial system and does not to affect renal function. It can therefore be safely used in the elderly. Osteonecrosis of the jaws (ONJ) is a serious complication that may develop after treatment with either denosumab or zoledronic acid. The incidence rates between the two were reported to be comparable. In order to decrease the risk of renal function deterioration or ONJ all preventive measures and treatment guidelines should be followed with caution. In this review article we comment on the effectiveness and safety of Bps and denosumab in elderly patients and discuss all indicated measures that should be implemented for minimizing the risk of potential complications. Several studies have investigated the cost effectiveness of denosumab versus zoledronic acid in terms of SRE prevention. These studies reported contradictory results mainly due to the application of different analytical perspectives and model parameters.

Conflict of interest statement:

None

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yancik R, Ries LA (2000) Aging and cancer in America. Demographic and epidemiologic perspectives. Hematol Oncol Clin North Am 14:17–23

    Article  PubMed  CAS  Google Scholar 

  2. Santini D, Fratto ME, Galluzzo S et al (2009) Are bisphosphonates the suitable anticancer drugs for the elderly? Crit Rev Oncol Hematol 69:83–94

    Article  PubMed  Google Scholar 

  3. Tralongo P, Repetto L, Di Mari A et al (2004) Safety of long-term administration of bisphosphonates in elderly cancer patients. Oncology 67:112–116

    Article  PubMed  CAS  Google Scholar 

  4. Saad F, Lipton A, Cook R et al (2007) Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 110:1860–1867

    Article  PubMed  Google Scholar 

  5. Patterson WP, Reams GP (1992) Renal toxicities of chemotherapy. Semin Oncol 19:521–858

    PubMed  CAS  Google Scholar 

  6. Body JJ (2006) Bisphosphonates for malignancy-related bone disease: current status, future developments. Support Care Cancer 14:408–418

    Article  PubMed  Google Scholar 

  7. Coleman RE (2008) Risks and benefits of bisphosphonates. Br J Cancer 98:1736–1740

    Article  PubMed  CAS  Google Scholar 

  8. Pavlakis N, Schmidt R, Stockler M (2005) Bisphosphonates for breast cancer. Cochrane Database Syst Rev 3:CD003474

    PubMed  Google Scholar 

  9. Wong MH, Stockler MR, Pavlakis N (2012) Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev 15(2):CD33474

    Google Scholar 

  10. Zometa (zoledronic acid) (2005) Summary of product characteristics. Novartis Pharma, April 2005

    Google Scholar 

  11. Body JJ (2005) Safety and tolerability of bisphosphonates in elderly: objective data. Presented at the 6th Meeting of ISGO/SIOG, Geneva

    Google Scholar 

  12. Mazj S, Lichtman SM (2004) Renal dysfunction associated with bisphosphonate use: retrospective analysis of 293 patients with respect to age and other clinical characteristics. J Clin Oncol 22(Suppl. 14s) (Abstract 8039)

    Google Scholar 

  13. Kloth DD, McDermott RS, Rogatko A, Langer CJ (2003) Impact of zoledronic acid (Zol) on renal function in patients (pts) with cancer: is constant monitoring necessary. Proc Am Soc Clin Oncol 22:755 (Abstract 3036)

    Google Scholar 

  14. Markowitz GS, Fine PL, Stack JL et al (2003) Toxic acute tubular necrosis following treatment with zoledronate (Zometa). Kidney Int 64:281–289

    Article  PubMed  CAS  Google Scholar 

  15. Stein SH, Davidson R, Tweed A et al (2003) Renal dysfunction with IV bisphosphonates in patients with metastatic breast cancer. Proc Am Soc Clin Oncol 22:745 (Abstract 2997)

    Google Scholar 

  16. Jonhson KB, Gable P, Kaime EM et al (2003) Significant deterioration in renal function with the new bisphosphonate, zoledronic acid. Proc Am Soc Clin Oncol 22:738 (Abstract 2968)

    Google Scholar 

  17. Body JJ, Coleman R, Clezardin P et al (2007) International society of geriatric oncology (SIOG) clinical practice recommendations for the use of bisphosphonates in elderly patients. Eur J Cancer 43:852–858

    Article  PubMed  CAS  Google Scholar 

  18. Hortobagyi NG, Theriault RL, Lipton A et al (1998) Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate, Protocol 19 Aredia Breast Cancer Study Group. J Clin Oncol 16:2038–2044

    PubMed  CAS  Google Scholar 

  19. Theriault RL, Lipton A, Hortobagyi GN et al (1999) Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo controlled trial. Protocol 18 Aredia Breast Cancer Study Group. J Clin Oncol 17:846–854

    PubMed  CAS  Google Scholar 

  20. Berenson JR, Lichtenstein A, Porter L et al (1996) Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med 334:488–493

    Article  PubMed  CAS  Google Scholar 

  21. Berenson JR, Hillner BE, Kyle RA et al (2002) American society of clinical oncology clinical practice guidelines: the role of bisphosphonates in multiple myeloma. J Clin Oncol 20:3719–3736

    Article  PubMed  Google Scholar 

  22. Body JJ (2004) Hypercalcemia of malignancy. Semin Nephrol 24:48–54

    Article  PubMed  Google Scholar 

  23. Aredia (pamidronate) (2005) SmPC. Novartis Pharmaceutical, UK

    Google Scholar 

  24. Paterson AHG, Powles TJ, Kanis JA et al (1993) Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 11:59–65

    PubMed  CAS  Google Scholar 

  25. Lahtinen R, Laakso M, Palva I et al (1992) Randomised, placebo-controlled multicentre trial of clodronate in multiple myeloma. Finnish Leukaemia Group. Lancet 340:1049–1052

    Article  PubMed  CAS  Google Scholar 

  26. McCloskey EV, Maclennan IC, Grayson MT et al (1998) A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma. MRC Working Party on Leukaemia in Adults. Br J Haematol 100:317–325

    Article  PubMed  CAS  Google Scholar 

  27. McCloskey EV, Dunn JA, Kanis JA et al (2001) Long-term follow-up of a prospective, double-blind, placebo-controlled randomized trial of clodronate in multiple myeloma. Br J Haematol 113:1035–1043

    Article  PubMed  CAS  Google Scholar 

  28. Atula S, Powels T, Paterson A et al (2003) extended safety profile of oral clodronate after long term use in primary breast cancer patients. Drug Saf 26:661–671

    Article  PubMed  CAS  Google Scholar 

  29. Vassiliou V, Kalogeropoulou C, Petsas T et al (2007) Clinical and radiological evaluation of patients with lytic, mixed and sclerotic bone metastases from solid tumors: is there a co revelation between the clinical status of patients and the type of bone metastases? Clin Exp Metastasis 24:49–56

    Article  PubMed  Google Scholar 

  30. Vassiliou V, Bruland O, Janjan N et al (2009) Combining systemic bisphosphonates with palliative external beam radiotherapy or bone-targeted radionuclide therapy: interactions and effectiveness. Clin Oncol 21:665–667

    Article  CAS  Google Scholar 

  31. Rosen LS, Gordon D, Kaminski M et al (2003) Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer 98:1735–1744

    Article  PubMed  CAS  Google Scholar 

  32. Kohno N, Aogi K, Minami H et al (2005) Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol 23:3314–3321

    Article  PubMed  CAS  Google Scholar 

  33. Conte PF, Latreille J, Mauriac L et al (1996) Delay in progression of bone metastases in breast cancer patients treated with intravenous pamidronate: results from a multinational randomized controlled trial. The Aredia Multinational Cooperative Group. J Clin Oncol 14:2552–2559

    PubMed  CAS  Google Scholar 

  34. Small EJ, Smith MR, Seaman JJ et al (2003) Combined analysis of two multicenter, randomized, placebo-controlled studies of pamidronate disodium for the palliation of bone pain in men with metastatic prostate cancer. J Clin Oncol 21:4277–4284

    Article  PubMed  CAS  Google Scholar 

  35. Body JJ, Diel IJ, Bell R et al (2004) Oral ibandronate improves bone pain and preserves quality of life in patients with skeletal metastases due to breast cancer. Pain 111:306–312

    Article  PubMed  CAS  Google Scholar 

  36. Diel IJ, Body JJ, Lichnitser MR et al (2004) Improved quality of life after long-term treatment with the bisphosphonate ibandronate in patients with metastatic bone disease due to breast cancer. Eur J Cancer 40:1704–1712

    Article  PubMed  CAS  Google Scholar 

  37. Vassiliou V, Kalogeropoulou C, Christodoulos C et al (2007) Combination ibandronate and radiotherapy for the treatment of bone metastases: clinical evaluation and radiologic assessment. Int J Radiat Oncol Biol Phys 67:264–272

    Article  PubMed  CAS  Google Scholar 

  38. Vassiliou V, Kalogeropoulou C, Giannopoulou E et al (2007) A novel study investigating the therapeutic outcome of patients with lytic, mixed and sclerotic bone metastases treated with combined radiotherapy and ibandronate. Clin Exp Metastasis 24:169–178

    Article  PubMed  CAS  Google Scholar 

  39. Kouloulias V, Matsopoulos G, Kouvaris J et al (2003) Radiotherapy in conjunction with intravenous infusion of 180 mg of disodium pamidronate in management of osteolytic metastases from breast cancer: clinical evaluation, biochemical markers, quality of life, and monitoring of recalcification using assessment of grey-level histogram in plain radiographs. Int J Radiat Oncol Biol Phys 57:143–157

    Article  PubMed  CAS  Google Scholar 

  40. Vomvas D, Vassiliou V, Papavasileiou D et al (2008) Osteonecrosis of the jaw in a patient treated with ibandronate. J BUON 13:441–442

    PubMed  CAS  Google Scholar 

  41. Weitzman R, Sauter N, Eriksen EF et al (2007) Critical review: updated recommendations for the prevention, diagnosis and treatment of osteonecrosis of the jaw in cancer patients. Crit Rev Oncol Hematol 62:148–152

    Article  PubMed  Google Scholar 

  42. Vassiliou V, Tselis N, Kardamakis D (2010) Osteonecrosis of the jaws. Strahlenther Onkol 186:367–373

    Article  PubMed  Google Scholar 

  43. Bamias A, Kastritis E, Bamia C et al (2005) Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J Clin Oncol 23:8580–8587

    Article  PubMed  Google Scholar 

  44. Aapro M, Abrahamsson PA, Body JJ et al (2008) Guidance on the use of bisphosphonates in solid tumors: recommendations of an international expert panel. Ann Oncol 19:420–432

    Article  PubMed  CAS  Google Scholar 

  45. Armstrong AP, Miller RE, Jones JC et al (2008) RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate 68:92–104

    Article  PubMed  CAS  Google Scholar 

  46. Buijs JT, Que I, Lowik CW et al (2009) Inhibition of bone resorption and growth of breast cancer in the bone microenvironment. Bone 44:380–386

    Article  PubMed  CAS  Google Scholar 

  47. Canon JR, Roudier M, Bryant R et al (2008) Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis 25:119–129

    Article  PubMed  CAS  Google Scholar 

  48. Feeley BT, Liu NQ, Conduah AH et al (2006) Mixed metastatic lung cancer lesions in bone are inhibited by noggin overexpression and rank:Fc administration. J Bone Miner Res 21:1571–1580

    Article  PubMed  CAS  Google Scholar 

  49. Pearse RN, Sordillo EM, Yaccoby s et al (2001) Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 98:11581–11586

    Article  PubMed  CAS  Google Scholar 

  50. Zheng Y, Zhou H, Brennan K et al (2007) Inhibition of bone resorption, rather than direct cytotoxicity, mediates the antitumour actions of ibandronate and osteoprotegerin in a murine model of breast cancer bone metastasis. Bone 40:471–478

    Article  PubMed  CAS  Google Scholar 

  51. Canon J, Bryant R, Roudier M et al (2010) Inhibition of RANKL increases the antitumor effect of the EGFR inhibitor panitumumab in a murine model of bone metastasis. Bone 46:1613–1619

    Article  PubMed  CAS  Google Scholar 

  52. Holland PM, Miller R, Jones J et al (2010) Combined therapy with the RANKL inhibitor RANK-Fc and rhApo2L/TRAIL/dulanermin reduces bone lesions and skeletal tumor burden in a model of breast cancer skeletal metastasis. Cancer Biol Ther 9:539–550

    Article  PubMed  CAS  Google Scholar 

  53. Fizazi K, Carducci M, Smith M et al (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomized, double-blind study. Lancet 377:813–822

    Article  PubMed  CAS  Google Scholar 

  54. Henry DH, Costa L, Goldwasser F et al (2011) Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29:1125–1132

    Article  PubMed  CAS  Google Scholar 

  55. Stopeck AT, Lipton A, Body JJ et al (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double blind study. J Clin Oncol 28:5132–5139

    Article  PubMed  CAS  Google Scholar 

  56. Aapro MS (2011) Denosumab for bone metastases from breast cancer: a new therapy option? J Clin Oncol 29:e419–e420

    Article  PubMed  Google Scholar 

  57. Aragon-Chillag JB (2011) Unraveling the role of denosumab in prostate cancer. Lancet 377:785–786

    Article  Google Scholar 

  58. West H (2011) Denosumab for prevention of skeletal-related events in patients with bone metastases form solid tumors: incremental benefit, debatable value. J Clin Oncol 29:1095–1098

    Article  PubMed  CAS  Google Scholar 

  59. Carter J, Botteman MF (2012) Health-economic review of zoledronic acid for the management of skeletal-related events in bone- metastatic prostate cancer. Expert Rev Pharmacoecon Outcomes Res 12:425–437

    Article  PubMed  Google Scholar 

  60. Brown-Glaberman U, Stopeck A (2012) Role of denosumab in the management of skeletal complications in patients with bone metastases from solid tumors. Biol Targets Ther 6:89–99

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios Vassiliou M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vassiliou, V., Kountourakis, P., Kardamakis, D. (2014). Management of Metastatic Bone Disease in the Elderly with Bisphosphonates and RANKL Inhibitors: Effectiveness and Safety. In: Vassiliou, V., Chow, E., Kardamakis, D. (eds) Bone Metastases. Cancer Metastasis - Biology and Treatment, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7569-5_20

Download citation

Publish with us

Policies and ethics