Skip to main content

Paul Hertz’s Systems of Propositions As a Proof-Theoretical Conception of Logic

  • Chapter
  • First Online:
  • 902 Accesses

Part of the book series: Trends in Logic ((TREN,volume 39))

Abstract

Paul Hertz was an outstanding German physicist, who also devoted himself to mathematical logic and wrote a series of papers that remained rather unnoticed, even if they influenced the development of proof theory and particularly Gentzen’s work. This chapter aims to examine Hertz’s logical theory placing it in its historical context and remarking its influence on Gentzen’s sequent calculus. The analysis of the formal structure of proofs was one of Hertz’s most important achievements and it can be regarded as an anticipation of a “theory of proofs” in the current sense. But also, it can be asserted that Hertz’s systems played the role of a bridge between traditional formal logic and Gentzen’s logical work. Hertz’s philosophical ideas concerning the nature of logic and its place in scientific knowledge will be also analysed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In his biographical article on Hertz, Bernays wrote “Diese Untersuchungen [of Hertz] sind Vorlüfer verschiedener neuerer Forschungen zur mathematischen Logik und Axiomatik, insbesondere hat G. Gentzens Sequenzenkalkul von den H.schen Betrachtungen über Satzsysteme seinen Ausgang genommen” ([5], p. 712), and in a chapter on sequent calculi, Bernays asserted: “... in der Hertz’schen Theorie der Satzsysteme ein gewiss bei weitem noch nicht hinsichtlich der möglichen Fragestellungen und Erkenntnisse ausgeschöpftes Forschungs-gebiet der Axiomatik und Logik vorliegt.” ([4], p. 5, footnote). Haskell Curry in a historical note of his textbook on mathematical logic stated: “For the present context it is worthwhile to point out that Gentzen was apparently influenced by Hertz [...] This throws some light on the role of “Schnitt” in the Gentzensystem”. ([7], p. 246 f.). Vittorio Michele Abrusci wrote an introductory chapter on Hertz’s logical work [1].

  2. 2.

    Together with Moritz Schlick edited Hertz in 1921 the epistemological writings von Helmholtz. In some of these writings, problems concerning the philosophy and methodology of mathematics were discussed, especially in relation to the evaluation of non-Euclidean geometry. In these editions the following papers of von Helmholtz were included “über den Ursprung und die Bedeutung der geometrischen Axiome”, “über die Tatsachen, die der Geometrie zugrunde liegen”, “Zahlen und Messen” and “Die Tatsachen in der Wahrnehmung”.

  3. 3.

    Further information about Hertz can be found in the Nachla\(\beta \) of Paul Bernays (ETH Zürich), the Nachla\(\beta \) of David Hilbert (Göttingen), biographical notes (not published) by Adriaan Rezus (Nijmegen), and above all in Hertz’s Nachla\(\beta \) located at Archives for Scientific Philosophy, University of Pittsburgh.

  4. 4.

    “Unter Satz verstehen wir einen Inbegriff eines Komplexes, der auch nur aus einem ein einzigen Element bestehen kann und antecedens hei\(\beta \)t, und eines Elementes, das succedens hei\(\beta \)t.” ([10, p. 81)

  5. 5.

    Tarski wrote: “The discussion in Hertz, P. (27) has some points of contact with the present exposition.” ([20], p. 62 fn 1).

  6. 6.

    As a whole, Hertz’s conception on logical constants has certain similarities with the idea of logical constants as “puncuation marks”.

References

  1. Abrusci, V. M. (1983). Paul Hertz’s Logical Works Contents and Relevance. Atti del Convegno Internazionale di Storia della Logica, San Gimignano, 4–8 dicembre 1982. In: V. M. Abrusci, E. Casari & M. Mugnai (eds.), (pp. 369–374) Bologna: Clueb.

    Google Scholar 

  2. Bernays, P. (1927). Probleme der theoretischen Logik. Unterrichtsblätter für Mathematik und Naturwisschenschaften, 33, 369–377.

    Google Scholar 

  3. Bernays, P. (1930). Die Philosophie der Mathematik und die Hilbertsche Beweistheorie. Blätter für Deutsche Philosophie, 4(1930–1931), 326–367.

    Google Scholar 

  4. Bernays, P. (1965). Betrachtungen zum sequenzen-Kalkül. In: J. M. Bochenski (ed.), Contributions to Logic and Methodology in Honor (pp. 1–4). Amsterdam: Anna-Teresa Tymieniecka.

    Google Scholar 

  5. Bernays, P. (1969). Paul Hertz. Neue deutsche Biographie. Herausgegeben von der historischen Kommission bei der bayerischen Akademie der Wissenschaften (Vol. 8, p. 711 f). Berlin: Ducker and Humblot

    Google Scholar 

  6. Church, A. (1936). A bibliography of symbolic logic. The Journal of Symbolic Logic, 1, 121–218.

    Article  Google Scholar 

  7. Curry, H. B. (1977). Foundations of mathematical logic. New York: Dover.

    Google Scholar 

  8. Gentzen, G. (1933). Über die Existenz unabhängiger Axiomensystem zu unendlichen Satzsystemen. Mathematische Annalen, 107, 329–350.

    Article  Google Scholar 

  9. Gentzen, G. (1935). Untersuchungen über das logische Schlie\(\beta \)en. Mathematische Zeitschrift, 39, 176–210 (and 405–431).

    Google Scholar 

  10. Hertz, P. (1923a). Über Axiomensysteme für beliebige Satzsysteme. I. Teil. Sätze ersten grades. Mathematische Annalen, 87, 246–269.

    Google Scholar 

  11. Hertz, P. (1923b). Über das Denken. Berlin: Springer.

    Google Scholar 

  12. Hertz, P. (1928). Reichen die üblichen syllogistischen Regeln fúr das Schlie\(\beta \)en in der positiven Logik elementarer Sätze aus? Annalen der Philosophie, 7, 272–277.

    Google Scholar 

  13. Hertz, P. (1929a). Über Axiomensysteme für beliebige Satzsysteme. Mathematische Annalen, 101, 457–514.

    Article  Google Scholar 

  14. Hertz, P. (1929b). Über Axiomensysteme beliebiger Satzsysteme. Annalen der Philosophie, 8, 178–204.

    Google Scholar 

  15. Hertz, P. (1935). Über das Wesen der Logik und der logischen Urteilsformen. Abhandlungen der Fries’schen Schule. Neue Folge, 6, 227–272.

    Google Scholar 

  16. Hilbert, D. (1992). Natur und mathematisches Erkennen. Vorlesungen, gehalten 1919–1920 in Göttingen. In: David E. Rowe (ed.). Nach einer Ausarbeitung von Paul Bernays. Basel: Birkhauser.

    Google Scholar 

  17. Hilbert, D., & Bernays, P. (1934). Grundlagen der Mathematik (Vol. I). Berlin: Springer.

    Google Scholar 

  18. Prior Analytics trans. by R. Smith (1989) Aristotle, Hackett: Indianapolis.

    Google Scholar 

  19. Schroeder-Heister, P. (2002). Resolution and the origins of structural reasoning: Early proof-theoretic ideas of Hertz and Gentzen. Bulletin of Symbolic Logic, 8(2), 246–265

    Google Scholar 

  20. Tarski, A. (1930). Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften I. Monatshefte für Mathematik und Physik 37, pp. 361–404. (A. Tarski & J. H. Woodger, Trans. Logic, Semantics, Metamathematics) (2nd ed.) Hackett: Indianapolis. (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Legris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Legris, J. (2014). Paul Hertz’s Systems of Propositions As a Proof-Theoretical Conception of Logic. In: Pereira, L., Haeusler, E., de Paiva, V. (eds) Advances in Natural Deduction. Trends in Logic, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7548-0_5

Download citation

Publish with us

Policies and ethics