Generalized Elimination Inferences, Higher-Level Rules, and the Implications-as-Rules Interpretation of the Sequent Calculus

Part of the Trends in Logic book series (TREN, volume 39)


We investigate the significance of higher-level generalized elimination rules as proposed by the author and compare them with standard-level generalized elimination rules as proposed by Dyckhoff, Tennant, López-Escobar and von Plato. Many of the results established for natural deduction with higher-level rules such as normalization and the subformula principle immediately translate to the standard-level case. The sequent-style interpretation of higher-level natural deduction as proposed by Avron and by the author leads to a system with a weak rule of cut, which enjoys the subformula property. The interpretation of implications-as-rules motivates a different left-introduction schema for implication in the ordinary (standard-level) sequent calculus, which conceptually is more basic than the implication-left schema proposed by Gentzen. Corresponding to the result for the higher-level system, it enjoys the subformula property and cut elimination in a weak form.


  1. 1.
    Avron, A. (1990). Gentzenizing Schroeder-Heister’s natural extension of natural deduction. Notre Dame Journal of Formal Logic, 31, 127–135.Google Scholar
  2. 2.
    de Campos Sanz, W., & Piecha, T. (2009). Inversion by definitional reflection and the admissibility of logical rules. Review of Symbolic Logic, 2, 550–569.Google Scholar
  3. 3.
    Došen, K., & Schroeder-Heister, P. (1988). Uniqueness, definability and interpolation. Jounal of Symbolic Logic, 53, 554–570.Google Scholar
  4. 4.
    Dyckhoff, R. (1988). Implementing a simple proof assistant. Workshop on Programming for Logic Teaching (Leeds, 6–8 July 1987): Proceedings 23/1988 (pp. 49–59). Centre for Theoretical Computer Science: University of Leeds.Google Scholar
  5. 5.
    Garner, R. (2009). On the strength of dependent products in the type theory of Martin-Löf. Annals of Pure and Applied Logic, 160, 1–12.Google Scholar
  6. 6.
    Gentzen, G. (1934/35). Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39:176–210, 405–431 (English translation in: The Collected Papers of Gerhard Gentzen (ed. M. E. Szabo), Amsterdam: North Holland (1969), pp. 68–131).Google Scholar
  7. 7.
    Hallnäs, L., & Schroeder-Heister, P. (1990/91). A proof-theoretic approach to logic programming: I. Clauses as rules. II. Programs as definitions. Journal of Logic and Computation, 1, 261–283, 635–660.Google Scholar
  8. 8.
    Hallnäs, L. & Schroeder-Heister, P. (2014). A survey of definitional reflection. In T. Piecha & P. Schroeder-Heister(Eds.), Advances in Proof-Theoretic Semantics, Heidelberg: Springer.Google Scholar
  9. 9.
    Harper, R., Honsell, F., & Plotkin, G. (1987). A framework for defining logics. Journal of the Association for Computing Machinery, 40, 194–204.Google Scholar
  10. 10.
    Joachimski, F., & Matthes, R. (2003). Short proofs of normalization for the simply-typed \(\lambda \)-calculus, permutative conversions and Gödel’s T. Archive for Mathematical Logic, 42, 59–87.Google Scholar
  11. 11.
    von Kutschera, F. (1968). Die Vollständigkeit des Operatorensystems \(\{\lnot , \wedge ,\vee ,\supset \}\) für die intuitionistische Aussagenlogik im Rahmen der Gentzensemantik. Archiv für mathematische Logik und Grundlagenforschung, 11, 3–16.Google Scholar
  12. 12.
    López-Escobar, E. G. K. (1999). Standardizing the N systems of Gentzen. In X. Caicedo & C. H. Montenegro (Eds.), Models, Algebras and Proofs (Lecture Notes in Pure and Applied Mathematics Vol. 203) (pp. 411–434). New York: Marcel Dekker.Google Scholar
  13. 13.
    Lorenzen, P. (1950). Konstruktive Begründung der Mathematik. Mathematische Zeitschrift, 53, 162–202.Google Scholar
  14. 14.
    Lorenzen, P. (1955). Einführung in die operative Logik und Mathematik (2nd ed 1969). Berlin: Springer.Google Scholar
  15. 15.
    Martin-Löf, P. (1984). Intuitionistic Type Theory. Napoli: Bibliopolis.Google Scholar
  16. 16.
    Moriconi, E., & Tesconi, L. (2008). On inversion principles. History and Philosophy of Logic, 29, 103–113.Google Scholar
  17. 17.
    Negri, S., & von Plato, J. (2001). Structural Proof Theory. Cambridge: Cambridge University Press.Google Scholar
  18. 18.
    Olkhovikov, G. K., & Schoeder-Heister, P. (2014). On flattening elimination rules. Review of Symbolic Logic, 7.Google Scholar
  19. 19.
    Olkhovikov, G. K., & Schoeder-Heister, P. (2014). Proof-theoretic harmony and the levels of rules: General non-flattening results. In E. Moriconi & L. Tesconi (Eds.), Second Pisa Colloquim in Logic, Language and Epistemology. ETS, Pisa.Google Scholar
  20. 20.
    Paulson, L. C. (1994). Isabelle: A Generic Theorem Prover. Berlin: Springer.Google Scholar
  21. 21.
    von Plato, J. (2000). A problem of normal form in natural deduction. Mathematical Logic Quarterly, 46, 121–124.Google Scholar
  22. 22.
    von Plato, J. (2001). Natural deduction with general elimination rules. Archive for Mathematical Logic, 40, 541–567.Google Scholar
  23. 23.
    Prawitz, D. (1965). Natural Deduction: A Proof-Theoretical Study. Almqvist & Wiksell (Reprinted Mineola NY: Dover Publ., 2006), Stockholm.Google Scholar
  24. 24.
    Prawitz, D. (1971). Ideas and results in proof theory. In J. E. Fenstad (Ed.), Proceedings of the Second Scandinavian Logic Symposium (Oslo 1970) (pp. 235–308). Amsterdam: North-Holland.Google Scholar
  25. 25.
    Prawitz, D. (1979). Proofs and the meaning and completeness of the logical constants. In J. Hintikka, I. Niiniluoto & E. Saarinen (Eds.), Essays on Mathematical and Philosophical Logic: Proceedings of the Fourth Scandinavian Logic Symposium and the First Soviet-Finnish Logic Conference, Jyväskylä, Finland, June 29 - July 6, 1976 (pp. 25–40) (revised German translation ‘Beweise und die Bedeutung und Vollständigkeit der logischen Konstanten’, Conceptus, 16. (1982). 31–44). Dordrecht: Kluwer.Google Scholar
  26. 26.
    Read, S. (2014). General-elimination harmony and higher-level rules. In H. Wansing (Ed.), Dag Prawitz on Proofs and Meaning. Heidelberg: Springer.Google Scholar
  27. 27.
    Schroeder-Heister, P. (1981). Untersuchungen zur regellogischen Deutung von Aussagenverknüpfungen. Diss: Universität Bonn.Google Scholar
  28. 28.
    Schroeder-Heister, P. (1984). A natural extension of natural deduction. Journal of Symbolic Logic, 49, 1284–1300.Google Scholar
  29. 29.
    Schroeder-Heister, P. (1984). Generalized rules for quantifiers and the completeness of the intuitionistic operators \({\wedge , \vee , \rightarrow , \bot , \forall , \exists }\). In M. M. Richter, E. Börger, W. Oberschelp, B. Schinzel & W. Thomas (Eds.) Computation and Proof Theory. Proceedings of the Logic Colloquium held in Aachen, July 18–23, 1983, Part II. (Lecture Notes in Mathematics, Vol. 1104), (pp. 399–426). Berlin: Springer.Google Scholar
  30. 30.
    Schroeder-Heister, P. (1987). Structural Frameworks with Higher-Level Rules. Habilitations- schrift: Universität Konstanz.Google Scholar
  31. 31.
    Schroeder-Heister, P. (1991). Structural frameworks, substructural logics, and the role of elimination inferences. In G. Huet & G. Plotkin (Eds.) Logical Frameworks (pp. 385–403). Cambridge: Cambridge University Press.Google Scholar
  32. 32.
    Schroeder-Heister, P. (1993). Rules of definitional reflection. Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science (Montreal 1993) (pp. 222–232). Los Alamitos: IEEE Press.Google Scholar
  33. 33.
    Schroeder-Heister, P. (2004). On the notion of assumption in logical systems. In R. Bluhm & C. Nimtz (Eds.) Selected Papers Contributed to the Sections of GAP5, Fifth International Congress of the Society for Analytical Philosophy, Bielefeld, 22–26 September 2003 (pp. 27–48). mentis (Online publication:, Paderborn.
  34. 34.
    Schroeder-Heister, P. (2007). Generalized definitional reflection and the inversion principle. Logica Universalis, 1, 355–376.Google Scholar
  35. 35.
    Schroeder-Heister, P. (2008). Lorenzen’s operative justification of intuitionistic logic. In M. van Atten, P. Boldini, M. Bourdeau & G. Heinzmann (Eds.), One Hundred Years of Intuitionism (1907–2007): The Cerisy Conference, (pp. 214–240) [References for whole volume: 391–416]. Birkhäuser, Basel.Google Scholar
  36. 36.
    Schroeder-Heister, P. (2009). Sequent calculi and bidirectional natural deduction: On the proper basis of proof-theoretic semantics. In M. Peliš (Ed.), The Logica Yearbook 2008. London: College Publications.Google Scholar
  37. 37.
    Schroeder-Heister, P. (2011). Implications-as-rules vs. implications-as-links: an alternative implication-left schema for the sequent calculus. Journal of Philosophical Logic, 40, 95–101.Google Scholar
  38. 38.
    Schroeder-Heister, P. (2012). Proof-theoretic semantics. In E.N. Zalta, (Ed.), Stanford Encyclopedia of Philosophy.
  39. 39.
    Schroeder-Heister, P. (2013). Definitional reflection and Basic Logic. Annals of Pure and Applied Logic (Special issue, Festschrift 60th Birthday Giovanni Sambin), 164, 491–501.Google Scholar
  40. 40.
    Schroeder-Heister, P. (2014). Harmony in proof-theoretic semantics: A reductive analysis. In H. Wansing (Ed.), Dag Prawitz on Proofs and Meaning, Heidelberg: Springer.Google Scholar
  41. 41.
    Tennant, N. (1992). Autologic. Edinburgh: Edinburgh University Press.Google Scholar
  42. 42.
    Tennant, N. (2002). Ultimate normal forms for parallelized natural deductions. Logic Journal of the IGPL, 10, 299–337.Google Scholar
  43. 43.
    Tesconi, L. (2004). Strong Normalization Theorem for Natural Deduction with General Elimination Rules. Ph. D. thesis: University of Pisa.Google Scholar
  44. 44.
    Wansing, H. (1993). The Logic of Information Structures. Berlin: Springer (Lecture Notes in Artificial Intelligence, Vol. 681).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany

Personalised recommendations