General Fluorescence Imaging Techniques

  • Partha Pratim Mondal
  • Alberto Diaspro


The most frequently encountered mechanisms and techniques in fluorescence microscopy are detailed in chapter 7. This includes time-domain fluorescence life-time imaging and its advantage over intensity based fluorescence imaging. This is followed by the description of the resonance energy transfer mechanism for a wide range of molecular pairs (Acceptor-Donor pair) that is central to many biological studies. Next, we discuss the generation of second and higher harmonics using a non-linear crystal for imaging applications. In the final section, fluorescence correlation spectroscopy and its variants are discussed. This enables study of numerous biophysical phenomena including, fluorescence fluctuation and diffusion in the focal volume.


Resonance Energy Transfer Fluorescence Correlation Spectroscopy Acceptor Molecule Donor Molecule Focal Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Axelrod, D.: Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell. Biol. 89, 141–145 (1981) CrossRefGoogle Scholar
  2. 2.
    Begley, R.F., Harvey, A.B., Bayer, R.L.: Coherent anti-Stokes Raman spectroscopy. Appl. Phys. Lett. 25, 387–390 (1974) ADSCrossRefGoogle Scholar
  3. 3.
    Bianchini, P., Diaspro, A.: Three-dimensional (3D) backward and forward second harmonic generation (SHG) microscopy of biological tissues. J. Biophotonics 1, 443–450 (2008) CrossRefGoogle Scholar
  4. 4.
    Cheng, J.X., Potma, E.O., Xie, X.S.: Coherent anti-Stokes Raman scattering correlation spectroscopy: probing dynamical processes with chemical selectivity. J. Phys. Chem. A 106, 8561–8568 (2001) CrossRefGoogle Scholar
  5. 5.
    Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953) ADSCrossRefGoogle Scholar
  6. 6.
    Forster, T.: Zwischenmolecukulare Energiewanderung und Fluoreszenz. Ann. Phys. 2, 55–75 (1948) CrossRefGoogle Scholar
  7. 7.
    Gosch, M., et al.: Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array. J. Biomed. Opt. 9, 913–921 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Springer, Berlin (1999) CrossRefGoogle Scholar
  9. 9.
    Madge, D.E., Elson, E.L., Webb, W.W.: Thermodynamics fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708 (1972) ADSCrossRefGoogle Scholar
  10. 10.
    Madge, D.E., Elson, E.L., Webb, W.W.: Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13(1), 29–61 (1974) CrossRefGoogle Scholar
  11. 11.
    Maker, P.D., Terhune, R.W.: Study of optical effects due to induced polarization third order in the electric field strength. Phys. Rev. 137, A801–A818 (1965) ADSCrossRefGoogle Scholar
  12. 12.
    Menon, R.P., et al..: The importance of serine 776 in Ataxin-1 partner selection: a FRET analysis. Sci. Rep. 2, 919 (2012) ADSGoogle Scholar
  13. 13.
    Mondal, P.P., Gilbert, R.J., So, P.T.C.: Photobleaching reduced fluorescence correlation spectroscopy. Appl. Phys. Lett. 97, 103704 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    Raman, C.V., Krishnan, K.S.: A new type of secondary radiation. Nature 121, 501 (1928) ADSCrossRefGoogle Scholar
  15. 15.
    Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics, 2nd edn. Wiley-Interscience, New York (2007) Google Scholar
  16. 16.
    Sun, Y., Day, R.N., Periasamy, A.: Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat. Protoc. 6, 1324 (2011) CrossRefGoogle Scholar
  17. 17.
    Thompson, N.L., Burghardt, T.P., Axelrod, D.: Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys. J. 33, 435–454 (1981) CrossRefGoogle Scholar
  18. 18.
    Weidemann, T., Wachsmuth, M., Tewes, M., Rippe, K., Langowski, J.: Analysis of ligand binding by two-colour fluorescence cross-correlation spectroscopy. Single Molecules 3, 49–61 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    Zumbusch, A., Holtom, G.R., Xie, X.S.: Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    Förster, T.: Zwischenmolekulare Energiewanderung und Fluoreszenz [Intermolecular energy migration and fluorescence]. Ann. Phys. (in German) 437, 55–75 (1948) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Partha Pratim Mondal
    • 1
  • Alberto Diaspro
    • 2
  1. 1.Nanobioimaging Laboratory, Dept. Instrumentation and Applied PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Nanophysics UnitThe Italian Institute of Technology – IIGenovaItaly

Personalised recommendations