Confined Water in Carbon Nanotubes and Its Applications

  • Seul Ki Youn
  • Jakob Buchheim
  • Hyung Gyu Park
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


Unique nanoscale transport properties of carbon nanotubes (CNTs) have inspired researchers for over a decade, initially with their analogies to various biological pores and later with the potential impact on water purification. Water can permeate through a nanometer-wide pipe of the CNT interior at rates far exceeding those predicted by Hagen-Poiseuille formulation and measured in nano conduits of different material, attributed to nano confinement, hydrophobicity, and smooth potential energy landscape. Also, chemical addition to the nanotube ends was found effective in electrostatic exclusion of ions without much loss of water permeability, suggesting the emergence of CNT membranes for desalination and purification of water resources. This article introduces Carbon Nanotube Nanofluidics by capturing important findings and progresses made in the early developments of the area.


Molecular Dynamic Simulation Water Transport Water Desalination Forward Osmosis Seawater Desalination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Schwarzenbach RP et al (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077CrossRefGoogle Scholar
  2. 2.
    Shannon MA et al (2008) Science and technology for water purification in the coming decades. Nature 452:301–310CrossRefGoogle Scholar
  3. 3.
    Noy A, Park HG, Fornasiero F, Holt JK, Grigoropoulos CP, Bakajin O (2007) Slippery nanopipes: nanofluidics in nanotubes. Nano Today 2:22–29CrossRefGoogle Scholar
  4. 4.
    Whitby M, Quirke N (2007) Fluid flow in carbon nanotubes and nanopipes. Nat Nanotechnol 2:87–94CrossRefGoogle Scholar
  5. 5.
    Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190CrossRefGoogle Scholar
  6. 6.
    Werder T, Walther JH, Jaffe RL, Halicioglu T, Koumoutsakos P (2003) On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J Phys Chem B 107:1345–1352CrossRefGoogle Scholar
  7. 7.
    Falk K, Sedlmeier F, Joyl L, Bocquet L (2010) Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett 10:4067–4073CrossRefGoogle Scholar
  8. 8.
    Babu JS, Sathian SP (2012) Combining molecular dynamics simulation and transition state theory to evaluate solid-liquid interfacial friction in carbon nanotube membranes. Phys Rev E 85:051205CrossRefGoogle Scholar
  9. 9.
    Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci U S A 100:10175–10180CrossRefGoogle Scholar
  10. 10.
    Thomas JA, McGaughey AJH (2008) Reassessing fast water transport through carbon nanotubes. Nano Lett 8:2788–2793CrossRefGoogle Scholar
  11. 11.
    Joseph S, Aluru NR (2008) Why are carbon nanotubes fast transporters of water? Nano Lett 8:452–458CrossRefGoogle Scholar
  12. 12.
    Hanasaki I, Nakatami A (2006) Structure and stability of water chain in a carbon nanotube. J Chem Phys 124:144708CrossRefGoogle Scholar
  13. 13.
    Kolesnikov AI et al (2004) Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys Rev Lett 93:035503CrossRefGoogle Scholar
  14. 14.
    Naguib N et al (2004) Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett 4:2237–2243CrossRefGoogle Scholar
  15. 15.
    Maniwa Y et al (2007) Water-filled single-wall carbon nanotubes as molecular nanovalves. Nat Mater 6:135–141CrossRefGoogle Scholar
  16. 16.
    Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303:62–65CrossRefGoogle Scholar
  17. 17.
    Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438:44CrossRefGoogle Scholar
  18. 18.
    Majumder M, Chopra N, Hinds BJ (2005) Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J Am Chem Soc 127:9062–9070CrossRefGoogle Scholar
  19. 19.
    Holt JK, Park HG, Wang YM, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037CrossRefGoogle Scholar
  20. 20.
    Fornasiero F, Park HG, Holt JK, Stadermann M, Grigoropoulos CP, Noy A, Bakajin O (2008) Ion exclusion by sub-2-nm carbon nanotube pores. Proc Natl Acad Sci U S A 105:17250–17255CrossRefGoogle Scholar
  21. 21.
    Fornasiero F et al (2010) pH-tunable ion selectivity in carbon nanotube pores. Langmuir 26:14848–14853CrossRefGoogle Scholar
  22. 22.
    Du F, Qu L, Xia Z, Feng L, Dai L (2011) Membranes of vertically aligned superlong carbon nanotubes. Langmuir 27:8437–8443CrossRefGoogle Scholar
  23. 23.
    Park HG (2007) Mass transport through carbon nanotubes. PhD dissertation, University of California BerkeleyGoogle Scholar
  24. 24.
    Whitby M, Cagnon L, Thanou M, Quirke N (2008) Enhanced fluid flow through nanoscale carbon pipes. Nano Lett 8:2632–2637CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Seul Ki Youn
    • 1
  • Jakob Buchheim
    • 1
  • Hyung Gyu Park
    • 1
  1. 1.Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process EngineeringSwiss Federal Institute of Technology Zurich (ETH Zurich)ZurichSwitzerland

Personalised recommendations